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Memory hierarchy
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Memory hierarchy
● When it comesto memory, there are two universally desirable properties:

● Large Size: ideally, we want to never have to worry about running out 
of memory

● Speed of Access: we want the process of accessing memory to take 
as little time as possible

● But we cannot optimize both of these properties at the same time.  As 
our memory size increases, the time to find a memory location and 
access it grows as well

● The goal of designing a memory hierarchy is to simulate having unlimited 
amounts of fast memory
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Locality

To simulate these properties, we can take advantage of two forms of locality
● Temporal Locality: if an item is referenced, it will tend to be referenced again soon

● The location of the variable counter may be accessed frequently in a loop

● A branching instruction may be accessed repeatedly in a given period of time

● Spatial Locality – if an item is referenced, items whose addresses are close by will tend 
to be referenced soon

● If we access the location of A[0], we will probably also be accessing A[1], A[2], etc.

● Sequential instruction access also exhibits spatial locality
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Memory hierarchy

A memory hierarchy, consisting of multiple levels of memory with varying speed 
and size, exploits these principles of locality.

● Faster memory is more expensive per bit, so we use it in smaller quantities

● Slower memory is much cheaper so we can afford to use a lot of it

The goal is to, whenever possible, keep references in the fastest memory. 
However, we also want to minimize our overall memory cost.
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Memory hierarchy

All data in a level is typically also 
found  in the next largest level.

We keep the smallest, faster 
memory unit closest to the 
processor.

The idea is that our access time 
during a running program is 
defined primarily by the access 
time of the level 1 unit. But our 
memory capacity is as large as 
the  level n unit.
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Memory hierarchy

The unit of data that is transferred 
between two levels is fixed in size 
and is called a block, or a line.
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Memory hierarchy
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Memory hierarchy
There are four technologies that are used in a memory hierarchy:

● SRAM (Static Random Access Memory): fastest memory 
available. Used in memory units close to the processor called 
caches.  Volatile

● DRAM (Dynamic Random Access Memory): mid-range.  Used in 
main memory.  Volatile

● Flash: Falls between DRAM and disk in cost and speed.  Used as 
non-volatile memory in personal mobile devices

● Magnetic Disk: slowest memory available.  Used as non-volatile 
memory in a server or PC
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Memory hierarchy

Technology Typical access time $ per GiB in 2016

SRAM 0.5-5 ns 400 - 1000

DRAM 50-70 ns 3 - 5

Flash 5,000-50,000 ns 0.30 - 0.50

Magnetic disk 5,000,000 – 20,000,000 ns 0.05 - 0.10
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Memory hierarchy terms
● Hit: item found in a specified level of the hierarchy

● Miss: item not found in a specified level of the hierarchy

● Hit time: time required to access the desired item in a specified level of the

hierarchy (includes the time to determine if the access is a hit or a miss)

● Miss penalty: the additional time required to service the miss

● Hit rate: fraction of accesses that are in a specified level of the hierarchy

● Miss rate: fraction of accesses that are not in a specified level of the hierarchy

● Block: unit of information that is checked to reside in a specified level of the

hierarchy and is retrieved from the next lower level on a miss
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Memory hierarchy
The key points so far:

● Memory hierarchies take advantage of temporal locality by keeping more 
recently accessed data items closer to the processor.  Memory hierarchies take 
advantage of spatial locality by moving blocks consisting of multiple contiguous 
words in memory to upper levels of the hierarchy

● Memory hierarchy uses smaller and faster memory technologies close to the 
processor.  Accesses that hit in the highest level can be processed quickly. 
Accesses that miss go to lower levels, which are larger but slower. If the hit rate 
is high enough, the memory hierarchy has an effective access time close to that 
of the highest (and fastest) level and a true size equal to that of the lowest (and 
largest) level

● • Memory is typically a true hierarchy, meaning that data cannot be present in 
level i unless it is also present in level i+1
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Caches
We’ll begin by looking at the most basic cache. 
Let’s say we’re running a program that, so far, has 
referenced  − 1 words. These could be  − 1 𝑛 𝑛
independent integer variables, for example

At this point, our cache might look like this 
(assuming a block is simply 1 word). That is, every 
reference made so far has been moved into the 
cache to take advantage of temporal locality

What happens when our program references 𝑋
n
 ?

Cache

X
4

X
1

X
n-2

X
n-1

X
5

X
23



CI-0114 Fundamentos de Arquitectura 13

Caches
A reference to 𝑋

n
 causes a miss, which forces the cache to fetch 𝑋

n
 from some 

lower level of the memory hierarchy, presumably main memory

Cache

X
4

X
1

X
n-2

X
n-1

X
5

X
23

Cache

X
4

X
1

X
n-2

X
n-1

X
5

X
23

Two questions:

1. How do we know 
if an item is present 
in the cache?

2. How do we find 
the item in the 
cache?
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Caches
A reference to 𝑋

n
 causes a miss, which forces the cache to fetch 𝑋

n
 from some 

lower level of the memory hierarchy, presumably main memory

Cache

X
4

X
1

X
n-2

X
n-1

X
5

X
23

Cache

X
4

X
1

X
n-2

X
n-1

X
5

X
n

X
23

Two questions:

1. How do we know if 
an item is present in 
the cache?

2. How do we find the 
item in the cache?

One Answer: If each 
word can go in exactly 
one place in the 
cache, then we can 
easily find it in the 
cache.
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Direct mapped caches
The simplest way to assign a location in the cache for each word in memory is to assign the cache 
location based on the address of the word in memory

This creates a direct-mapped cache – every location in memory is mapped directly to one location in 
the cache

A typical direct-mapped cache uses the following mapping:

 𝐵𝑙𝑜𝑐𝑘 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 % (      )𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑐ℎ𝑒

Conveniently, entering a block into a cache with 2n  entries means just looking at the lower  bits of 𝑛
the block address.
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Direct-mapped cache

Here is an example cache which 
contains 23 = 8 entries.

Blocks in memory are mapped to 
a particular cache index if the 
lower 3 bits of the block address 
matches the index.

So, now we know where to find 
the data but we still have to 
answer the following question: 
how do we know if the data we 
want is in the cache?
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Tags
To verify that a cache entry contains the data we’re looking for, and 
not data from another memory address with the same lower bits, 
we use a tag.

A tag is a field in a table which corresponds to a cache entry and 
gives extra information about the source of the data in the cache 
entry.

What is an obvious choice for the tag?
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Tags
To verify that a cache entry contains the data we’re looking for, and 
not data from another memory address with the same lower bits, 
we use a tag.

A tag is a field in a table which corresponds to a cache entry and 
gives extra information about the source of the data in the cache 
entry.

What is an obvious choice for the tag?
● The upper bits of the address of the block!



CI-0114 Fundamentos de Arquitectura 19

Direct-mapped cache
For instance, in this particular 
example, let’s say the block at 
address 01101 is held in the 
cache entry with index 101.

The tag for the cache entry with 
index 101 must then be 01, the 
upper bits of the address.

Therefore, when looking in the 
cache for the block at address 
11101, we know that we have a 
miss because 11 != 01.
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Valid bit
Even if there is data in the cache entry and a tag associated with the entry, we may 
not want to use the data. For instance, when a processor has first started up or 
when switching processes, the cache entries and tag fields may be meaningless.

Generally speaking, a valid bit associated with the cache entry can be used to 
ensure that an entry is valid.
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Exercise
Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Let’s assume we have 
an 8-entry cache with 
the initial state shown to 
the right.  Let’s fill in the 
cache according to the 
references that come in 
listed in the table below.

Note that initially the 
valid-bit entries are all 
‘N’ for not valid.

Decimal address 
of reference

Binary address 
of reference

Hit or miss in cache Assigned cache block 
(where found or placed)

22 10110

26 11010

22 10110

26 11010

16 10000

3 00011

16 10000

18 10010
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Exercise
Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

The first reference is for 
the block at address 22, 
which uses the lower bits 
110 to index into the 
cache. The 110 cache 
entry is not valid so this is 
a miss.

We need to retrieve the 
contents of the block at 
address 22 and place it in 
the cache entry.

Decimal address 
of reference

Binary address 
of reference

Hit or miss in cache Assigned cache block 
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010

22 10110

26 11010

16 10000

3 00011

16 10000

18 10010
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Exercise
Index V Tag Data

000 N

001 N

010 N 11 Memory(11110)

011 N

100 N

101 N

110 Y 10 Memory(10110)

111 N

The block at address 22 
is now placed in the data 
entry of the cache and the 
tag is updated to the 
upper portion of the 
address, 10.  Also, the 
valid bit is set to ‘Y’.

Now, we have a reference 
to the block at address 
26.  What happens here?

Decimal address 
of reference

Binary address 
of reference

Hit or miss in cache Assigned cache block 
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110

26 11010

16 10000

3 00011

16 10000

18 10010
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Exercise
Index V Tag Data

000 N

001 N

010 Y 11 Memory(11010)

011 N

100 N

101 N

110 Y 10 Memory(10110)

111 N

We have a miss, so we 
retrieve the data from 
address 26 and place it in 
the cache entry.  We also 
update the tag and valid 
bit.

Now, we have a reference 
the block at address 22 
again.  Now what 
happens?

Decimal address 
of reference

Binary address 
of reference

Hit or miss in cache Assigned cache block 
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110

26 11010

16 10000

3 00011

16 10000

18 10010
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Exercise
Index V Tag Data

000 N

001 N

010 Y 11 Memory(11010)

011 N

100 N

101 N

110 Y 10 Memory(10110)

111 N

The correct data is 
already in the cache! We 
don’t have to update the 
contents or fetch anything 
from main memory.

Similarly, we will have 
another reference to the 
block at address 26.  We 
do not need to update the 
cache at all.

Decimal address 
of reference

Binary address 
of reference

Hit or miss in cache Assigned cache block 
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT

16 10000

3 00011

16 10000

18 10010
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Exercise
Index V Tag Data

000 N

001 N

010 Y 11 Memory(11010)

011 N

100 N

101 N

110 Y 10 Memory(10110)

111 N

Now, we have a reference 
to the block at address 
16.  Its associated cache 
entry is invalid, so we will 
need to fetch the data 
from main memory and 
update the entry. Decimal address 

of reference
Binary address 

of reference
Hit or miss in cache Assigned cache block 

(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT (11010 mod 8) = 010

16 10000 MISS (10000 mod 8) = 000

3 00011

16 10000

18 10010
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Exercise
Index V Tag Data

000 Y 10 Memory(10000)

001 N

010 Y 11 Memory(11010)

011 N

100 N

101 N

110 Y 10 Memory(10110)

111 N

Now, we have a reference 
to the block at address 3.  
Its associated cache entry 
is invalid, so we will need 
to fetch the data from 
main memory and update 
the entry. Decimal address 

of reference
Binary address 

of reference
Hit or miss in cache Assigned cache block 

(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT (11010 mod 8) = 010

16 10000 MISS (10000 mod 8) = 000

3 00011 (00011 mod 8) = 011

16 10000

18 10010
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Exercise
Index V Tag Data

000 Y 10 Memory(10000)

001 N

010 Y 11 Memory(11010)

011 Y Memory(00011)

100 N

101 N

110 Y 10 Memory(10110)

111 N

A reference to the block at 
address 16 causes a hit 
(as we have already 
pulled this data into the 
cache) so we do not have 
to make any changes.

Decimal address 
of reference

Binary address 
of reference

Hit or miss in cache Assigned cache block 
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT (11010 mod 8) = 010

16 10000 MISS (10000 mod 8) = 000

3 00011 MISS (00011 mod 8) = 011

16 10000 HIT (10000 mod 8) = 000

18 10010
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Exercise
Index V Tag Data

000 Y 10 Memory(10000)

001 N

010 Y 11 Memory(11010)

011 Y Memory(00011)

100 N

101 N

110 Y 10 Memory(10110)

111 N

Now, we get something 
interesting.  We have a 
reference to the block at 
address 18. The lower 
bits used to index into 
the cache are 010.  As 
these are also the lower 
bits of address 26, we 
have a valid entry but it’s 
not the one we want.  
Comparing the tag of the 
entry with the upper 
portion of 18’s binary 
representation tells us we 
have a miss.

Decimal address 
of reference

Binary address 
of reference

Hit or miss in cache Assigned cache block 
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT (11010 mod 8) = 010

16 10000 MISS (10000 mod 8) = 000

3 00011 MISS (00011 mod 8) = 011

16 10000 HIT (10000 mod 8) = 000

18 10010 MISS (10010 mod 8) = 010
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Exercise
Index V Tag Data

000 Y 10 Memory(10000)

001 N

010 Y 10 Memory(10010)

011 Y Memory(00011)

100 N

101 N

110 Y 10 Memory(10110)

111 N

We fetch the data at address 
18 and update the cache entry 
to hold this data, as well as the 
correct tag.  Note now that a 
reference to the block at 
address 26 will result in a miss 
and we’ll have to fetch that
data again. Decimal address 

of reference
Binary address 

of reference
Hit or miss in cache Assigned cache block 

(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT (11010 mod 8) = 010

16 10000 MISS (10000 mod 8) = 000

3 00011 MISS (00011 mod 8) = 011

16 10000 HIT (10000 mod 8) = 000

18 10010 MISS (10010 mod 8) = 010
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Physical address to cache
To the right is a figure showing how a 
typical physical address may be divided 
up to find the valid entry within the cache.

● The offset is used to indicate the first 
byte accessed within a block. Its size is 
log 

2
     .𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑖𝑛 𝑏𝑙𝑜𝑐𝑘

For example, a block containing 4 
bytes does not need to consider the 
lower 2 bits of the address to index into 
the cache.

● The cache index, in this case, is a 10-
bit wide lower portion of the physical 
address (because there are 210 = 1024 
entries).

● The tag is the upper 20 bits of the 
physical address.
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Offset
Consider a scheme where a block of 
memory contains 2 words. Each 
word is 4 bytes.

Bytes are the smallest addressable 
unit of memory so a block starting at 
address 34892896 contains 8 byte-
addressable locations.

Because 23 = 8, we need 3 bits to 
individually identify the addresses in 
the block.  The 4th bit is the first bit 
common to all addresses in the 
block.

Therefore, the offset to the index is 
given by log

2
 (    ).𝑛𝑢𝑚 𝑏𝑦𝑡𝑒𝑠 𝑖𝑛 𝑏𝑙𝑜𝑐𝑘
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Blocks in a cache
We’ve mostly assumed so far that a block contains one word, or 4 bytes. In reality, a 
block contains several words.

Assuming we are using 32-bit addresses, consider a direct-mapped cache which 
holds 2n blocks and each block contains 2m words.

How many bytes are in a block?

How big does a tag field need to be?
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Blocks in a cache
We’ve mostly assumed so far that a block contains one word, or 4 bytes.  In reality, 
a block contains several words.

Assuming we are using 32-bit addresses, consider a direct-mapped cache which 
holds 2n blocks and each block contains 2m words.

How many bytes are in a block? 2m  4 = 2∗ m  2∗ 2 = 2m+2 bytes per block.

How big does a tag field need to be? 32 – (n + m + 2).  A block has a 32-bit 
address. We do not consider the lower m+2 bits because there are 2m+2 bytes in a  
block. We need n bits to index into the cache, m bits to identify the word.
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Exercise
How many total bits are required for a direct-mapped cache with 16 KB of data and 
4-word blocks, assuming a 32-bit address?
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Exercise
How many total bits are required for a direct-mapped cache with 16 KB of data and 
4-word blocks, assuming a 32-bit address?

We know that 16 KB is 4K words, which is 212 words, and, with a block size of 4 
words (22 ), 210 blocks.

Each block contains 4 words, or 128 bits, of data.  Each block also has a tag that is 
32-10-2-2 bits long, as well as one valid bit.  Therefore, the total cache size is

210 × 128 + 32 − 10 − 2 − 2 + 1 = 147 𝐾𝑏𝑖𝑡𝑠

Or, 18.4 KB cache for 16KB of data.
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Exercise
Consider a cache with 64 blocks and a block size of 16 bytes (4 words).

What block number does byte address 1200 ( 0100 1011 0000) map to?
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Exercise
Consider a cache with 64 blocks and a block size of 16 bytes (4 words).

What block number does byte address 1200 ( 0100 1011 0000) map to?

First of all, we know the entry into the cache is given by

Where the block address is given by

So, the block address is 

This corresponds to block number 75 % 64 = 11.  This block maps all addresses 
between 1200 and 1215.

Byte address
Number of bytes per block

1200
16

=75
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Block size and miss rate
A larger block size means we 
bring more contiguous bytes of 
memory in when we fetch a 
block. This can lower our miss 
rate as it exploits spatial locality.

However, in a fixed-size cache, 
a larger block size means less 
blocks in a cache – therefore, 
we may have blocks competing 
for cache space more often.

Furthermore, a larger block size 
takes more time to retrieve from 
main memory in the case of a 
miss.
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64 byte block cache
Here is a 256-entry cache that 
has 64-byte block entries. That 
is, each block is 16 words wide.

We index using an 8-bit portion 
of the address.  The individual 
bytes of the address are 
identifiable using the lower 6 bits 
(26 = 64).  However, we don’t 
want to access every byte.  We 
only want to access individual 
words.  This requires 4 bits 
because    = 16 = 24 .64

4
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Exercise
Assume a direct-mapped cache with 4 blocks and 8 bytes per block.

How is the physical address portioned?

Address Tag Index Offset

4

8

12

20

67

Fill in the appropriate 
information for the following 
memory references:

Tag bits Index bits Offset bits
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Exercise
Assume a direct-mapped cache with 4 blocks and 8 bytes per block.

How is the physical address portioned?

Address Tag Index Offset

4 0 0 4

8 0 1 0

12 0 1 4

20 0 2 4

67 2 0 3

Fill in the appropriate 
information for the following 
memory references:

Tag bits Index bits Offset bits

27 [31:5] 2 [4:3] 3 [2:0]
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Fully associative cache
We’ve already seen direct-mapped caches, a simple scheme where every 
block has one particular cache entry where it can be placed.

In a fully-associative cache, any block can be found in any entry of the 
cache.

To find a block in the cache, we must search the entire cache – therefore, 
this scheme is only practical for caches with a small number of entries.
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Set associative cache
The middle ground between direct-mapped and fully-associative is set-
associative.

In a set-associative cache, there are a fixed number of entries where a 
particular block may be found.  If a set-associative cache allows n different 
entries for a block to be found, it is called an n-way set-associative cache.

An n-way set-associative cache may have some number of sets, each 
containing n blocks.  A block address can be mapped to a particular set, in 
which the block can be placed in any of the n entries.

To find a reference in a set-associative cache, we figure out its set based on 
the address and then search all of the entries in the set.
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Set associative cache
The example below has a reference with a block address of 12 and each 
cache organization has 8 entries.

In a set-associative 
cache, the set can 
be found using the 
following:

Block address% # Sets
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Set associative cache
All placement strategies 
are really a variation on 
set-associativity.
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Set associative cache
The advantage of increasing the degree of associativity is that, typically, the miss rate will 
decrease.

The disadvantages are:

● Potential hit time increase.

● More tag bits per cache block.

● Logic to determine which block 
to replace.

0
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Set associative cache
Here is a set-associative cache 
with 256 sets of four blocks each, 
where each block is one word.

The index tells us which set to 
look in.  We need 8 bits for the 
index because 28 = 256.

The tag of every entry is 
compared to the upper 22 bits of 
the address.  If there is a match, 
and the valid bit is set, we have a 
hit.  The mux selects the data of 
the entry that resulted in a hit.

Otherwise, we have a miss.
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Set associative cache
Assume a 2-way set-associative cache with 64 sets and 4 words per block.

How is the physical address portioned?

Address Tag Index Offset

300

304

1216

4404

4408

Fill in the appropriate 
information for the following 
memory references:

Tag bits Index bits Offset bits
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Set associative cache
Assume a direct-mapped cache with 4 blocks and 8 bytes per block.

How is the physical address portioned?

Address Tag Index Offset

300 0 18 12

304 0 19 0

1216 1 12 0

4404 4 19 4

4408 4 19 8

Fill in the appropriate 
information for the following 
memory references:

Tag bits Index bits Offset bits

22 [31:10] 6 [9:4] 4 [3:0]
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Block replacement
Block replacement strategies for direct-mapped are easy: just write to the 
entry of the block you are bringing into the cache.

However, in a set-associative cache, there are multiple block entries that 
can be used.  If the set is full, how do we decide which block should be 
replaced?

● Random: choose a block randomly to replace.  Easy to implement
● Least Recently Used (LRU): replace the least-recently accessed block

● Better miss rate than random
● Expensive to implement, especially for high associativity



CI-0114 Fundamentos de Arquitectura 52

Set associative cache

Assume a 2-way set-
associative cache with 64 
sets and 4 words per 
block.  Indicate the result 
of searching for the 
reference in the cache.

Address Tag Index Offset Result

300 0 18 12 MISS

304 0 19 0

1216 1 12 0

4404 4 19 4

4408 4 19 8

9416 9 12 8

296 0 18 8

304 0 19 0

1220 1 12 4

2248 2 12 8
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Set associative cache
Address Tag Index Offset Result

00 0001 0010 1100 0 18 12 MISS

00 0001 0011 0000 0 19 0

00 0100 1100 0000 1 12 0

01 0001 0011 0100 4 19 4

01 0001 0011 1000 4 19 8

10 0100 1100 1000 9 12 8

00 0001 0010 1000 0 18 8

00 0001 0011 0000 0 19 0

00 0100 1100 0100 1 12 4

00 1000 1100 1000 2 12 8
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Set associative cache

Assume a 2-way set-
associative cache with 64 
sets and 4 words per 
block.  Indicate the result 
of searching for the 
reference in the cache.

Address Tag Index Offset Result

300 0 18 12 MISS

304 0 19 0 MISS

1216 1 12 0 MISS

4404 4 19 4 MISS

4408 4 19 8 HIT

9416 9 12 8 MISS

296 0 18 8 HIT

304 0 19 0 HIT

1220 1 12 4 HIT

2248 2 12 8 MISS
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Writing to the cache

Writing to the cache is a little more complicated than reading from the 
cache.

Let’s say, in the MEM stage of a store word instruction, we write to the data 
cache.  Then, main memory and data cache will have different values for 
that particular block. In this case, they are said to be inconsistent.

There are two solutions to this issue.  The method we use becomes our 
write policy.

● Write-through
● Write-back
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Write policies
● Write-through

● Always write data into both the cache and main memory (or the next lower level)
● Easily implemented
● Could slow down the processor à use a write buffer to allow the processor to continue 

executing while the data is written to memory.
● Cache and memory are always consistent

● Write-back
● Only write the data to the cache block
● The updated block is only written back to memory when it is replaced by another block
● A dirty bit is used to indicate whether the block needs to be written or not
● Reduces accesses to the next lower level

● What if the block to be written is not in the cache?
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Write miss policies

● Write allocate
● The block is loaded into the cache on a write miss
● Typically used with write back

● No-Write allocate
● The block is not loaded into the cache on a write miss
● Block simply updated in main memory
● Typically used with write through
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Write-through, no-write allocate
Assume a 2-way set-associative cache with 64 cache sets, 4 words per block, and 
an LRU replacement policy.  Fill in the appropriate information for the following 
memory references.

R/W Address Tag Index Offset Result Mem. Ref. Update cache

W 300 0 18 12

W 304 0 19 0

R 4404 4 19 4

W 4408 4 19 8

W 8496 8 19 0

R 8500 8 19 4

R 304 0 19 0
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Write-through, no-write allocate
Assume a 2-way set-associative cache with 64 cache sets, 4 words per block, and 
an LRU replacement policy.  Fill in the appropriate information for the following 
memory references.

R/W Address Tag Index Offset Result Mem. Ref. Update cache

W 300 0 18 12 MISS Yes No

W 304 0 19 0

R 4404 4 19 4

W 4408 4 19 8

W 8496 8 19 0

R 8500 8 19 4

R 304 0 19 0



CI-0114 Fundamentos de Arquitectura 60

Write-through, no-write allocate
Assume a 2-way set-associative cache with 64 cache sets, 4 words per block, and 
an LRU replacement policy.  Fill in the appropriate information for the following 
memory references.

R/W Address Tag Index Offset Result Mem. Ref. Update cache

W 300 0 18 12 MISS Yes No

W 304 0 19 0 MISS Yes No

R 4404 4 19 4 MISS Yes Yes

W 4408 4 19 8 HIT Yes Yes

W 8496 8 19 0 MISS Yes No

R 8500 8 19 4 MISS Yes Yes

R 304 0 19 0 MISS Yes Yes
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Write-through, write allocate
Assume a 2-way set-associative cache with 64 cache sets, 4 words per block, and 
an LRU replacement policy.  Fill in the appropriate information for the following 
memory references.

R/W Address Tag Index Offset Result Mem. Ref. Update cache

W 300 0 18 12

W 304 0 19 0

R 4404 4 19 4

W 4408 4 19 8

W 8496 8 19 0

R 8500 8 19 4

R 304 0 19 0
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Write-through, write allocate
Assume a 2-way set-associative cache with 64 cache sets, 4 words per block, and 
an LRU replacement policy.  Fill in the appropriate information for the following 
memory references.

R/W Address Tag Index Offset Result Mem. Ref. Update cache

W 300 0 18 12 MISS Yes Yes

W 304 0 19 0 MISS Yes Yes

R 4404 4 19 4 MISS Yes Yes

W 4408 4 19 8 HIT Yes Yes

W 8496 8 19 0 MISS Yes Yes

R 8500 8 19 4 HIT No No

R 304 0 19 0 MISS Yes Yes



CI-0114 Fundamentos de Arquitectura 63

Cache misses

Let’s consider the effect of cache misses for instructions.  Assume our miss 
penalty is 10 cycles and the miss rate is .10.

The average access time for an instruction is given by:

So, the number of cycles needed to fetch instructions is:

hit time+miss rate×miss penalty

# instructions×average access time
=# instructions×(hit time+miss rate×miss penalty )
=# instructions×(1+0.10×10)

=# instructions×2.0
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Cache for pipelined processors
In reality, instructions and data have separate caches.

This allows us to not only avoid structural hazards (when one instruction is being 
fetched while another accesses memory in the same cycle), but also fine-tune the 
specs of the cache for each task.

Cycle 1 2 3 4 5 6 7 8

Inst 1 IF ID EX MEM WB

Inst 2 IF ID EX MEM WB

Inst 3 IF ID EX MEM WB

Inst 4 IF ID EX MEM WB
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Cache misses
Not all misses are equal.  We can categorize them in the following way:

● Compulsory Misses
● Caused by first access to block
● Possibly decreased by increasing block size

● Capacity Misses
● Caused when memory level cannot contain all blocks needed during 

execution of process.
● Can be decreased by increasing cache size

● Conflict Misses
● Occur when too many blocks compete for same entry in cache
● Can be decreased by increasing associativity
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Critical word first and early restart
One way to reduce the penalty for misses is to reduce the time spent 
waiting for the actual request data, rather than the whole block of data.

Critical word first means to request the missed word first from the next 
memory hierarchy level to allow the processor to continue while filling in 
the remaining words in the block, usually in a wrap-around fill manner.

Early restart means to fetch the words in the normal order, but allow 
the processor to continue once the requested word arrives.
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Multi-level caches
Three levels of cache all on the same chip are now common, where 
there are separate L1 instruction and data caches and unified L2 and L3 
caches.

● The L1 cache is typically much smaller than L2 cache with lower 
associativity to provide faster access times.  Same with L2 and L3.

● The L1 caches typically have smaller block sizes than L2 caches to 
have a shorter miss penalty.  Same with L2 and L3.

● Lower cache levels being much larger and having higher 
associativity than higher cache levels decreases their misses, which 
have higher miss penalties.
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Multi-level cache performance
The miss penalty of an upper level cache is the average access time of 
the next lower level cache.

where

What is the average access time given that the L1 hit time is 1 cycle, 
the L1 miss rate is 0.05, the L2 hit time is 4 cycles, the L2 miss rate is 
0.25, and the L2 miss penalty is 50 cycles?

Average access time=(L1hit time)+(L1miss rate)×(L1miss penalty )

L1miss penalty=L2hit time+(L2miss rate)×(L2miss penalty )
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Multi-level cache performance
The miss penalty of an upper level cache is the average access time of 
the next lower level cache.

where

What is the average access time given that the L1 hit time is 1 cycle, 
the L1 miss rate is 0.05, the L2 hit time is 4 cycles, the L2 miss rate is 
0.25, and the L2 miss penalty is 50 cycles?

Average access time=(L1hit time)+(L1miss rate)×(L1miss penalty )

L1miss penalty=L2hit time+(L2miss rate)×(L2miss penalty )

Average access time=1+0.5×(4+0.25×50)=1.85
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Multi-level cache performance
Local miss rate: the fraction of references to one level of a cache that 
miss.

Example: 

Global miss rate: the fraction of references that miss in all levels of a 
multilevel cache.

Example:

L2miss rate=
Misses in L2
Accesses to L2

Global miss rate=L1miss rate×L2miss rate×.. .
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Improving cache performance

● Techniques for reducing the miss rate
● Increase the associativity to exploit temporal locality
● Increase the block size to exploit spatial locality

● Techniques for reducing the miss penalty
● Use wrap-around filling of a line (early restart and critical word first)
● Use multilevel caches

● Techniques for reducing the hit time
● Use small and simple L1 caches
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Appendix: SRAM

● Static Random Access Memory
● Used in caches
● Has a single access port for reads/writes
● Access time is 5-10 times faster than DRAM
● Semiconductor memory that uses ~6 transistors for each bit of data
● Data is maintained as long as power to the SRAM chip is provided; no 

need to refresh
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Appendix: DRAM

● Dynamic Random Access Memory
● Used for main memory
● Requires a single transistor per bit (much denser and cheaper than SRAM)
● Data is lost after being read, so we must refresh after a read by writing 

back the data
● The charge can be kept for several milliseconds before a refresh is 

required.  About 1%-2% of the cycles are used to refresh – accomplished 
by reading a row of data and writing it back
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Cache misses
Not all misses are equal.  We can categorize them in the following way:

● Compulsory Misses
● Caused by first access to block
● Possibly decreased by increasing block size

● Capacity Misses
● Caused when memory level cannot contain all blocks needed during 

execution of process.
● Can be decreased by increasing cache size

● Conflict Misses
● Occur when too many blocks compete for same entry in cache
● Can be decreased by increasing associativity
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Cache misses
Not all misses are equal.  We can categorize them in the following way:

● Compulsory Misses
● Caused by first access to block
● Possibly decreased by increasing block size

● Capacity Misses
● Caused when memory level cannot contain all blocks needed during 

execution of process.
● Can be decreased by increasing cache size

● Conflict Misses
● Occur when too many blocks compete for same entry in cache
● Can be decreased by increasing associativity
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