
08/07/2022 CI-0114 Fundamentos de Arquitectura 1

Memory hierarchy

CI-0114 Fundamentos de Arquitectura 2

Memory hierarchy
● When it comesto memory, there are two universally desirable properties:

● Large Size: ideally, we want to never have to worry about running out
of memory

● Speed of Access: we want the process of accessing memory to take
as little time as possible

● But we cannot optimize both of these properties at the same time. As
our memory size increases, the time to find a memory location and
access it grows as well

● The goal of designing a memory hierarchy is to simulate having unlimited
amounts of fast memory

CI-0114 Fundamentos de Arquitectura 3

Locality

To simulate these properties, we can take advantage of two forms of locality
● Temporal Locality: if an item is referenced, it will tend to be referenced again soon

● The location of the variable counter may be accessed frequently in a loop

● A branching instruction may be accessed repeatedly in a given period of time

● Spatial Locality – if an item is referenced, items whose addresses are close by will tend
to be referenced soon

● If we access the location of A[0], we will probably also be accessing A[1], A[2], etc.

● Sequential instruction access also exhibits spatial locality

CI-0114 Fundamentos de Arquitectura 4

Memory hierarchy

A memory hierarchy, consisting of multiple levels of memory with varying speed
and size, exploits these principles of locality.

● Faster memory is more expensive per bit, so we use it in smaller quantities

● Slower memory is much cheaper so we can afford to use a lot of it

The goal is to, whenever possible, keep references in the fastest memory.
However, we also want to minimize our overall memory cost.

CI-0114 Fundamentos de Arquitectura 5

Memory hierarchy

All data in a level is typically also
found in the next largest level.

We keep the smallest, faster
memory unit closest to the
processor.

The idea is that our access time
during a running program is
defined primarily by the access
time of the level 1 unit. But our
memory capacity is as large as
the level n unit.

CI-0114 Fundamentos de Arquitectura 6

Memory hierarchy

The unit of data that is transferred
between two levels is fixed in size
and is called a block, or a line.

CI-0114 Fundamentos de Arquitectura 7

Memory hierarchy

CI-0114 Fundamentos de Arquitectura 8

Memory hierarchy
There are four technologies that are used in a memory hierarchy:

● SRAM (Static Random Access Memory): fastest memory
available. Used in memory units close to the processor called
caches. Volatile

● DRAM (Dynamic Random Access Memory): mid-range. Used in
main memory. Volatile

● Flash: Falls between DRAM and disk in cost and speed. Used as
non-volatile memory in personal mobile devices

● Magnetic Disk: slowest memory available. Used as non-volatile
memory in a server or PC

CI-0114 Fundamentos de Arquitectura 9

Memory hierarchy

Technology Typical access time $ per GiB in 2016

SRAM 0.5-5 ns 400 - 1000

DRAM 50-70 ns 3 - 5

Flash 5,000-50,000 ns 0.30 - 0.50

Magnetic disk 5,000,000 – 20,000,000 ns 0.05 - 0.10

CI-0114 Fundamentos de Arquitectura 10

Memory hierarchy terms
● Hit: item found in a specified level of the hierarchy

● Miss: item not found in a specified level of the hierarchy

● Hit time: time required to access the desired item in a specified level of the

hierarchy (includes the time to determine if the access is a hit or a miss)

● Miss penalty: the additional time required to service the miss

● Hit rate: fraction of accesses that are in a specified level of the hierarchy

● Miss rate: fraction of accesses that are not in a specified level of the hierarchy

● Block: unit of information that is checked to reside in a specified level of the

hierarchy and is retrieved from the next lower level on a miss

CI-0114 Fundamentos de Arquitectura 11

Memory hierarchy
The key points so far:

● Memory hierarchies take advantage of temporal locality by keeping more
recently accessed data items closer to the processor. Memory hierarchies take
advantage of spatial locality by moving blocks consisting of multiple contiguous
words in memory to upper levels of the hierarchy

● Memory hierarchy uses smaller and faster memory technologies close to the
processor. Accesses that hit in the highest level can be processed quickly.
Accesses that miss go to lower levels, which are larger but slower. If the hit rate
is high enough, the memory hierarchy has an effective access time close to that
of the highest (and fastest) level and a true size equal to that of the lowest (and
largest) level

● • Memory is typically a true hierarchy, meaning that data cannot be present in
level i unless it is also present in level i+1

CI-0114 Fundamentos de Arquitectura 12

Caches
We’ll begin by looking at the most basic cache.
Let’s say we’re running a program that, so far, has
referenced − 1 words. These could be − 1 𝑛 𝑛
independent integer variables, for example

At this point, our cache might look like this
(assuming a block is simply 1 word). That is, every
reference made so far has been moved into the
cache to take advantage of temporal locality

What happens when our program references 𝑋
n
 ?

Cache

X
4

X
1

X
n-2

X
n-1

X
5

X
23

CI-0114 Fundamentos de Arquitectura 13

Caches
A reference to 𝑋

n
 causes a miss, which forces the cache to fetch 𝑋

n
 from some

lower level of the memory hierarchy, presumably main memory

Cache

X
4

X
1

X
n-2

X
n-1

X
5

X
23

Cache

X
4

X
1

X
n-2

X
n-1

X
5

X
23

Two questions:

1. How do we know
if an item is present
in the cache?

2. How do we find
the item in the
cache?

CI-0114 Fundamentos de Arquitectura 14

Caches
A reference to 𝑋

n
 causes a miss, which forces the cache to fetch 𝑋

n
 from some

lower level of the memory hierarchy, presumably main memory

Cache

X
4

X
1

X
n-2

X
n-1

X
5

X
23

Cache

X
4

X
1

X
n-2

X
n-1

X
5

X
n

X
23

Two questions:

1. How do we know if
an item is present in
the cache?

2. How do we find the
item in the cache?

One Answer: If each
word can go in exactly
one place in the
cache, then we can
easily find it in the
cache.

CI-0114 Fundamentos de Arquitectura 15

Direct mapped caches
The simplest way to assign a location in the cache for each word in memory is to assign the cache
location based on the address of the word in memory

This creates a direct-mapped cache – every location in memory is mapped directly to one location in
the cache

A typical direct-mapped cache uses the following mapping:

 𝐵𝑙𝑜𝑐𝑘 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 % ()𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑐ℎ𝑒

Conveniently, entering a block into a cache with 2n entries means just looking at the lower bits of 𝑛
the block address.

CI-0114 Fundamentos de Arquitectura 16

Direct-mapped cache

Here is an example cache which
contains 23 = 8 entries.

Blocks in memory are mapped to
a particular cache index if the
lower 3 bits of the block address
matches the index.

So, now we know where to find
the data but we still have to
answer the following question:
how do we know if the data we
want is in the cache?

CI-0114 Fundamentos de Arquitectura 17

Tags
To verify that a cache entry contains the data we’re looking for, and
not data from another memory address with the same lower bits,
we use a tag.

A tag is a field in a table which corresponds to a cache entry and
gives extra information about the source of the data in the cache
entry.

What is an obvious choice for the tag?

CI-0114 Fundamentos de Arquitectura 18

Tags
To verify that a cache entry contains the data we’re looking for, and
not data from another memory address with the same lower bits,
we use a tag.

A tag is a field in a table which corresponds to a cache entry and
gives extra information about the source of the data in the cache
entry.

What is an obvious choice for the tag?
● The upper bits of the address of the block!

CI-0114 Fundamentos de Arquitectura 19

Direct-mapped cache
For instance, in this particular
example, let’s say the block at
address 01101 is held in the
cache entry with index 101.

The tag for the cache entry with
index 101 must then be 01, the
upper bits of the address.

Therefore, when looking in the
cache for the block at address
11101, we know that we have a
miss because 11 != 01.

CI-0114 Fundamentos de Arquitectura 20

Valid bit
Even if there is data in the cache entry and a tag associated with the entry, we may
not want to use the data. For instance, when a processor has first started up or
when switching processes, the cache entries and tag fields may be meaningless.

Generally speaking, a valid bit associated with the cache entry can be used to
ensure that an entry is valid.

CI-0114 Fundamentos de Arquitectura 21

Exercise
Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Let’s assume we have
an 8-entry cache with
the initial state shown to
the right. Let’s fill in the
cache according to the
references that come in
listed in the table below.

Note that initially the
valid-bit entries are all
‘N’ for not valid.

Decimal address
of reference

Binary address
of reference

Hit or miss in cache Assigned cache block
(where found or placed)

22 10110

26 11010

22 10110

26 11010

16 10000

3 00011

16 10000

18 10010

CI-0114 Fundamentos de Arquitectura 22

Exercise
Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

The first reference is for
the block at address 22,
which uses the lower bits
110 to index into the
cache. The 110 cache
entry is not valid so this is
a miss.

We need to retrieve the
contents of the block at
address 22 and place it in
the cache entry.

Decimal address
of reference

Binary address
of reference

Hit or miss in cache Assigned cache block
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010

22 10110

26 11010

16 10000

3 00011

16 10000

18 10010

CI-0114 Fundamentos de Arquitectura 23

Exercise
Index V Tag Data

000 N

001 N

010 N 11 Memory(11110)

011 N

100 N

101 N

110 Y 10 Memory(10110)

111 N

The block at address 22
is now placed in the data
entry of the cache and the
tag is updated to the
upper portion of the
address, 10. Also, the
valid bit is set to ‘Y’.

Now, we have a reference
to the block at address
26. What happens here?

Decimal address
of reference

Binary address
of reference

Hit or miss in cache Assigned cache block
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110

26 11010

16 10000

3 00011

16 10000

18 10010

CI-0114 Fundamentos de Arquitectura 24

Exercise
Index V Tag Data

000 N

001 N

010 Y 11 Memory(11010)

011 N

100 N

101 N

110 Y 10 Memory(10110)

111 N

We have a miss, so we
retrieve the data from
address 26 and place it in
the cache entry. We also
update the tag and valid
bit.

Now, we have a reference
the block at address 22
again. Now what
happens?

Decimal address
of reference

Binary address
of reference

Hit or miss in cache Assigned cache block
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110

26 11010

16 10000

3 00011

16 10000

18 10010

CI-0114 Fundamentos de Arquitectura 25

Exercise
Index V Tag Data

000 N

001 N

010 Y 11 Memory(11010)

011 N

100 N

101 N

110 Y 10 Memory(10110)

111 N

The correct data is
already in the cache! We
don’t have to update the
contents or fetch anything
from main memory.

Similarly, we will have
another reference to the
block at address 26. We
do not need to update the
cache at all.

Decimal address
of reference

Binary address
of reference

Hit or miss in cache Assigned cache block
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT

16 10000

3 00011

16 10000

18 10010

CI-0114 Fundamentos de Arquitectura 26

Exercise
Index V Tag Data

000 N

001 N

010 Y 11 Memory(11010)

011 N

100 N

101 N

110 Y 10 Memory(10110)

111 N

Now, we have a reference
to the block at address
16. Its associated cache
entry is invalid, so we will
need to fetch the data
from main memory and
update the entry. Decimal address

of reference
Binary address

of reference
Hit or miss in cache Assigned cache block

(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT (11010 mod 8) = 010

16 10000 MISS (10000 mod 8) = 000

3 00011

16 10000

18 10010

CI-0114 Fundamentos de Arquitectura 27

Exercise
Index V Tag Data

000 Y 10 Memory(10000)

001 N

010 Y 11 Memory(11010)

011 N

100 N

101 N

110 Y 10 Memory(10110)

111 N

Now, we have a reference
to the block at address 3.
Its associated cache entry
is invalid, so we will need
to fetch the data from
main memory and update
the entry. Decimal address

of reference
Binary address

of reference
Hit or miss in cache Assigned cache block

(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT (11010 mod 8) = 010

16 10000 MISS (10000 mod 8) = 000

3 00011 (00011 mod 8) = 011

16 10000

18 10010

CI-0114 Fundamentos de Arquitectura 28

Exercise
Index V Tag Data

000 Y 10 Memory(10000)

001 N

010 Y 11 Memory(11010)

011 Y Memory(00011)

100 N

101 N

110 Y 10 Memory(10110)

111 N

A reference to the block at
address 16 causes a hit
(as we have already
pulled this data into the
cache) so we do not have
to make any changes.

Decimal address
of reference

Binary address
of reference

Hit or miss in cache Assigned cache block
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT (11010 mod 8) = 010

16 10000 MISS (10000 mod 8) = 000

3 00011 MISS (00011 mod 8) = 011

16 10000 HIT (10000 mod 8) = 000

18 10010

CI-0114 Fundamentos de Arquitectura 29

Exercise
Index V Tag Data

000 Y 10 Memory(10000)

001 N

010 Y 11 Memory(11010)

011 Y Memory(00011)

100 N

101 N

110 Y 10 Memory(10110)

111 N

Now, we get something
interesting. We have a
reference to the block at
address 18. The lower
bits used to index into
the cache are 010. As
these are also the lower
bits of address 26, we
have a valid entry but it’s
not the one we want.
Comparing the tag of the
entry with the upper
portion of 18’s binary
representation tells us we
have a miss.

Decimal address
of reference

Binary address
of reference

Hit or miss in cache Assigned cache block
(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT (11010 mod 8) = 010

16 10000 MISS (10000 mod 8) = 000

3 00011 MISS (00011 mod 8) = 011

16 10000 HIT (10000 mod 8) = 000

18 10010 MISS (10010 mod 8) = 010

CI-0114 Fundamentos de Arquitectura 30

Exercise
Index V Tag Data

000 Y 10 Memory(10000)

001 N

010 Y 10 Memory(10010)

011 Y Memory(00011)

100 N

101 N

110 Y 10 Memory(10110)

111 N

We fetch the data at address
18 and update the cache entry
to hold this data, as well as the
correct tag. Note now that a
reference to the block at
address 26 will result in a miss
and we’ll have to fetch that
data again. Decimal address

of reference
Binary address

of reference
Hit or miss in cache Assigned cache block

(where found or placed)

22 10110 MISS (10110 mod 8) = 110

26 11010 MISS (11010 mod 8) = 010

22 10110 HIT (10110 mod 8) = 110

26 11010 HIT (11010 mod 8) = 010

16 10000 MISS (10000 mod 8) = 000

3 00011 MISS (00011 mod 8) = 011

16 10000 HIT (10000 mod 8) = 000

18 10010 MISS (10010 mod 8) = 010

CI-0114 Fundamentos de Arquitectura 31

Physical address to cache
To the right is a figure showing how a
typical physical address may be divided
up to find the valid entry within the cache.

● The offset is used to indicate the first
byte accessed within a block. Its size is
log

2
 .𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑖𝑛 𝑏𝑙𝑜𝑐𝑘

For example, a block containing 4
bytes does not need to consider the
lower 2 bits of the address to index into
the cache.

● The cache index, in this case, is a 10-
bit wide lower portion of the physical
address (because there are 210 = 1024
entries).

● The tag is the upper 20 bits of the
physical address.

CI-0114 Fundamentos de Arquitectura 32

Offset
Consider a scheme where a block of
memory contains 2 words. Each
word is 4 bytes.

Bytes are the smallest addressable
unit of memory so a block starting at
address 34892896 contains 8 byte-
addressable locations.

Because 23 = 8, we need 3 bits to
individually identify the addresses in
the block. The 4th bit is the first bit
common to all addresses in the
block.

Therefore, the offset to the index is
given by log

2
 ().𝑛𝑢𝑚 𝑏𝑦𝑡𝑒𝑠 𝑖𝑛 𝑏𝑙𝑜𝑐𝑘

CI-0114 Fundamentos de Arquitectura 33

Blocks in a cache
We’ve mostly assumed so far that a block contains one word, or 4 bytes. In reality, a
block contains several words.

Assuming we are using 32-bit addresses, consider a direct-mapped cache which
holds 2n blocks and each block contains 2m words.

How many bytes are in a block?

How big does a tag field need to be?

CI-0114 Fundamentos de Arquitectura 34

Blocks in a cache
We’ve mostly assumed so far that a block contains one word, or 4 bytes. In reality,
a block contains several words.

Assuming we are using 32-bit addresses, consider a direct-mapped cache which
holds 2n blocks and each block contains 2m words.

How many bytes are in a block? 2m 4 = 2∗ m 2∗ 2 = 2m+2 bytes per block.

How big does a tag field need to be? 32 – (n + m + 2). A block has a 32-bit
address. We do not consider the lower m+2 bits because there are 2m+2 bytes in a
block. We need n bits to index into the cache, m bits to identify the word.

CI-0114 Fundamentos de Arquitectura 35

Exercise
How many total bits are required for a direct-mapped cache with 16 KB of data and
4-word blocks, assuming a 32-bit address?

CI-0114 Fundamentos de Arquitectura 36

Exercise
How many total bits are required for a direct-mapped cache with 16 KB of data and
4-word blocks, assuming a 32-bit address?

We know that 16 KB is 4K words, which is 212 words, and, with a block size of 4
words (22), 210 blocks.

Each block contains 4 words, or 128 bits, of data. Each block also has a tag that is
32-10-2-2 bits long, as well as one valid bit. Therefore, the total cache size is

210 × 128 + 32 − 10 − 2 − 2 + 1 = 147 𝐾𝑏𝑖𝑡𝑠

Or, 18.4 KB cache for 16KB of data.

CI-0114 Fundamentos de Arquitectura 37

Exercise
Consider a cache with 64 blocks and a block size of 16 bytes (4 words).

What block number does byte address 1200 (0100 1011 0000) map to?

CI-0114 Fundamentos de Arquitectura 38

Exercise
Consider a cache with 64 blocks and a block size of 16 bytes (4 words).

What block number does byte address 1200 (0100 1011 0000) map to?

First of all, we know the entry into the cache is given by

Where the block address is given by

So, the block address is

This corresponds to block number 75 % 64 = 11. This block maps all addresses
between 1200 and 1215.

Byte address
Number of bytes per block

1200
16

=75

CI-0114 Fundamentos de Arquitectura 39

Block size and miss rate
A larger block size means we
bring more contiguous bytes of
memory in when we fetch a
block. This can lower our miss
rate as it exploits spatial locality.

However, in a fixed-size cache,
a larger block size means less
blocks in a cache – therefore,
we may have blocks competing
for cache space more often.

Furthermore, a larger block size
takes more time to retrieve from
main memory in the case of a
miss.

CI-0114 Fundamentos de Arquitectura 40

64 byte block cache
Here is a 256-entry cache that
has 64-byte block entries. That
is, each block is 16 words wide.

We index using an 8-bit portion
of the address. The individual
bytes of the address are
identifiable using the lower 6 bits
(26 = 64). However, we don’t
want to access every byte. We
only want to access individual
words. This requires 4 bits
because = 16 = 24 .64

4

CI-0114 Fundamentos de Arquitectura 41

Exercise
Assume a direct-mapped cache with 4 blocks and 8 bytes per block.

How is the physical address portioned?

Address Tag Index Offset

4

8

12

20

67

Fill in the appropriate
information for the following
memory references:

Tag bits Index bits Offset bits

CI-0114 Fundamentos de Arquitectura 42

Exercise
Assume a direct-mapped cache with 4 blocks and 8 bytes per block.

How is the physical address portioned?

Address Tag Index Offset

4 0 0 4

8 0 1 0

12 0 1 4

20 0 2 4

67 2 0 3

Fill in the appropriate
information for the following
memory references:

Tag bits Index bits Offset bits

27 [31:5] 2 [4:3] 3 [2:0]

CI-0114 Fundamentos de Arquitectura 43

Fully associative cache
We’ve already seen direct-mapped caches, a simple scheme where every
block has one particular cache entry where it can be placed.

In a fully-associative cache, any block can be found in any entry of the
cache.

To find a block in the cache, we must search the entire cache – therefore,
this scheme is only practical for caches with a small number of entries.

CI-0114 Fundamentos de Arquitectura 44

Set associative cache
The middle ground between direct-mapped and fully-associative is set-
associative.

In a set-associative cache, there are a fixed number of entries where a
particular block may be found. If a set-associative cache allows n different
entries for a block to be found, it is called an n-way set-associative cache.

An n-way set-associative cache may have some number of sets, each
containing n blocks. A block address can be mapped to a particular set, in
which the block can be placed in any of the n entries.

To find a reference in a set-associative cache, we figure out its set based on
the address and then search all of the entries in the set.

CI-0114 Fundamentos de Arquitectura 45

Set associative cache
The example below has a reference with a block address of 12 and each
cache organization has 8 entries.

In a set-associative
cache, the set can
be found using the
following:

Block address% # Sets

CI-0114 Fundamentos de Arquitectura 46

Set associative cache
All placement strategies
are really a variation on
set-associativity.

CI-0114 Fundamentos de Arquitectura 47

Set associative cache
The advantage of increasing the degree of associativity is that, typically, the miss rate will
decrease.

The disadvantages are:

● Potential hit time increase.

● More tag bits per cache block.

● Logic to determine which block
to replace.

0

CI-0114 Fundamentos de Arquitectura 48

Set associative cache
Here is a set-associative cache
with 256 sets of four blocks each,
where each block is one word.

The index tells us which set to
look in. We need 8 bits for the
index because 28 = 256.

The tag of every entry is
compared to the upper 22 bits of
the address. If there is a match,
and the valid bit is set, we have a
hit. The mux selects the data of
the entry that resulted in a hit.

Otherwise, we have a miss.

CI-0114 Fundamentos de Arquitectura 49

Set associative cache
Assume a 2-way set-associative cache with 64 sets and 4 words per block.

How is the physical address portioned?

Address Tag Index Offset

300

304

1216

4404

4408

Fill in the appropriate
information for the following
memory references:

Tag bits Index bits Offset bits

CI-0114 Fundamentos de Arquitectura 50

Set associative cache
Assume a direct-mapped cache with 4 blocks and 8 bytes per block.

How is the physical address portioned?

Address Tag Index Offset

300 0 18 12

304 0 19 0

1216 1 12 0

4404 4 19 4

4408 4 19 8

Fill in the appropriate
information for the following
memory references:

Tag bits Index bits Offset bits

22 [31:10] 6 [9:4] 4 [3:0]

CI-0114 Fundamentos de Arquitectura 51

Block replacement
Block replacement strategies for direct-mapped are easy: just write to the
entry of the block you are bringing into the cache.

However, in a set-associative cache, there are multiple block entries that
can be used. If the set is full, how do we decide which block should be
replaced?

● Random: choose a block randomly to replace. Easy to implement
● Least Recently Used (LRU): replace the least-recently accessed block

● Better miss rate than random
● Expensive to implement, especially for high associativity

CI-0114 Fundamentos de Arquitectura 52

Set associative cache

Assume a 2-way set-
associative cache with 64
sets and 4 words per
block. Indicate the result
of searching for the
reference in the cache.

Address Tag Index Offset Result

300 0 18 12 MISS

304 0 19 0

1216 1 12 0

4404 4 19 4

4408 4 19 8

9416 9 12 8

296 0 18 8

304 0 19 0

1220 1 12 4

2248 2 12 8

CI-0114 Fundamentos de Arquitectura 53

Set associative cache
Address Tag Index Offset Result

00 0001 0010 1100 0 18 12 MISS

00 0001 0011 0000 0 19 0

00 0100 1100 0000 1 12 0

01 0001 0011 0100 4 19 4

01 0001 0011 1000 4 19 8

10 0100 1100 1000 9 12 8

00 0001 0010 1000 0 18 8

00 0001 0011 0000 0 19 0

00 0100 1100 0100 1 12 4

00 1000 1100 1000 2 12 8

CI-0114 Fundamentos de Arquitectura 54

Set associative cache

Assume a 2-way set-
associative cache with 64
sets and 4 words per
block. Indicate the result
of searching for the
reference in the cache.

Address Tag Index Offset Result

300 0 18 12 MISS

304 0 19 0 MISS

1216 1 12 0 MISS

4404 4 19 4 MISS

4408 4 19 8 HIT

9416 9 12 8 MISS

296 0 18 8 HIT

304 0 19 0 HIT

1220 1 12 4 HIT

2248 2 12 8 MISS

CI-0114 Fundamentos de Arquitectura 55

Writing to the cache

Writing to the cache is a little more complicated than reading from the
cache.

Let’s say, in the MEM stage of a store word instruction, we write to the data
cache. Then, main memory and data cache will have different values for
that particular block. In this case, they are said to be inconsistent.

There are two solutions to this issue. The method we use becomes our
write policy.

● Write-through
● Write-back

CI-0114 Fundamentos de Arquitectura 56

Write policies
● Write-through

● Always write data into both the cache and main memory (or the next lower level)
● Easily implemented
● Could slow down the processor à use a write buffer to allow the processor to continue

executing while the data is written to memory.
● Cache and memory are always consistent

● Write-back
● Only write the data to the cache block
● The updated block is only written back to memory when it is replaced by another block
● A dirty bit is used to indicate whether the block needs to be written or not
● Reduces accesses to the next lower level

● What if the block to be written is not in the cache?

CI-0114 Fundamentos de Arquitectura 57

Write miss policies

● Write allocate
● The block is loaded into the cache on a write miss
● Typically used with write back

● No-Write allocate
● The block is not loaded into the cache on a write miss
● Block simply updated in main memory
● Typically used with write through

CI-0114 Fundamentos de Arquitectura 58

Write-through, no-write allocate
Assume a 2-way set-associative cache with 64 cache sets, 4 words per block, and
an LRU replacement policy. Fill in the appropriate information for the following
memory references.

R/W Address Tag Index Offset Result Mem. Ref. Update cache

W 300 0 18 12

W 304 0 19 0

R 4404 4 19 4

W 4408 4 19 8

W 8496 8 19 0

R 8500 8 19 4

R 304 0 19 0

CI-0114 Fundamentos de Arquitectura 59

Write-through, no-write allocate
Assume a 2-way set-associative cache with 64 cache sets, 4 words per block, and
an LRU replacement policy. Fill in the appropriate information for the following
memory references.

R/W Address Tag Index Offset Result Mem. Ref. Update cache

W 300 0 18 12 MISS Yes No

W 304 0 19 0

R 4404 4 19 4

W 4408 4 19 8

W 8496 8 19 0

R 8500 8 19 4

R 304 0 19 0

CI-0114 Fundamentos de Arquitectura 60

Write-through, no-write allocate
Assume a 2-way set-associative cache with 64 cache sets, 4 words per block, and
an LRU replacement policy. Fill in the appropriate information for the following
memory references.

R/W Address Tag Index Offset Result Mem. Ref. Update cache

W 300 0 18 12 MISS Yes No

W 304 0 19 0 MISS Yes No

R 4404 4 19 4 MISS Yes Yes

W 4408 4 19 8 HIT Yes Yes

W 8496 8 19 0 MISS Yes No

R 8500 8 19 4 MISS Yes Yes

R 304 0 19 0 MISS Yes Yes

CI-0114 Fundamentos de Arquitectura 61

Write-through, write allocate
Assume a 2-way set-associative cache with 64 cache sets, 4 words per block, and
an LRU replacement policy. Fill in the appropriate information for the following
memory references.

R/W Address Tag Index Offset Result Mem. Ref. Update cache

W 300 0 18 12

W 304 0 19 0

R 4404 4 19 4

W 4408 4 19 8

W 8496 8 19 0

R 8500 8 19 4

R 304 0 19 0

CI-0114 Fundamentos de Arquitectura 62

Write-through, write allocate
Assume a 2-way set-associative cache with 64 cache sets, 4 words per block, and
an LRU replacement policy. Fill in the appropriate information for the following
memory references.

R/W Address Tag Index Offset Result Mem. Ref. Update cache

W 300 0 18 12 MISS Yes Yes

W 304 0 19 0 MISS Yes Yes

R 4404 4 19 4 MISS Yes Yes

W 4408 4 19 8 HIT Yes Yes

W 8496 8 19 0 MISS Yes Yes

R 8500 8 19 4 HIT No No

R 304 0 19 0 MISS Yes Yes

CI-0114 Fundamentos de Arquitectura 63

Cache misses

Let’s consider the effect of cache misses for instructions. Assume our miss
penalty is 10 cycles and the miss rate is .10.

The average access time for an instruction is given by:

So, the number of cycles needed to fetch instructions is:

hit time+miss rate×miss penalty

instructions×average access time
=# instructions×(hit time+miss rate×miss penalty)
=# instructions×(1+0.10×10)

=# instructions×2.0

CI-0114 Fundamentos de Arquitectura 64

Cache for pipelined processors
In reality, instructions and data have separate caches.

This allows us to not only avoid structural hazards (when one instruction is being
fetched while another accesses memory in the same cycle), but also fine-tune the
specs of the cache for each task.

Cycle 1 2 3 4 5 6 7 8

Inst 1 IF ID EX MEM WB

Inst 2 IF ID EX MEM WB

Inst 3 IF ID EX MEM WB

Inst 4 IF ID EX MEM WB

CI-0114 Fundamentos de Arquitectura 65

Cache misses
Not all misses are equal. We can categorize them in the following way:

● Compulsory Misses
● Caused by first access to block
● Possibly decreased by increasing block size

● Capacity Misses
● Caused when memory level cannot contain all blocks needed during

execution of process.
● Can be decreased by increasing cache size

● Conflict Misses
● Occur when too many blocks compete for same entry in cache
● Can be decreased by increasing associativity

CI-0114 Fundamentos de Arquitectura 66

Critical word first and early restart
One way to reduce the penalty for misses is to reduce the time spent
waiting for the actual request data, rather than the whole block of data.

Critical word first means to request the missed word first from the next
memory hierarchy level to allow the processor to continue while filling in
the remaining words in the block, usually in a wrap-around fill manner.

Early restart means to fetch the words in the normal order, but allow
the processor to continue once the requested word arrives.

CI-0114 Fundamentos de Arquitectura 67

Multi-level caches
Three levels of cache all on the same chip are now common, where
there are separate L1 instruction and data caches and unified L2 and L3
caches.

● The L1 cache is typically much smaller than L2 cache with lower
associativity to provide faster access times. Same with L2 and L3.

● The L1 caches typically have smaller block sizes than L2 caches to
have a shorter miss penalty. Same with L2 and L3.

● Lower cache levels being much larger and having higher
associativity than higher cache levels decreases their misses, which
have higher miss penalties.

CI-0114 Fundamentos de Arquitectura 68

Multi-level cache performance
The miss penalty of an upper level cache is the average access time of
the next lower level cache.

where

What is the average access time given that the L1 hit time is 1 cycle,
the L1 miss rate is 0.05, the L2 hit time is 4 cycles, the L2 miss rate is
0.25, and the L2 miss penalty is 50 cycles?

Average access time=(L1hit time)+(L1miss rate)×(L1miss penalty)

L1miss penalty=L2hit time+(L2miss rate)×(L2miss penalty)

CI-0114 Fundamentos de Arquitectura 69

Multi-level cache performance
The miss penalty of an upper level cache is the average access time of
the next lower level cache.

where

What is the average access time given that the L1 hit time is 1 cycle,
the L1 miss rate is 0.05, the L2 hit time is 4 cycles, the L2 miss rate is
0.25, and the L2 miss penalty is 50 cycles?

Average access time=(L1hit time)+(L1miss rate)×(L1miss penalty)

L1miss penalty=L2hit time+(L2miss rate)×(L2miss penalty)

Average access time=1+0.5×(4+0.25×50)=1.85

CI-0114 Fundamentos de Arquitectura 70

Multi-level cache performance
Local miss rate: the fraction of references to one level of a cache that
miss.

Example:

Global miss rate: the fraction of references that miss in all levels of a
multilevel cache.

Example:

L2miss rate=
Misses in L2
Accesses to L2

Global miss rate=L1miss rate×L2miss rate×.. .

CI-0114 Fundamentos de Arquitectura 71

Improving cache performance

● Techniques for reducing the miss rate
● Increase the associativity to exploit temporal locality
● Increase the block size to exploit spatial locality

● Techniques for reducing the miss penalty
● Use wrap-around filling of a line (early restart and critical word first)
● Use multilevel caches

● Techniques for reducing the hit time
● Use small and simple L1 caches

CI-0114 Fundamentos de Arquitectura 72

Appendix: SRAM

● Static Random Access Memory
● Used in caches
● Has a single access port for reads/writes
● Access time is 5-10 times faster than DRAM
● Semiconductor memory that uses ~6 transistors for each bit of data
● Data is maintained as long as power to the SRAM chip is provided; no

need to refresh

CI-0114 Fundamentos de Arquitectura 73

Appendix: DRAM

● Dynamic Random Access Memory
● Used for main memory
● Requires a single transistor per bit (much denser and cheaper than SRAM)
● Data is lost after being read, so we must refresh after a read by writing

back the data
● The charge can be kept for several milliseconds before a refresh is

required. About 1%-2% of the cycles are used to refresh – accomplished
by reading a row of data and writing it back

CI-0114 Fundamentos de Arquitectura 74

Cache misses
Not all misses are equal. We can categorize them in the following way:

● Compulsory Misses
● Caused by first access to block
● Possibly decreased by increasing block size

● Capacity Misses
● Caused when memory level cannot contain all blocks needed during

execution of process.
● Can be decreased by increasing cache size

● Conflict Misses
● Occur when too many blocks compete for same entry in cache
● Can be decreased by increasing associativity

CI-0114 Fundamentos de Arquitectura 75

Cache misses
Not all misses are equal. We can categorize them in the following way:

● Compulsory Misses
● Caused by first access to block
● Possibly decreased by increasing block size

● Capacity Misses
● Caused when memory level cannot contain all blocks needed during

execution of process.
● Can be decreased by increasing cache size

● Conflict Misses
● Occur when too many blocks compete for same entry in cache
● Can be decreased by increasing associativity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

