
15/06/2021 CI-0114 Fundamentos de arquitectura 1

Pipelining



CI-0114 Fundamentos de arquitectura 2

Datapath and control
● We started with the single-cycle implementation, in which a single instruction is 

executed over a single cycle. In this scheme, a cycle’s clock period must be defined to be 
as long as necessary to execute the longest instruction. But this results in a lot of waste – 
both in terms of time and space since we need multiple of the same kinds of datapath 
elements to execute a single instruction.In our previous example, our jump instruction 
needs only 4ns but our clock period must be 13ns to accommodate the load word 
instruction!

● Then, we looked at multi-cycle implementation. In this scheme, instructions are broken 
up over general steps and each step is performed over a single clock cycle.  As a result, 
we have a smaller clock cycle and we are able to reuse datapath elements in different 
cycles. However, we are still limited to executing one instruction at a time



CI-0114 Fundamentos de arquitectura 3

Pipelining
● Now we’re going to build upon what we know and look at pipelining

● Pipelining involves not only executing an instruction over multiple cycles, but 
also executing multiple instructions per cycle.  In other words, we’re going to 
overlap instructions

● There is a classic, intuitive analogy that will help us understand pipelining.  Let’s 
do some laundry!



CI-0114 Fundamentos de arquitectura 4

Laundry analogy
● Let’s say we have a couple of loads of laundry to do. Each load of laundry 

involves the following steps: washing, drying, folding, and putting away



CI-0114 Fundamentos de arquitectura 5

Laundry analogy
● We can perform one step every thirty minutes and start the next load after the 

previous load has finished. This is similar to multi-cycle implementation



CI-0114 Fundamentos de arquitectura 6

Laundry analogy
● We can perform one step every thirty minutes and start the next load after the 

previous load has finished. This is similar to multi-cycle implementation



CI-0114 Fundamentos de arquitectura 7

Laundry analogy
● Notice that now we are using parallelism to finish four loads in only 3.5 hours, 

as opposed to the multi-cycle method which has us doing laundry until 2 AM



CI-0114 Fundamentos de arquitectura 8

Pipelining
● Pipelining essentially involves creating an assembly line for instruction 

execution

● Each step in the pipeline is called a stage

● Multiple instructions can be processed in parallel as long as they are at different 
stages

● Pipelining is really just like multi-cycle implementation, except we start the next 
instruction as soon as we can. Pipelining therefore increases the throughput, 
but not the instruction latency, when compared to multi-cycle

● The speedup is ideally the same as the number of stages in the pipeline, as 
long as the number of instructions is much larger than the number of stages



CI-0114 Fundamentos de arquitectura 9

Pipelining stages
● We already know roughly what the stages are:

● IF – Instruction Fetch.
● ID – Instruction Decode.
● EX – Execution or Address Calculation.
● Mem – Data Memory Access.
● WB – Write Back



CI-0114 Fundamentos de arquitectura 10

Pipelining stages
● IF stage: fetches the instruction from the instruction cache and increments the 

PC

● ID stage: decodes the instruction, reads source registers from register file, sign-
extends the immediate value, calculates the branch target address and checks 
if the branch should be taken

● EX stage: calculates addresses for accessing memory, performs 
arithmetic/logical operations on either two register values or a register and an 
immediate

● MEM stage: load a value from or store a value into the data cache

● WB stage: update the register file with the result of an operation or a load



CI-0114 Fundamentos de arquitectura 11

Pipelining stages
● We start by taking 

the single-cycle 
datapath and 
dividing it into 5 
stages

● A 5-stage pipeline 
allows 5 instructions 
to be executing at 
once, as long as they 
are in different 
stages



CI-0114 Fundamentos de arquitectura 12

Pipelining stages

● All of the data moves 
from left-to-right with 
two exceptions: 
writing to the 
register file and 
writing to the PC



CI-0114 Fundamentos de arquitectura 13

Pipelining stages

● Note that in every 
cycle, each element 
is only used by at 
most one instruction



CI-0114 Fundamentos de arquitectura 14

Pipelining stages
● Even though the 

datapath is similar to 
single-cycle, we need 
to note that we are still 
executing across 
multiple cycles

● Therefore, we add 
pipeline registers to 
store data across 
cycles (IF/ID, ID/EX, 
EX/MEM, and 
MEM/WB)



CI-0114 Fundamentos de arquitectura 15

Pipelining stages

Let’s look at an example.  Say we want to perform three load word instructions in a 
row.  The operation times for the major functional units are 200 ps for memory 
access, 200 ps for ALU operations, 100 ps for register file read/writes.

Instruction IF ID EX MEM WB Total

lw 200 100 200 200 100 800



CI-0114 Fundamentos de arquitectura 16

Pipelining speedup
● In the single-cycle implementation, lw takes 1 cycle totaling 800 ps. We cannot 

start the next instruction until the last cycle ends so the time between the first 
and fourth instruction is 2400 ps



CI-0114 Fundamentos de arquitectura 17

Pipelining speedup

In the pipelining implementation, lw takes 5 cycles totaling 1000 ps.  This is 
because every cycle needs to be as long as the longest cycle, which is 200 ps.  
We start the next instruction as soon as possible.  The time between the first and 
fourth instruction is 600 ps.



CI-0114 Fundamentos de arquitectura 18

Pipelining speedup

It is important to take note of the fact that the pipelined implementation has a 
greater latency per instruction.

However, this is ok because the advantage we gain with pipelining is increased 
throughput, which is more important because real programs execute billions of 
instructions



CI-0114 Fundamentos de arquitectura 19

Pipelining speedup

As stated before, the ideal speedup is equivalent to the number of stages in the 
pipeline. We can express this in a concise formula.  Let TBI be Time Between 
Instructions:

There are several reasons why we may not obtain ideal speedup:

● Stages are not perfectly balanced (leading to an increase in latency)

● Storing and retrieving information between stages has some overhead

● Hazards

TBI pipelined=
TBI non−pipeline

Number of stages



CI-0114 Fundamentos de arquitectura 20

Pipelining speedup
As you may have already noticed, our lw example does not exhibit 5-fold speedup 
even though there are 5 stages.  We have an overall completion time of 2400 ps for 
single-cycle and an overall completion time of 1400 ps for pipelining.  This is merely 
 a 1.7 times speedup.

Imagine instead that we are executing 1,000,000 lw instructions.  For single-cycle, 
this means 800,000,000 ps since each instruction requires 800 ps.  But for 
pipelining, this only means 200,000,800 ps since each additional instruction only 
adds 200 ps.

When we increase the number of instructions, we get roughly 4 times speedup

8 000000 ps
2000 800 ps

≃
8
2
=4



CI-0114 Fundamentos de arquitectura 21

MIPS and pipelining
MIPS was designed with pipelining in mind.

● All MIPS instructions are the same length – 32 bits
● This makes the IF phase universal and simple to implement

● There are only three instruction formats, and source register fields are always 
in the same place

● This means we can read the register file in the ID phase before we even know what the 
instruction is

● The only memory operations occur in load and store instructions
● We can dedicate the ALU to computing addresses in these stages 

● Memory accesses must be aligned
● No need to worry about multiple data memory accesses per instruction



CI-0114 Fundamentos de arquitectura 22

Pipeline problems
● Dependencies: relationships between instructions that prevent one instruction 

from being moved past another

● Hazards: situation where next instruction cannot execute in the following cycle
● Three types: structural, data, and control

● Stalls: technique of suspending an instruction until a pipeline hazard no longer 
exists



CI-0114 Fundamentos de arquitectura 23

Pipeline hazards

● A structural hazard occurs when a planned instruction cannot execute in the 
proper clock cycle because the hardware cannot support the particular 
combination of instructions that are set to execute in the given clock cycle

● In the laundry analogy, a structural hazard might occur if we used a combo 
washer/dryer instead of separate washer and dryer machines



CI-0114 Fundamentos de arquitectura 24

Pipeline hazards
● A structural hazard occurs when a planned instruction cannot execute in the 

proper clock cycle because the hardware cannot support the particular 
combination of instructions that are set to execute in the given clock cycle

● Imagine the following instructions are executed over 8 clock cycles.  Notice how 
in cycle 4, we have a MEM and IF phase executing.  If there is only one single 
memory unit, we will have a structural hazard

●

cycle 1 2 3 4 5 6 7 8

Inst 1 IF ID EX MEM WB

Inst 2 IF ID EX MEM WB

Inst 3 IF ID EX MEM WB

Inst 4 IF ID EX MEM WB



CI-0114 Fundamentos de arquitectura 25

Pipeline hazards
● A data hazard occurs when a planned instruction cannot execute in the proper 

clock cycle because the data that is needed is not yet available

● Consider the following instructions:

add $s0, $t0, $t1
sub $t2, $s0, $t3

cycle 1 2 3 4 5 6

add IF ID EX MEM WB

sub IF ID EX MEM WB



CI-0114 Fundamentos de arquitectura 26

Pipeline hazards
The add instruction does not write its results to the register file until the fifth stage 
(cycle 5). However, the sub instruction will need the updated value of $s0 in its 
second stage (cycle 3).

add $s0, $t0, $t1
sub $t2, $s0, $t3

cycle 1 2 3 4 5 6

add IF ID EX MEM WB

sub IF ID EX MEM WB



CI-0114 Fundamentos de arquitectura 27

Pipeline hazards
The worst case solution involves stalling the sub instruction for 3 cycles.  While this 
resolves our dependency issue, it’s not ideal.  As a note, it is part of the compiler’s 
job to identify dependencies like this and reorder instructions if possible.  But we 
cannot rely on that solution either.

add $s0, $t0, $t1
sub $t2, $s0, $t3

cycle 1 2 3 4 5 6 7 8

add IF ID EX MEM WB

sub IF ID EX IF ID EX MEM WB



CI-0114 Fundamentos de arquitectura 28

Pipeline hazards
Another solution for the problem is known as forwarding (or bypassing).  This 
method involves retrieving the data from internal buffers rather than waiting for the 
data to be updated in the register file or data memory.

Because the result of the 
add operation is available 
at the end of the EX 
stage, we can grab its 
value for use in the 
subsequent instruction.



CI-0114 Fundamentos de arquitectura 29

Pipeline hazards
We cannot always prevent all stalls with forwarding. Consider the following 
instructions.

lw $s0, 20($t1)
sub $t2, $s0, $t3

Even if we use forwarding, 
the new contents of $s0 
are only available after 
load word’s MEM stage.  
So we’ll have to stall the 
sub instruction one cycle.



CI-0114 Fundamentos de arquitectura 30

Pipeline hazards
Consider the following C code:

Here is the equivalent MIPS code 
assuming all variables are in memory 
and are addressable as offsets from 
$t0:

A = B + E;
C = B + F;

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Find the hazards and reorder the instructions to avoid any stalls.



CI-0114 Fundamentos de arquitectura 31

Pipeline hazards
Find the hazards and reorder the instructions to avoid any stalls.

lw  $t1, 0($t0) # $t1 written in WB stage (cycle 5)
lw  $t2, 4($t0) # $t2 written in WB stage (cycle 6)
add $t3,$t1,$t2 # $t1, $t2 read in ID stage (cycle 4)
sw  $t3, 12($t0)
lw  $t4, 8($t0)
add $t5, $t1, $t4
sw  $t5, 16($t0)



CI-0114 Fundamentos de arquitectura 32

Pipeline hazards
Find the hazards and reorder the instructions to avoid any stalls.

lw  $t1, 0($t0) # $t1 written in WB stage (cycle 5)
lw  $t2, 4($t0) # $t2 written in WB stage (cycle 6)
add $t3, $t1,$t2 # $t1, $t2 read in ID stage (cycle 4)
   # $t3 written in WB stage (cycle 7)
sw  $t3, 12($t0) # $t3 read in ID stage (cycle 5)
lw  $t4, 8($t0) # $t4 written in WB stage (cycle 9)
add $t5, $t1, $t4 # $t4 read in ID stage (cycle 7)
sw  $t5, 16($t0)



CI-0114 Fundamentos de arquitectura 33

Pipeline hazards
Find the hazards and reorder the instructions to avoid any stalls.

lw  $t1, 0($t0) # $t1 written in WB stage (cycle 5)
lw  $t2, 4($t0) # $t2 written in WB stage (cycle 6)
add $t3,$t1,$t2 # $t1, $t2 read in ID stage (cycle 4)
               # $t3 written in WB stage (cycle 7)
sw  $t3, 12($t0) # $t3 read in ID stage (cycle 5)
lw  $t4, 8($t0) # $t4 written in WB stage (cycle 9)
add $t5, $t1, $t4 # $t4 read in stage 2 (cycle 7)
sw  $t5, 16($t0)



CI-0114 Fundamentos de arquitectura 34

Pipeline hazards
Find the hazards and reorder the instructions to avoid any stalls.

lw  $t1, 0($t0) # $t1 written in WB stage (cycle 5)
lw  $t2, 4($t0) # $t2 written in WB stage (cycle 6)
add $t3,$t1,$t2 # $t1, $t2 read in ID stage (cycle 4)
               # $t3 written in WB stage (cycle 7)
sw  $t3, 12($t0) # $t3 read in ID stage (cycle 5)
lw  $t4, 8($t0) # $t4 written in WB stage (cycle 9)
add $t5, $t1, $t4 # $t4 read in WB stage (cycle 7)
 # $t5 written in WB stage (cycle 10)
sw  $t5, 16($t0) # $t5 read in WB stage (cycle 8)



CI-0114 Fundamentos de arquitectura 35

Pipeline hazards
If we are using a pipelined processor with forwarding, we have the following stages 
executing in each cycle:

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13

lw $t1,0($t0) IF ID EX MEM WB

lw $t2,4($t0) IF ID EX MEM WB

add $t3,$t1,$t2 🗰 IF ID EX MEM WB

sw $t3,12($t0)  🗰 IF ID EX MEM WB

lw $t4,8($t0)  IF ID EX MEM WB

add $t5,$t1,$t4  🗰 IF ID EX MEM WB

sw $t5,16($t0)  ID IF ID EX MEM WB



CI-0114 Fundamentos de arquitectura 36

Pipeline hazards
We can move the third load word instruction up since it has no dependencies from 
previous instructions.

lw  $t1, 0($t0)
lw  $t2, 4($t0)
lw  $t4, 8($t0)
add $t3,$t1,$t2
sw  $t3, 12($t0)
add $t5, $t1, $t4
sw  $t5, 16($t0)



CI-0114 Fundamentos de arquitectura 37

Pipeline hazards
If we are using a pipelined processor with forwarding, we have the following stages 
executing in each cycle:

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13

lw $t1,0($t0) IF ID EX MEM WB

lw $t2,4($t0) IF ID EX MEM WB

lw $t4,8($t0) IF ID EX MEM WB

add $t3,$t1,$t2 IF ID EX MEM WB

sw $t3,12($t0) IF ID EX MEM WB WB

add $t5,$t1,$t4 IF ID EX MEM WB MEM WB

sw $t5,16($t0) IF ID EX MEM WB MEM WB



CI-0114 Fundamentos de arquitectura 38

Pipeline hazards
● The third type of hazard, a control hazard (or branch hazard), occurs when the 

flow of instruction addresses is not known at the time that the next instruction 
must be loaded.  Let’s say we have the following instructions.

beq $t0, $t0, L1
sub $t2, $s0, $t3

We have a problem: we do not know what the next instruction should be until 
the end of the third cycle.  But we’re automatically fetching the next instruction in 
the second cycle.  We will run into a similar problem with jumps as well.

cycle 1 2 3 4 5 6

beq IF ID EX MEM WB

sub IF ID EX MEM WB



CI-0114 Fundamentos de arquitectura 39

Pipeline hazards

● Problem: The processor does not know soon enough
● whether or not a conditional branch should be taken

● the target address of a transfer-of-control instruction

● Solutions:
● Stall until the necessary information becomes available

● Predict the outcome and act accordingly

● If we stall until the branch target is known, we will always incur a penalty for 
stalling.  However, if we predict that the branch is not taken and act accordingly, 
we will only incur a penalty when the branch actually is taken.



CI-0114 Fundamentos de arquitectura 40

Pipeline hazards
When predicting that a 
branch is not taken, we 
proceed as normal.  If the 
branch is not taken, there 
is no issue.

If the branch is taken, 
however, we incur a 
stalling penalty.  This 
penalty can vary but even 
in a highly optimized 
pipeline we will have to 
essentially “stall” for a 
cycle.



CI-0114 Fundamentos de arquitectura 41

Pipeline hazards
For the code sequence below, state whether it must stall, can avoid stalls using only 
forwarding, or can execute without stalling or forwarding.

lw $t0, 0($t0)
add $t1, $t0, $t0

We will have to stall while waiting for the result of lw, can not start the add instruction.



CI-0114 Fundamentos de arquitectura 42

Pipeline hazards
For the code sequence below, state whether it must stall, can avoid stalls using only 
forwarding, or can execute without stalling or forwarding.

add $t1,$t0,$t0
addi $t2,$t0,5
addi $t4,$t1,5

We can forward the results of add to the second addi instruction.



CI-0114 Fundamentos de arquitectura 43

Pipeline hazards
For the code sequence below, state whether it must stall, can avoid stalls using only 
forwarding, or can execute without stalling or forwarding.

addi $t1,$t0,1
addi $t2,$t0,2
addi $t3,$t0,2
addi $t3,$t0,4 
addi $t5,$t0,5

No stalling or forwarding is required.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

