
Module Code: CA463 Page 1 of 7

Semester 1 Resit Exam

DUBLIN CITY UNIVERSITY

SEMESTER ONE RESIT EXAMINATIONS 2012

MODULE TITLE: Concurrent Programming

MODULE CODE: CA463/CA463D

COURSE: BSc. in Computer Applications (Software Engineering Stream),

Study Abroad

YEAR: 4/X

EXAMINERS: Dr. J. Power

Dr. F. Bannister

Dr. Martin Crane Ext: 8974

TIME ALLOWED: 2 Hours

INSTRUCTIONS: Please answer any 3 questions:

Requirements for this paper Log Table

Please tick (X) as appropriate Graph Paper

 Attached Answer Sheet

 Statistical Tables

 Floppy Disk

 Actuarial Tables

THE USE OF PROGRAMMABLE OR TEXT STORING CALCULATORS IS

EXPRESSLY FORBIDDEN

Please note that where a candidate answers more than the required number of

questions, the examiner will mark all questions attempted and then select the highest

scoring ones.

PLEASE DO NOT TURN OVER THIS PAGE UNTIL YOU ARE INSTRUCTED TO

DO SO

Module Code: CA463 Page 2 of 7

Semester 1 Resit Exam

Question 1 [Total marks: 33]

1(a) [12 marks]

Define Dekker’s Algorithm in words and implement it in SR for two processors.
Explain clearly all parts of the code.

1(b)

Peterson’s algorithm is a variation on Dekker’s algorithm whereby each processor

uses two variables, flag and turn. A flag value of 1 indicates that the process

wants to enter the critical section. The variable turn holds the ID of the process

whose turn it is. Entrance to the critical section is granted for process P0 if P1 does
not want to enter its critical section or if P1 has given priority to P0 by setting turn to
0.

 [11 marks]

(i) Implement Peterson’s algorithm in Java and briefly compare it with
Dekker’s algorithm.

 [10 marks]

(ii) Show that, in Peterson’s algorithm in (i), (a) Mutual Exclusion is satisfied
and (b) No Starvation occurs.

--[End of Question 1]--

Question 2 [Total marks: 33]

2(a) [10 marks]

Show, using SR code, how semaphores may be used to implement monitors and
how monitors may be used to implement semaphores.

2(b) [11 marks]

Write code in Java to implement a Semaphore class. Your implementation should

give a default constructor, a constructor which initialises with value i, a release

method (for the P operation) and an acquire method (for the V operation).

2(c) [12 marks]

Using the Semaphore class in (b) above, implement the Bounded Buffer Class in

Java. The methods void deposit(Object value) and Object fetch()

should be implemented.

--[End of Question 2]—

Module Code: CA463 Page 3 of 7

Semester 1 Resit Exam

Question 3 [Total marks: 33]

3(a) [23 marks]

Write code for the Reader-Preference Solution to the Readers-Writers Problem in
SR. Explain clearly all parts of the code. Explain briefly (without code) the method
of “Passing the Baton”. What mechanisms does SR provide that make the
implementation of “Passing the Baton” possible?

3(b) [10 marks]

Implement in SR and describe fully Ballhausen’s solution to the Readers-Writers
Problem. Discuss the efficiency of this solution vis-à-vis the Readers-Preference
solution in part (a) above.

--[End of Question 3]—

Module Code: CA463 Page 4 of 7

Semester 1 Resit Exam

Question 4 [Total marks: 33]

4(a) [9 marks]

Explain the difference between Low Level Concurrency Objects and High Level
Concurrency Objects in Java. Why would you use the latter rather than the former?

4(b) [10 marks]

As part of the java.util.concurrent package what are Lock objects and how

do they differ from intrinsic locks? What are ReentrantLocks and in what

situations would one use them over synchronized blocks of code?

4(c) [14 marks]

For the code given in Figure Q4,

 [6 marks]

(i) What is the meaning of the lock.tryLock() method? Explain clearly

what is happening at points A, B. What will happen if either/both

statements fail?

 [2 marks]

(ii) Explain clearly what is meant by the Code at point C.

 [6 marks]

(iii) Explain clearly what is meant by the Code at point D, identifying the

possible problem that is being avoided.

Module Code: CA463 Page 5 of 7

Semester 1 Resit Exam

Figure Q4

import java.util.*;

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

import static java.util.concurrent.TimeUnit.NANOSECONDS;

public class BankTransfer {

 private static Random rnd = new Random();

 public boolean transferMoney(Account fromAcct,

 Account toAcct,

 DollarAmount amount,

 long timeout,

 TimeUnit unit)

 throws InsufficientFundsException, InterruptedException {

 long fixedDelay = getFixedDelayComponentNanos(timeout, unit);

 long randMod = getRandomDelayModulusNanos(timeout, unit);

 long stopTime = System.nanoTime() + unit.toNanos(timeout);

 while (true) {

 if (fromAcct.lock.tryLock()) {

 try {

 if (toAcct.lock.tryLock()) {

 try {

 if (fromAcct.getBalance().compareTo(amount) < 0)

 throw new InsufficientFundsException();

 else {

 fromAcct.debit(amount);

 toAcct.credit(amount);

 return true;

 }

 } finally {

 toAcct.lock.unlock();

 }

 }

 } finally {

 fromAcct.lock.unlock();

 }

 }

 if (System.nanoTime() < stopTime)

 return false;

 NANOSECONDS.sleep(fixedDelay + rnd.nextLong() % randMod);

 }

 }

 private static final int DELAY_FIXED = 1;

 private static final int DELAY_RANDOM = 2;

 static long getFixedDelayComponentNanos(long timeout, TimeUnit unit) {

 return DELAY_FIXED;

 }

 static long getRandomDelayModulusNanos(long timeout, TimeUnit unit) {

 return DELAY_RANDOM;

 }

 static class DollarAmount implements Comparable<DollarAmount> {

 public int compareTo(DollarAmount other) {

 return 0;

 }

 DollarAmount(int dollars) {

 }

 }

A

B

C

D

Module Code: CA463 Page 6 of 7

Semester 1 Resit Exam

 class Account {

 public Lock lock;

 void debit(DollarAmount d) {

 }

 void credit(DollarAmount d) {

 }

 DollarAmount getBalance() {

 return null;

 }

 }

 class InsufficientFundsException extends Exception {

 }

}

--[End of Question 4]—

Module Code: CA463 Page 7 of 7

Semester 1 Resit Exam

Question 5 [Total marks: 33]

5(a) [10 marks]

Sketch Cassavant and Kuhl’s taxonomy of load balancing algorithms. Define

clearly the heading for each section. State clearly the difference between:

1. Algorithms with One-time Assignment and Dynamic Reassignment.

2. Adaptive and non-Adaptive Algorithms.

5(b) [12 marks]

Describe Coffman’s load balancing algorithm. How would you classify this algorithm?
What assumptions is it based on?

5(c) [11 marks]

Use Coffman’s algorithm to schedule the task graph in Figure Q5 on to a four
processor system.

Figure Q5

--[End of Question 5]—

2

3

5 4

6 7 8 9

10 11 12

13 14

1

