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Designing for Performance
• The cost of computer systems continues to drop dramatically, while the performance and capacity 

of those systems continue to rise equally dramatically

• Today’s laptops have the computing power of an IBM mainframe from 10 or 15 years ago

• Processors are so inexpensive that we now have microprocessors we throw away

• Desktop applications that require the great power of today’s microprocessor-based systems 
include:

– Image processing

– Three-dimensional rendering

– Speech recognition

– Videoconferencing

– Multimedia authoring 

– Voice and video annotation of files

– Simulation modeling

• Businesses are relying on increasingly powerful servers to handle transaction and database 
processing and to support massive client/server networks that have replaced the huge mainframe 
computer centers of yesteryear

• Cloud service providers use massive high-performance banks of servers to satisfy high-volume, 
high-transaction-rate applications for a broad spectrum of clients



3

Microprocessor Speed
Techniques built into contemporary processors include:

Pipelining

Branch prediction

Superscalar 
execution

Data flow analysis

Speculative 
execution

• Processor moves data or instructions into a 
conceptual pipe with all stages of the pipe 
processing simultaneously

• Processor looks ahead in the instruction code 
fetched from memory and predicts which 
branches, or groups of instructions, are likely to 
be processed next

• This is the ability to issue more than one 
instruction in every processor clock cycle. (In 
effect, multiple parallel pipelines are used.)

• Processor analyzes which instructions are 
dependent on each other’s results, or data, to 
create an optimized schedule of instructions

• Using branch prediction and data flow analysis, 
some processors speculatively execute 
instructions ahead of their actual appearance in 
the program execution, holding the results in 
temporary locations, keeping execution engines 
as busy as possible
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Performance Balance

• Adjust the organization and 
architecture to compensate 
for the mismatch among the 
capabilities of the various 
components

• Architectural examples 
include:

Increase the 
number of bits 

that are retrieved 
at one time by 
making DRAMs 
“wider” rather 

than “deeper” and 
by using wide bus 

data paths

Change the DRAM 
interface to make 

it more efficient by 
including a cache 
or other buffering 

scheme on the 
DRAM chip

Reduce the 
frequency of 

memory access by 
incorporating 
increasingly 
complex and 

efficient cache 
structures 

between the 
processor and 
main memory

Increase the 
interconnect 

bandwidth between 
processors and 

memory by using 
higher speed buses 
and a hierarchy of 

buses to buffer and 
structure data flow
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Figure 2.1

Pipelining

Branch prediction

Superscalar 
execution

Data flow analysis

Speculative 
execution

•Processor moves data or instructions into a 
conceptual pipe with all stages of the pipe 
processing simultaneously

•Processor looks ahead in the instruction code 
fetched from memory and predicts which 
branches, or groups of instructions, are likely to 
be processed next

•This is the ability to issue more than one 
instruction in every processor clock cycle. (In 
effect, multiple parallel pipelines are used.)

•Processor analyzes which instructions are 
dependent on each other’s results, or data, to 
create an optimized schedule of instructions

•Using branch prediction and data flow analysis, 
some processors speculatively execute 
instructions ahead of their actual appearance in 
the program execution, holding the results in 
temporary locations, keeping execution engines 
as busy as possible

Techniques built into contemporary processors include:
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Improvements in Chip Organization and 
Architecture

• Increase hardware speed of processor
– Fundamentally due to shrinking logic gate size

▪ More gates, packed more tightly, increasing clock rate

▪ Propagation time for signals reduced

• Increase size and speed of caches
– Dedicating part of processor chip 

▪ Cache access times drop significantly

• Change processor organization and architecture
– Increase effective speed of instruction execution

– Parallelism
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Problems with Clock Speed and Logic 
Density

• Power
– Power density increases with density of logic and clock speed

– Dissipating heat

• RC delay
– Speed at which electrons flow limited by resistance and capacitance of metal 

wires connecting them

– Delay increases as the RC product increases

– As components on the chip decrease in size, the wire interconnects become 
thinner, increasing resistance

– Also, the wires are closer together, increasing capacitance

• Memory latency and throughput
– Memory access speed (latency) and transfer speed (throughput) lag processor 

speeds
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Figure 2.2
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Multicore
The use of multiple 
processors on the same 
chip provides the potential 
to increase performance 
without increasing the 
clock rate

Strategy is to use two 
simpler processors on the 
chip rather than one more 
complex processor

With two processors larger 
caches are justified

As caches became larger it 
made performance sense 
to create two and then 
three levels of cache on a 
chip
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Many Integrated Core (MIC)
      Graphics Processing Unit (GPU)

MIC

• Leap in performance as well 
as the challenges in 
developing software to 
exploit such a large number 
of cores

• The multicore and MIC 
strategy involves a 
homogeneous collection of 
general purpose processors 
on a single chip

• Core designed to perform 
parallel operations on graphics 
data

• Traditionally found on a plug-in 
graphics card, it is used to 
encode and render 2D and 3D 
graphics as well as process 
video

• Used as vector processors for 
a variety of applications that 
require repetitive computations

• GP
U
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Amdahl’s Law

• Gene Amdahl

• Deals with the potential speedup of a program using 
multiple processors compared to a single processor

• Illustrates the problems facing industry in the 
development of multi-core machines

– Software must be adapted to a highly parallel execution 
environment to exploit the power of parallel processing

• Can be generalized to evaluate and design technical 
improvement in a computer system
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Figure 2.3
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Figure 2.4
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Little’s Law

• Fundamental and simple relation with broad applications

• Can be applied to almost any system that is statistically in steady 
state, and in which there is no leakage

• Queuing system
– If server is idle an item is served immediately, otherwise an arriving item joins a 

queue

– There can be a single queue for a single server or for multiple servers, or 
multiple queues with one being for each of multiple servers

• Average number of items in a queuing system equals the average 
rate at which items arrive multiplied by the  time that an item spends 
in the system

– Relationship requires very few assumptions

– Because of its simplicity and generality it is extremely useful
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Figure 2.5
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 Ic p m k 

Instruction set architecture X X

Compiler technology X X X

Processor implementation X X

Cache and memory hierarchy X X

Table 2.1  Performance Factors and System Attributes 
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Calculating the Mean

The use of benchmarks to 
compare systems involves 
calculating the mean value 

of a set of data points 
related to execution time

The three 
common 
formulas 
used for 

calculating a 
mean are:

• Arithmetic
• Geometric
• Harmonic
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Figure 2.6



19

Arithmetic Mean
 An Arithmetic Mean (AM) is an appropriate measure

if the sum of all the measurements is a meaningful 

and interesting value

 The AM is a good candidate for comparing the execution

 time performance of several systems

 The AM used for a time-based variable, such as program execution time, has the 
important property that it is directly proportional to the total time 

 If the total time doubles, the mean value doubles

 For example, suppose we were interested in using a system
for large-scale simulation studies and wanted to evaluate 
several alternative products.  On each system we could run 
the simulation multiple times with different input values for 
each run, and then take the average execution time across all 
runs. The use of
multiple runs with different inputs should ensure that the 
results are not heavily biased by some unusual feature of a 
given input set. The AM of all the runs is a good measure of 
the system’s performance on simulations, and a good number 
to use for system comparison.
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  Computer
A time
(secs)

Computer
B time
(secs)

Computer
C time
(secs)

Computer
A rate

(MFLOPS)

Computer
B rate

(MFLOPS)

Computer
C rate

(MFLOPS)

Program 1
(108 FP ops)

2.0 1.0 0.75 50 100 133.33

Program 1
(108 FP ops) 0.75 2.0 4.0 133.33 50 25

Total
execution
time

2.75 3.0 4.75 – – –

Arithmetic
mean of
times

1.38 1.5 2.38 – – –

Inverse
of total
execution
time (1/sec)

0.36 0.33 0.21 – – –

Arithmetic
mean of
rates

– – – 91.67 75.00 79.17

Harmonic
mean of
rates

– – – 72.72 66.67 42.11

Table 2.2  
A Comparison of Arithmetic and Harmonic Means for Rates 
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 Computer A time Computer B time Computer C time

Program 1 2.0 (1.0) 1.0 (0.5) 0.75 (0.38)

Program 2 0.75 (1.0) 2.0 (2.67) 4.0 (5.33)

Total execution time 2.75 3.0 4.75

Arithmetic mean of
normalized times 1.00 1.58 2.85

Geometric mean of
normalized times 1.00 1.15 1.41

(a) Results normalized to Computer A 

(a) Results normalized to Computer B 

 Computer A time Computer B time Computer C time

Program 1 2.0 (2.0) 1.0 (1.0) 0.75 (0.75)

Program 2 0.75 (0.38) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.75 3.0 4.75

Arithmetic mean of
normalized times

1.19 1.00 1.38

Geometric mean of
normalized times

0.87 1.00 1.22

Table 2.3 
A Comparison of Arithmetic and Geometric Means for Normalized 
Results
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 Computer A time Computer B time Computer C time

Program 1 2.0 (1.0) 1.0 (0.5) 0.20 (0.1)

Program 2 0.4 (1.0) 2.0 (5.0) 4.0 (10.0)

Total execution time 2.4 3.00 4.2

Arithmetic mean of
normalized times 1.00 2.75 5.05

Geometric mean of
normalized times 1.00 1.58 1.00

(a) Results normalized to Computer A 

(a) Results normalized to Computer B 

 Computer A time Computer B time Computer C time

Program 1 2.0 (2.0) 1.0 (1.0) 0.20 (0.2)

Program 2 0.4 (0.2) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.4 3.0 4.2

Arithmetic mean of
normalized times

1.10 1.00 1.10

Geometric mean of
normalized times

0.63 1.00 0.63

Table 2.4 
Another Comparison of Arithmetic and Geometric Means for 
Normalized Results
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Benchmark Principles

• Desirable characteristics of a benchmark 
program:

1. It is written in a high-level language, making it portable 
across different machines

2. It is representative of a particular kind of programming 
domain or paradigm, such as systems programming, 
numerical programming, or commercial programming

3. It can be measured easily

4. It has wide distribution
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System Performance Evaluation 
Corporation (SPEC)

• Benchmark suite
– A collection of programs, defined in a high-level language

– Together attempt to provide a representative test of a computer in a 
particular application or system programming area

– SPEC
– An industry consortium

– Defines and maintains the best known collection of benchmark suites 
aimed at evaluating computer systems

– Performance measurements are widely used for comparison and 
research purposes
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SPEC CPU2017

• Best known SPEC benchmark suite

• Industry standard suite for processor intensive applications

• Appropriate for measuring performance for applications that 
spend most of their time doing computation rather than I/O

• Consists of 20 integer benchmarks and 23 floating-point 
benchmarks written in C, C++, and Fortran

• For all of the integer benchmarks and most of the floating-
point benchmarks, there are both rate and speed benchmark 
programs

• The suite contains over 11 million lines of code
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(Table can be found on page 61 in the textbook.)Kloc  =  line count (including comments/whitespace) for source files used in a build/1000

Rate Speed Language Kloc Application Area

500.perlbench_
r

600.perlbench_s C 363 Perl interpreter

502.gcc_r 602.gcc_s C 1304 GNU C compiler

505.mcf_r 605.mcf_s C 3 Route planning

520.omnetpp_r 620.omnetpp_s C++ 134 Discrete event simulation - 
computer network

523.xalancbmk
_r

623.xalancbmk_
s

C++ 520 XML to HTML conversion via XSLT

525.x264_r 625.x264_s C 96 Video compression

531.deepsjeng
_r

631.deepsjeng_s C++ 10 AI: alpha-beta tree search (chess)

541.leela_r 641.leela_s C++ 21 AI: Monte Carlo tree search (Go)

548.exchange2
_r

648.exchange2_
s

Fortran 1 AI: recursive solution generator 
(Sudoku)

557.xz_r 657.xz_s C 33 General data compression

Table 2.5
(A)

SPEC
CPU2017

Benchmarks
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(Table can be found on page 61 in the textbook.)Kloc  =  line count (including comments/whitespace) for source files used in a build/1000

Rate Speed Language Kloc Application Area

503.bwaves_r 603.bwaves_s Fortran 1 Explosion modeling

507.cactuBSSN
_r

607.cactuBSSN_s C++, C, 
Fortran

257 Physics; relativity

508.namd_r   C++, C 8 Molecular dynamics

510.parest_r   C++ 427 Biomedical imaging; optical 
tomography with finite elements

511.povray_r   C++ 170 Ray tracing

519.ibm_r 619.ibm_s C 1 Fluid dynamics

521.wrf_r 621.wrf_s Fortran, C 991 Weather forecasting

526.blender_r   C++ 1577 3D rendering and animation

527.cam4_r 627.cam4_s Fortran, C 407 Atmosphere modeling

  628.pop2_s Fortran, C 338 Wide-scale ocean modeling 
(climate level)

538.imagick_r 638.imagick_s C 259 Image manipulation

544.nab_r 644.nab_s C 24 Molecular dynamics

549.fotonik3d_r 649.fotonik3d_s Fortran 14 Computational electromagnetics

554.roms_r 654.roms_s Fortran 210 Regional ocean modeling.

Table 2.5
(B)

SPEC
CPU2017

Benchmarks
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(Table can be found on page 64 in the textbook.)

Table 2.6

SPEC
CPU 2017

Integer 
Benchmarks 

for HP 
Integrity 

Superdome X

(a) Rate Result
(768 copies)

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Benchmark

Base Peak

Seconds Rate Seconds Rate

500.perlbench_
r

1141 1070 933 1310

502.gcc_r
1303 835 1276 852

505.mcf_r
1433 866 1378 901

520.omnetpp_r

1664 606 1634 617

523.xalancbmk
_r

722 1120 713 1140

525.x264_r
655 2053 661 2030

531.deepsjeng_
r

604 1460 597 1470

541.leela_r
892 1410 896 1420

548.exchange2
_r

833 2420 770 2610

557.xz_r
870 953 863 961
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(Table can be found on page 64 in the textbook.)

Benchmark

Base Peak

Seconds Ratio Seconds Ratio

600.perlbench_s

358 4.96 295 6.01

602.gcc_s
546 7.29 535 7.45

605.mcf_s
866 5.45 700 6.75

620.omnetpp_s

276 5.90 247 6.61

623.xalancbmk_s

188 7.52 179 7.91

625.x264_s
283 6.23 271 6.51

631.deepsjeng_s

407 3.52 343 4.18

641.leela_s
469 3.63 439 3.88

648.exchange2_s

329 8.93 299 9.82

657.xz_s
2164 2.86 2119 2.92

Table 2.6

SPEC
CPU 2017

Integer 
Benchmarks 

for HP 
Integrity 

Superdome X

(b) Speed 
Result

 (384 threads)
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Terms Used in SPEC Documentation

• Benchmark
– A program written in a high-level 

language that can be compiled and 
executed on any computer that 
implements the compiler

• System under test
– This is the system to be evaluated

• Reference machine
– This is a system used by SPEC to 

establish a baseline performance for all 
benchmarks
▪ Each benchmark is run and 

measured on this machine to 
establish a reference time for that 
benchmark

• Base metric
– These are required for all reported 

results and have strict guidelines for 
compilation

• Peak metric
– This enables users to attempt to 

optimize system performance by 
optimizing the compiler output

• Speed metric
– This is simply a measurement of the 

time it takes to execute a compiled 
benchmark
• Used for comparing the ability of a 

computer to complete single tasks
• Rate metric

– This is a measurement of how many 
tasks a computer can accomplish in a 
certain amount of time
• This is called a throughput, capacity, 

or rate measure
• Allows the system under test to 

execute simultaneous tasks to take 
advantage of multiple processors
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Figure 2.7
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(Table can be found on page 66 in the textbook.)

Benchmark Seconds Energy (kJ) Average 
Power (W)

Maximum 
Power (W)

600.perlbench_s

1774 1920 1080 1090

602.gcc_s
3981 4330 1090 1110

605.mcf_s
4721 5150 1090 1120

620.omnetpp_s

1630 1770 1090 1090

623.xalancbmk_s

1417 1540 1090 1090

625.x264_s
1764 1920 1090 1100

631.deepsjeng_s

1432 1560 1090 1130

641.leela_s
1706 1850 1090 1090

648.exchange2_s

2939 3200 1080 1090

657.xz_s
6182 6730 1090 1140

Table 2.7

SPECspeed 
2017_int_base 

Benchmark 
Results for 
Reference 

Machine (1 
thread)
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Summary

Chapter 2
• Designing for performance

– Microprocessor speed

– Performance balance

– Improvements in chip 
organization and 
architecture

• Multicore

• MICs

• GPGPUs

• Amdahl’s Law

• Little’s Law

• Basic measures of computer 
performance

– Clock speed

– Instruction execution rate

• Calculating the mean

– Arithmetic mean

– Harmonic mean

– Geometric mean

• Benchmark principles

• SPEC benchmarks

•Performance  

•Concepts
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