
Module Code: CA463 Page 1 of 5

Semester 1 Exam

DUBLIN CITY UNIVERSITY

SEMESTER ONE REPEAT EXAMINATIONS 2011

MODULE TITLE: Concurrent Programming

MODULE CODE: CA463/CA463D

COURSE: BSc. in Computer Applications (Software Engineering Stream),

Study Abroad

YEAR: 4/X

EXAMINERS: Dr. J. Power

Dr. F. Bannister

Dr. Martin Crane Ext: 8974

TIME ALLOWED: 2 Hours

INSTRUCTIONS: Please answer any 3 questions:

Requirements for this paper Log Table

Please tick (X) as appropriate Graph Paper

 Attached Answer Sheet

 Statistical Tables

 Floppy Disk

 Actuarial Tables

THE USE OF PROGRAMMABLE OR TEXT STORING CALCULATORS IS

EXPRESSLY FORBIDDEN

Please note that where a candidate answers more than the required number of

questions, the examiner will mark all questions attempted and then select the highest

scoring ones.

PLEASE DO NOT TURN OVER THIS PAGE UNTIL YOU ARE INSTRUCTED TO

DO SO

Module Code: CA463 Page 2 of 5

Semester 1 Exam

Question 1 [Total marks: 33]

1(a) [6 marks]

Show how, using hardware-assisted mutual exclusion, the n process mutual
exclusion problem may be solved. Write code to implement this algorithm in SR,
carefully explaining your code.

1(b) [12 marks]

Describe the Bakery algorithm for providing mutual exclusion among n processes.
Write code to implement the Bakery algorithm in SR. Why is this algorithm not
practical?

1(c) [15 marks]
Write code to implement the Bakery algorithm for mutual exclusion of n processes in
Java.

--[End of Question 1]--

Question 2 [Total marks: 33]

2(a) [5 marks]

What is a monitor?

2(b) [14 marks]

Give a solution to the Dining Philosophers problem using monitors in SR, and prove
that deadlock cannot occur. Give in your answer a high level description of the
algorithm.

2(c) [14 marks]

The Dining Schoolboys: A class of Schoolboys eats communal dinners from a large
pot that can hold M servings of porridge. When a Schoolboy wants to eat, he helps
himself from the pot unless it is empty in which case he waits for the pot to be filled.
If the pot is empty, the cook refills the pot with M servings. The operations carried

out by the cook and the Schoolboys are fill_pot() and get_serving()

respectively. Model the behaviour of the pot using a monitor and write code to
implement this monitor in SR.

--[End of Question 2]—

Module Code: CA463 Page 3 of 5

Semester 1 Exam

Question 3 [Total marks: 33]

3(a) [10 marks]

What are Threads and what support role do they play in Java? How are monitors
implemented in Java?

3(b) [23 marks]

Write code to implement the Reader-Preference Readers/Writers Problem with
Monitors in Java.

--[End of Question 3]—

Module Code: CA463 Page 4 of 5

Semester 1 Exam

Question 4 [Total marks: 33]

4(a) [10 marks]

In the context of concurrent programming, what is load balancing? Why is it not
practical to find optimal solutions for large load balancing problems?

4(b) [12 marks]

Describe Coffman’s load balancing algorithm. How would you classify this algorithm?
What assumptions is it based on?

4(c) [11 marks]

Use Coffman’s algorithm to schedule the task graph in Figure 1 on to a three
processor system.

Figure 1

--[End of Question 4]—

2

3

5 4

6 7 8 9

10 11 12

13 14

1

Module Code: CA463 Page 5 of 5

Semester 1 Exam

Question 5 [Total marks: 33]

5(a) [7 marks]

What is the Message Passing Interface (MPI)? List three advantages and three
disadvantages of MPI.

5(b) [8 marks]

Write out and explain briefly the arguments of the following MPI commands:
MPI_Send, MPI_Recv, MPI_Isend, MPI_Irecv.

5(c) [18 marks]

Write a program in MPI with C bindings that takes data from a master process
(process zero), increments it by one and sends it to all of the other processes by
sending it in a ring using a non-blocking Send. That is, process i should receive the
data and send it to process i+1, until the last process is reached. Processes should
indicate directly to the user that they have received the data.

Assume that the data sent consists of a single integer and that the master process
reads the data from the user.

--[End of Question 5]

