
04/10/2021 CI-0114 Fundamentos de Arquitectura 1

Single-cycle
Datapath and Control

CI0114 Fundamentos de arquitectura 2

Processors
● Datapath and control are the two components that come together to be

collectively known as the processor
● Datapath consists of the functional units of the processor

● Elements that hold data
● Program counter, register file, instruction memory, etc.

● Elements that operate on data
● ALU, adders, etc.

● Buses for transferring data between elements

● Control commands the datapath regarding when and how to route and
operate on data

CI0114 Fundamentos de arquitectura 3

MIPS

To showcase the process of creating a datapath and designing a
control, we will be using a subset of the MIPS instruction set. Our
available instructions include:

● add, sub, and, or, slt
● lw, sw
● beq, j

CI0114 Fundamentos de arquitectura 4

Datapath

First, we have instruction memory

Instruction memory is a state element that
provides read-access to the instructions of a
program and, given an address as input,
supplies the corresponding instruction at that
address

● Code can also be written, e.g., self-modifying
code|

To start, we will look at the datapath elements needed by every instruction.

Read
Address

Instruction
Memory

Instruction

CI0114 Fundamentos de arquitectura 5

Datapath

The PC is a state element that holds the
address of the current instruction. Essentially,
it is just a 32-bit register which holds the
instruction address and is updated at the end
of every clock cycle.

● Normally PC increments sequentially except for
branch instructions

The arrows on either side indicate that the PC
state element is both readable and writeable.

Next, we have the program counter or PC

PC

04/10/2021 CI0114 Fundamentos de arquitectura 6

Datapath

Lastly, we have the adder.

The adder is responsible for incrementing the PC
to hold the address of the next instruction.

It takes two input values, adds them together and
outputs the result.

Add

4

04/10/2021 CI0114 Fundamentos de arquitectura 7

Datapath

So now we have instruction memory, PC, and adder datapath
elements. Now, we can talk about the general steps taken to
execute a program.

● Instruction fetching: use the address in the PC to fetch the
current instruction from instruction memory

● Instruction decoding: determine the fields within the instruction
● Instruction execution: perform the operation indicated by the

instruction
● Update the PC to hold the address of the next instruction

04/10/2021 CI0114 Fundamentos de arquitectura 8

Datapath
● Fetch the instruction at the

address of the PC
● Decode the instruction
● Execute the instruction
● Update the PC to hold the

address of the next instruction
PC

Add

Read
Address

Instruction
Memory

Instruction

4

Note: we perform PC + 4 because MIPS instructions are word-aligned

04/10/2021 CI0114 Fundamentos de arquitectura 9

MIPS instruction formats
● Different MIPS instruction formats

● R: register, register, register
● I: immediate, lw, sw
● B: branches
● J: jump

04/10/2021 CI0114 Fundamentos de arquitectura 10

R-format instructions

Now, let’s consider R-format instructions. In our limited MIPS instruction set, these
are add, sub, and, or, and slt.

All R-type instructions read two registers, rs and rt, and write to a register rd.

Name Fields

Field size 6 5 5 5 5 6

R format opcode rs rt rd shamt funct

opcode – instruction operation code

rs – first register operand

rt – second register operand

rd – register destination operand

funct – additional opcodes

shamt – shift amount

04/10/2021 CI0114 Fundamentos de arquitectura 11

Datapath

To support R-format instructions, we’ll need to add a state element called
a register file. A register file is a collection readable/writeable registers.

Read
Register 1

● Read register 1 – first source register. 5 bits
wide

● Read register 2 – second source register. 5
bits wide

● Write register – destination register. 5 bits
wide

● Write data – data to be written to a register.
32 bits wide

Read
Register 2

Write
Register

Write
Data

Register
Numbers

Data

Read
data 1

Read
data 2

Data

RegWrite

Re
gi

st
er

 F
ile

04/10/2021 CI0114 Fundamentos de arquitectura 12

Datapath

At the bottom, we have the RegWrite input. A writing operation only
occurs when this bit is set.

Read
Register 1

The two output ports are:
● Read data 1 – contents of source register 1

● Read data 2 – contents of source register 2

Read
Register 2

Write
Register

Write
Data

Register
Numbers

Data

Read
data 1

Read
data 2

Data

RegWrite

Re
gi

st
er

 F
ile

04/10/2021 CI0114 Fundamentos de arquitectura 13

Datapath
To actually execute R-format instructions, we
need to include the ALU element.

The ALU performs the operation indicated by the
instruction.

It takes two 32 bits operands, as well as a 4-bit
wide operation selector value. The result of the
operation is the ALU result 32 bits value.

● ALU operation is a part of the control. We discuss datapath first

We have an additional (Zero) output specifically
for branching – we will cover this in a minute.

ALU operation

Zero

ALU
result

AL
U

04/10/2021 CI0114 Fundamentos de arquitectura 14

Datapath for R-format instructions

1. Grab the instruction
address from PC

Read
Register 1

Read
Register 2

Write
Register

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

Zero

ALU
result

A
L
U

PC

4

Write
Data

rs

rt

rd

A
dd

04/10/2021 CI0114 Fundamentos de arquitectura 15

Datapath for R-format instructions

2. Fetch the instruction
from instruction
memory

3. Decode the
instruction

ZeroA
L
U

Read
Register 1

Read
Register 2

Write
Register

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

Add

4

ALU
result

Write
Data

rs

rt

rd

A
dd

4

04/10/2021 CI0114 Fundamentos de arquitectura 16

Datapath for R-format instructions

4. Pass rs, rt, and rd
into read register
and write register
arguments

ZeroA
L
U

Read
Register 1

Read
Register 2

Write
Register

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

4

ALU
result

Write
Data

rs

rt

rd

A
dd

04/10/2021 CI0114 Fundamentos de arquitectura 17

Datapath for R-format instructions

5. Retreive data from
read register 1 and
read register 2 (rs,
rt)

ZeroA
L
U

Read
Register 1

Read
Register 2

Write
Register

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

Add

4

ALU
result

Write
Data

rs

rt

rd

04/10/2021 CI0114 Fundamentos de arquitectura 18

Datapath for R-format instructions

6. Pass the content of
rs and rt into the
ALU as operands of
the operation to be
performed

Zero

ALU
result

A
L
U

Read
Register 1

Read
Register 2

Write
Register

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

4

Write
Data

rs

rt

rd

A
dd

04/10/2021 CI0114 Fundamentos de arquitectura 19

Datapath for R-format instructions

7. Retrieve result of
operation ALUOp
performed by ALU
and pass back the
result as the write
data argument of
the register file (with
the RegWrite bit
set).

ZeroA
L
U

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

4

RegWrite
ALUOp

ALU
result

Write
Data

rs

rt

rd

A
dd

04/10/2021 CI0114 Fundamentos de arquitectura 20

Datapath for R-format instructions

8. Add 4 to the PC
value to obtain the
word-aligned
address of the next
instruction

ZeroA
L
U

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

4

ALUOp

ALU
result

RegWrite

Write
Data

rs

rt

rd

A
dd

04/10/2021 CI0114 Fundamentos de arquitectura 21

I-format instructions

Now that we have a complete datapath for R-format instructions, let’s add in
support for I-type instructions. In our limited MIPS instruction set, these are lw, sw,
and beq.

 Name Fields

Field size 6 5 5 5 5 6

I format opcode rs rt immed
rd

opcode
rd

opcode
rd

opcode

opcode – instruction operation code

rs – first register operand

rd – register destination operand

immed – immediate operand, zero
extended if logical operator, otherwise
sign-extended

04/10/2021 CI0114 Fundamentos de arquitectura 22

Data transfer instructions
Let’s start I-format instructions with accommodating the data transfer. For
lw and sw, we have the following format:

● lw $rd, immed($rs)
● sw $rd, immed($rs)

● The memory address is computed by sign-extending the 16-bit
immediate to 32-bits, which is added to the contents of $rs

● In lw, $rd represents the register that will be assigned the memory value
In sw, $rd represents the register whose value will be stored in memory

● Bottom line: we need two more datapath elements to access memory
and perform sign-extending

04/10/2021 CI0114 Fundamentos de arquitectura 23

Datapath for I-format instructions

There are two inputs. One for the address of
the memory location to access, the other for the
data to be written to memory if applicable.

The output is the data read from the memory
location accessed, if applicable.

Reads and writes are signaled by MemRead
and MemWrite, respectively, which must be
asserted for the corresponding action to take
place.

The data memory element implements the functionality for reading and writing data
to/from memory.

Address

Write
Data

Read
data

Da
ta

 m
em

or
y

MemWrite

MemRead

04/10/2021 CI0114 Fundamentos de arquitectura 24

Datapath for I-format instructions

The sign extension element takes as
input a 16-bit wide value to be extended
to 32-bits.

To sign extend, we simply replicate the
most-significant bit of the original field
until we have reached the desired field
width.

To perform sign-extending, we can add a sign extension element.

Si
gn

 e
xt

en
de

r

16 32

04/10/2021 CI0114 Fundamentos de arquitectura 25

Datapath for load word instruction
Here, we have
modified the datapath
to work only for the lw
instruction.

lw $rt, immed($rs)

The operands rs, rt,
and immed have been
added to the datapath
for added clarity.

Si
gn

 ex
te

nd
er

rs

rt

immed

04/10/2021 CI0114 Fundamentos de arquitectura 26

Datapath for store word instruction
Here, we have
modified the datapath
to work only for the sw
instruction.

sw $rt, immed($rs)

The operands rs, rt,
and immed have been
added to the datapath
for added clarity.

Si
gn

 ex
te

nd
er

rs

rt

immed

04/10/2021 CI0114 Fundamentos de arquitectura 27

Datapath for R-format and memory access

ZeroA
L
U

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Instruction

ALUOp

ALU
result

RegWrite

Si
gn

 e
xt

en
de

r

Instructions

add $rd, $rs, $rt
lw $rd, immed($rs)
sw $rd, immed($rs)

Note: PC, adder, and
instruction memory are
omitted.

M
u
x

ALUSrc
M
u
x

MemToRegrs

rt

rd

04/10/2021 CI0114 Fundamentos de arquitectura 28

Datapath for R-format

ZeroA
L
U

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Instruction

ALUOp

ALU
result

RegWrite

Si
gn

 e
xt

en
de

r

Instructions

add $rd, $rs, $rt
lw $rd, immed($rs)
sw $rd, immed($rs)

Cycles to complete: 4 ALUSrc
M
u
x

MemToReg

M
u
x

rs

rt

rd

04/10/2021 CI0114 Fundamentos de arquitectura 29

Datapath for load memory access

ZeroA
L
U

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Instruction

ALUOp

ALU
result

RegWrite

Si
gn

 e
xt

en
de

r

Instructions

add $rd, $rs, $rt
lw $rd, immed($rs)
sw $rd, immed($rs)

Cycles to complete: 5 ALUSrc
M
u
x

MemToReg

M
u
x

rs

rt

rd

04/10/2021 CI0114 Fundamentos de arquitectura 30

Datapath for store memory access

ZeroA
L
U

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Instruction

ALUOp

ALU
result

RegWrite

Si
gn

 e
xt

en
de

r

Instructions

add $rd, $rs, $rt
lw $rd, immed($rs)
sw $rd, immed($rs)

Cycles to complete: 4 ALUSrc
M
u
x

MemToReg

M
u
x

04/10/2021 CI0114 Fundamentos de arquitectura 31

Branching instructions
Now we’ll turn out attention to a branching instruction. In our limited MIPS instruction set, we
have the beq instruction which has the following form:

beq $rs, $rt, target

This instruction compares the contents of $rs and $rt for equality and uses the 16-bit
immediate field to compute the target address of the branch relative to the current address.

Name Fields

Field size 6 5 5 5 5 6

I format opcode rs rt immediate

04/10/2021 CI0114 Fundamentos de arquitectura 32

Branching instructions
Besides computing the target address, a
branching instruction also has to compare the
contents of the operands.

As stated before, the ALU has an output line
denoted as Zero. This output is specifically
hardwired to be set when the result of an
operation is zero.

To test whether a and b are equal, we can
● Set the ALU to perform a subtraction operation

● The Zero output line is only set if a – b is 0, indicating a
and b are equal

ALU operation

Zero

ALU
result

AL
U

04/10/2021 CI0114 Fundamentos de arquitectura 33

Datapath for BEQ
Here, we have modified the
datapath to work only for the beq
instruction.

beq $rs, $rt, immed

The registers rs, rt and immed
have been added to the datapath
for added clarity.

Si
gn

 ex
te

nd
erInstruction

Sh
ift

Le
ft

 2

PC from instruction
datapath

Branch
target

To branch
logic

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Re
gi

st
er

 F
ile

R
e

gW
rit

e

Write
Data

Read
data 1

Read
data 2

rs

rt

immed

A
dd

04/10/2021 CI0114 Fundamentos de arquitectura 34

Datapath for beq instructions
Here, we have modified the
datapath to work only for the
beq instruction.

add $rd, $rs, $rt
lw $rd, immed($rs)
sw $rd, immed($rs)
beq $rs, $rt, immed

The operands rs, rt, and
immed have been added to
the datapath for added clarity.

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

Add

4

R
e

gW
rit

e

Write
Data

M
u
x

A
LU

S
rc

Si
gn

 ex
te

nd
er

M
u
x

M
em

To
R

eg

Sh
ift

Le
ft

 2

M
u
x

P
C

S
rc

immed

rs

rt

A
dd

04/10/2021 CI0114 Fundamentos de arquitectura 35

Datapath for R and I format instructions
Now we have a datapath
which supports all of our
R and I format
instructions.

add $rd, $rs, $rt
lw $rt, immed($rs)
sw $rd, immed($rs)
beq $rs, $rt, immed

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

Add

4

R
e

gW
rit

e

Write
Data

M
u
x

A
LU

S
rc

Si
gn

 ex
te

nd
er

M
u
x

M
em

To
R

eg

Sh
ift

Le
ft

 2

M
u
x

P
C

S
rc

immed

rs

rt

A
dd

04/10/2021 CI0114 Fundamentos de arquitectura 36

J-format instructions
The last instruction we have to implement in our simple MIPS subset is the jump instruction.

● j target

An example jump instruction is j target. This instruction indicates that the next
instruction to be executed is at the address of label target.

Name Fields

Field size 6 26

J format opcode target address

04/10/2021 CI0114 Fundamentos de arquitectura 37

J-format instructions
Note, we do not have enough space in the instruction to specify a full
32 bits target address.

● Jumps solve this problem by specifying a portion of an absolute
address

● Take the 26-bit target address field from the instruction, left shitf by 2
(instructions are word-aligned)

● Concatenate the result with the upper 4 bits of PC + 4

04/10/2021 CI0114 Fundamentos de arquitectura 38

Datapath for J-type instructions

Here, we have modified the
datapath to work only for the j
instruction.

● j targaddr
PC Read

Address

Instruction
Memory

Instruction

Sh
ift

le
ft

 2

immed

26 28 bits

Jump address [31-0]

Co
nc

at

PC [31-28]

Jump address [0-27]

04/10/2021 CI0114 Fundamentos de arquitectura 39

Single cycle control
Now we have a complete datapath for our simple MIPS subset – we will show the
whole diagram in just a couple of minutes. Before that, we will add the control.

The control unit is responsible for taking the instruction and generating the
appropriate signals for the datapath elements.

Signals that need to be generated include:
● Operation to be performed by ALU
● Whether register file needs to be written
● Signals for multiple intermediate multiplexors
● Whether data memory needs to be written

For the most part, we can generate these signals using only the opcode and
funct fields of an instruction.

04/10/2021 CI0114 Fundamentos de arquitectura 40

ALU control lines
Note here that the ALU has a 4-bit control line
called ALU operation.

ALU operation

Zero

ALU
result

AL
U

ALU control lines Function

0000-0011 ADD, SUB, MULT, DIV

0100-0111 AND, OR, XOR, NOT

1000-1001 NAND, NOR

1010-1011 SLT, SLTU

1100-1101 SLL, SRL

1110 SRA

1111 NEG

04/10/2021 CI0114 Fundamentos de arquitectura 41

Control unit
How do we set these control lines? Consider the control unit below.

OPCode

ALUop

Co
nt

ro
l U

ni
t

funct

● The 4-bit ALUop input indicates whether an
operation should be add for loads and stores,
subtract for beq, or others consideren on ISA

● The 6-bit funct is a field of R-format
instructions. This field defines a unique set of
ALU control input lines

04/10/2021 CI0114 Fundamentos de arquitectura 42

ALU operation (R-format)

OPCode

ALUOp

Co
nt

ro
l U

ni
t

funct

OPCode Operation funct ALU action ALUOp

lw Load word N/A add 0000

sw Store word N/A add 0000

beq Branch equal N/A subtract 0001

R-type add 100000 add 0000

R-type sub 100010 subtract 0001

R-type and 100100 and 0100

R-type or 100111 or 0101

R-type Set on < 101010 slt 1010

R-type Shift left 000000 sll 1100

04/10/2021 CI0114 Fundamentos de arquitectura 43

CPU scheme for ALU control
Notice the added element for
determining the ALU control
input (ALUOp) from the funct
field for R-format.

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

A
dd

4

RegWrite

Write
Data

M
u
x

A
LU

S
rc

Si
gn

 ex
te

nd
er

M
u
x

M
em

To
R

eg

Sh
ift

Le
ft

 2

M
u
x

P
C

S
rc

immed

Co
nt

ro
l

un
it

rs

rt[2
5-

21
]

[1
5-
11

]

rd

[2
0-
16

]

M
u
x

R
eg

D
st

A
dd

04/10/2021 CI0114 Fundamentos de arquitectura 44

Control signals

Signal name Effect when not set Effect when set

RegDst Destination register comes from rt
field

Destination register comes from rd field

RegWrite None Write register is written to with Write Data

ALUSrc Second ALU operand is Read Data 2 Second ALU operand is immediate field

PCSrc PC <- PC + 4 PC<- branch target

MemRead None Contents of Address input is copied to
Read Data

MemWrite None Write Data is written to Address

MemtoReg Value of register Write Data is from
ALU

Value of register Write Data is Memory
Read data

04/10/2021 CI0114 Fundamentos de arquitectura 45

Control logic
Here, we add control logic for
every instruction except the
jump instruction.

Notice how most of the
control decisions can be
decided using only the upper
7 bits of the instruction
(opcode).

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

RegWrite

Write
Data

M
u
x

A
LU

S
rc

Si
gn

 ex
te

nd
er

M
u
x

M
em

To
R

eg

Sh
ift

Le
ft

 2

M
u
x

P
C

S
rc

Co
nt

ro
l

un
it

Read
Address

Instruction
Memory

Instruction

PC

A
dd

4

Co
nt

ro
l

un
it

rs

rt[2
5-

21
]

[1
5-
11

]

rd

[2
0-
16

]

M
u
x

R
eg

D
st

A
d

d

04/10/2021 CI0114 Fundamentos de arquitectura 46

Control signals

Instr RegDst ALUSrc MemToReg RegWrite MemRead MemWrite PCSrc

R-type 1 0 0 1 0 0 0

lw 0 1 1 1 1 0 0

sw x 1 x 0 0 1 0

beq x 0 x 0 0 0 1

From the previous slide, we can see that the control signals are chosen based on the upper 6
bits of the instruction. That is, the opcode is used to set the control lines.

Furthermore, as we saw before, the ALU control input lines are also dictated by the funct field
of applicable instructions.

04/10/2021 CI0114 Fundamentos de arquitectura 47

[2
7-

0]

rs

Additional control line for jump instruction

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

4

RegWrite

Write
Data

M
u
x

A
LU

S
rc

Si
gn

 ex
te

nd
er

M
u
x

M
em

To
R

e
g

Sh
ift

Le
ft

 2

M
u
x

P
C

S
rc

immed

rt

Co
nt

ro
l

un
it

[25-21]

[20-16]

[1
5-

11
]

rd

Sh
ift

Le
ft

 2
[2

5-
0]

M
u
x

[3
1-
28
]

1

0

M
u
x

A
dd

A
dd

04/10/2021 CI0114 Fundamentos de arquitectura 48

[2
7-

0]

rs

Quiz time!!!

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

4

RegWrite

Write
Data

M
u
x

A
L

U
S

rc

Si
gn

 ex
te

nd
er

M
u
x

M
em

To
R

eg

Sh
ift

Le
ft

 2

M
u
x

P
C

S
rc

immed

rt

Co
nt

ro
l

un
it

[1
5-
11

1
Sh

ift
Le

ft
 2

[2
5-
0]

M
u
x

[3
1-
28
]

1

0

[25-21]

[20-16]

rd

M
u
x

What are the
relevant datapath
lines for the add
instruction and
what are the
values of the
control lines?

add $rd, $rs, $rt

A
d

dA
d

d

04/10/2021 CI0114 Fundamentos de arquitectura 49

[2
7-

0]

rs

Quiz solution part 1

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

4

RegWrite

Write
Data

M
u
x

A
L

U
S

rc

Si
gn

 ex
te

nd
er

M
u
x

M
em

To
R

eg

Sh
ift

Le
ft

 2

M
u
x

P
C

S
rc

immed

rt

Co
nt

ro
l

un
it

[1
5-
11

]
Sh

ift
Le

ft
 2

[2
5-
0]

M
u
x

[3
1-
28
]

1

0

What are the
relevant datapath
lines for the add
instruction and what
are the values of
the control lines?

add $rd, $rs, $rt

Datapath shown in
yellow. Relevant
control line
assertions in blue.

[25-21]

[20-16]

rd

M
u
x

1

0

1

0
0

1

A
dd

A
d

d

04/10/2021 CI0114 Fundamentos de arquitectura 50

0

[2
7-

0]

rs

Quiz solution part 2

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

4

RegWrite

Write
Data

M
u
x

A
L

U
S

rc

Si
gn

 ex
te

nd
er

M
u
x

M
em

To
R

eg

Sh
ift

Le
ft

 2

M
u
x

P
C

S
rc

immed

rt

Co
nt

ro
l

un
it

[1
5-
11

]
Sh

ift
Le

ft
 2

[2
5-
0]

M
u
x

[3
1-
28
]

1

0

What are the
relevant datapath
lines for the add
instruction and what
are the values of
the control lines?

add $rd, $rs, $rt

Datapath shown in
yellow. Relevant
control line
assertions in blue.

[25-21]

[20-16]

rd

M
u
x

1

1

0
0

1

0

1

A
d

dA
dd

04/10/2021 CI0114 Fundamentos de arquitectura 51

[2
7-

0]

rs

Quiz time!!!

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

4

RegWrite

Write
Data

M
u
x

A
L

U
S

rc

Si
gn

 ex
te

nd
er

M
u
x

M
em

To
R

eg

Sh
ift

Le
ft

 2

M
u
x

P
C

S
rc

immed

rt

Co
nt

ro
l

un
it

[1
5-
11

1
Sh

ift
Le

ft
 2

[2
5-
0]

M
u
x

[3
1-
28
]

1

0

[25-21]

[20-16]

rd

M
u
x

What are the
relevant datapath
lines for the beq
instruction and
what are the
values of the
control lines?

beq $rd, $rs, imm

A
d

dA
d

d

04/10/2021 CI0114 Fundamentos de arquitectura 52

[2
7-

0]

rs

Quiz solution

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
data 1

Read
data 2Re

gi
st

er
 F

ile

Read
Address

Instruction
Memory

Instruction

PC

4

RegWrite

Write
Data

M
u
x

A
L

U
S

rc

Si
gn

 ex
te

nd
er

M
u
x

M
em

To
R

eg

Sh
ift

Le
ft

 2

M
u
x

immed

rt

Co
nt

ro
l

un
it

[1
5-
11

]
Sh

ift
Le

ft
 2

[2
5-
0]

M
u
x

[3
1-
28
]

1

0

What are the
relevant datapath
lines for the beq
instruction and what
are the values of
the control lines?

beq $rd, $rs, $rt

Datapath shown in
yellow. Relevant
control line
assertions in blue.

[25-21]

[20-16]

rd

M
u
x

1

0

1

0
0

1

Branch

A
d

dA
d

d

04/10/2021 CI0114 Fundamentos de arquitectura 53

Relative cycle time

Instr Instruction
Memory

Register
Read

ALU
operation

Data
Memory

Register
Write

Total

R-type 4 1 3 0 1 9

lw 4 1 3 4 1 13

sw 4 1 3 4 0 12

beq 4 1 3 0 0 8

j 4 0 0 0 0 4

What is the longest path (slowest instruction) assuming 4ns for instruction and data memory,
3ns for ALU and adders, and 1ns for register reads or writes? Assume negligible delays for
muxes, control unit, sign extend, PC access, shift left by 2, routing, etc

04/10/2021 CI0114 Fundamentos de arquitectura 54

Single cycle implementation
The advantage of single cycle construction is that it is simple to implement.

Disadvantages:

● The clock cycle will be determined by the longest possible path, which is not
the most common instruction. This type of construction violates the idea of
making the common case fast

● May be wastefull with respect area since some functional units, such as
adders, must be duplicated because they cannot be shared during a clock
cycle

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

