
1

Computer Organization and Architecture
Designing for Performance

11th Edition

Chapter 2

Performance Concepts

2

Designing for Performance
• The cost of computer systems continues to drop dramatically, while the performance and capacity

of those systems continue to rise equally dramatically

• Today’s laptops have the computing power of an IBM mainframe from 10 or 15 years ago

• Processors are so inexpensive that we now have microprocessors we throw away

• Desktop applications that require the great power of today’s microprocessor-based systems
include:

– Image processing

– Three-dimensional rendering

– Speech recognition

– Videoconferencing

– Multimedia authoring

– Voice and video annotation of files

– Simulation modeling

• Businesses are relying on increasingly powerful servers to handle transaction and database
processing and to support massive client/server networks that have replaced the huge mainframe
computer centers of yesteryear

• Cloud service providers use massive high-performance banks of servers to satisfy high-volume,
high-transaction-rate applications for a broad spectrum of clients

3

Microprocessor Speed
Techniques built into contemporary processors include:

Pipelining

Branch prediction

Superscalar
execution

Data flow analysis

Speculative
execution

• Processor moves data or instructions into a
conceptual pipe with all stages of the pipe
processing simultaneously

• Processor looks ahead in the instruction code
fetched from memory and predicts which
branches, or groups of instructions, are likely to
be processed next

• This is the ability to issue more than one
instruction in every processor clock cycle. (In
effect, multiple parallel pipelines are used.)

• Processor analyzes which instructions are
dependent on each other’s results, or data, to
create an optimized schedule of instructions

• Using branch prediction and data flow analysis,
some processors speculatively execute
instructions ahead of their actual appearance in
the program execution, holding the results in
temporary locations, keeping execution engines
as busy as possible

4

Performance Balance

• Adjust the organization and
architecture to compensate
for the mismatch among the
capabilities of the various
components

• Architectural examples
include:

Increase the
number of bits

that are retrieved
at one time by
making DRAMs
“wider” rather

than “deeper” and
by using wide bus

data paths

Change the DRAM
interface to make

it more efficient by
including a cache
or other buffering

scheme on the
DRAM chip

Reduce the
frequency of

memory access by
incorporating
increasingly
complex and

efficient cache
structures

between the
processor and
main memory

Increase the
interconnect

bandwidth between
processors and

memory by using
higher speed buses
and a hierarchy of

buses to buffer and
structure data flow

5

Figure 2.1

Pipelining

Branch prediction

Superscalar
execution

Data flow analysis

Speculative
execution

•Processor moves data or instructions into a
conceptual pipe with all stages of the pipe
processing simultaneously

•Processor looks ahead in the instruction code
fetched from memory and predicts which
branches, or groups of instructions, are likely to
be processed next

•This is the ability to issue more than one
instruction in every processor clock cycle. (In
effect, multiple parallel pipelines are used.)

•Processor analyzes which instructions are
dependent on each other’s results, or data, to
create an optimized schedule of instructions

•Using branch prediction and data flow analysis,
some processors speculatively execute
instructions ahead of their actual appearance in
the program execution, holding the results in
temporary locations, keeping execution engines
as busy as possible

Techniques built into contemporary processors include:

6

Improvements in Chip Organization and
Architecture

• Increase hardware speed of processor
– Fundamentally due to shrinking logic gate size

▪ More gates, packed more tightly, increasing clock rate

▪ Propagation time for signals reduced

• Increase size and speed of caches
– Dedicating part of processor chip

▪ Cache access times drop significantly

• Change processor organization and architecture
– Increase effective speed of instruction execution

– Parallelism

7

Problems with Clock Speed and Logic
Density

• Power
– Power density increases with density of logic and clock speed

– Dissipating heat

• RC delay
– Speed at which electrons flow limited by resistance and capacitance of metal

wires connecting them

– Delay increases as the RC product increases

– As components on the chip decrease in size, the wire interconnects become
thinner, increasing resistance

– Also, the wires are closer together, increasing capacitance

• Memory latency and throughput
– Memory access speed (latency) and transfer speed (throughput) lag processor

speeds

8

Figure 2.2

9

Multicore
The use of multiple
processors on the same
chip provides the potential
to increase performance
without increasing the
clock rate

Strategy is to use two
simpler processors on the
chip rather than one more
complex processor

With two processors larger
caches are justified

As caches became larger it
made performance sense
to create two and then
three levels of cache on a
chip

10

Many Integrated Core (MIC)
 Graphics Processing Unit (GPU)

MIC

• Leap in performance as well
as the challenges in
developing software to
exploit such a large number
of cores

• The multicore and MIC
strategy involves a
homogeneous collection of
general purpose processors
on a single chip

• Core designed to perform
parallel operations on graphics
data

• Traditionally found on a plug-in
graphics card, it is used to
encode and render 2D and 3D
graphics as well as process
video

• Used as vector processors for
a variety of applications that
require repetitive computations

• GP
U

11

Amdahl’s Law

• Gene Amdahl

• Deals with the potential speedup of a program using
multiple processors compared to a single processor

• Illustrates the problems facing industry in the
development of multi-core machines

– Software must be adapted to a highly parallel execution
environment to exploit the power of parallel processing

• Can be generalized to evaluate and design technical
improvement in a computer system

12

Figure 2.3

13

Figure 2.4

14

Little’s Law

• Fundamental and simple relation with broad applications

• Can be applied to almost any system that is statistically in steady
state, and in which there is no leakage

• Queuing system
– If server is idle an item is served immediately, otherwise an arriving item joins a

queue

– There can be a single queue for a single server or for multiple servers, or
multiple queues with one being for each of multiple servers

• Average number of items in a queuing system equals the average
rate at which items arrive multiplied by the time that an item spends
in the system

– Relationship requires very few assumptions

– Because of its simplicity and generality it is extremely useful

15

Figure 2.5

16

 Ic p m k 

Instruction set architecture X X

Compiler technology X X X

Processor implementation X X

Cache and memory hierarchy X X

Table 2.1 Performance Factors and System Attributes

17

Calculating the Mean

The use of benchmarks to
compare systems involves
calculating the mean value

of a set of data points
related to execution time

The three
common
formulas
used for

calculating a
mean are:

• Arithmetic
• Geometric
• Harmonic

18

Figure 2.6

19

Arithmetic Mean
 An Arithmetic Mean (AM) is an appropriate measure

if the sum of all the measurements is a meaningful

and interesting value

 The AM is a good candidate for comparing the execution

 time performance of several systems

 The AM used for a time-based variable, such as program execution time, has the
important property that it is directly proportional to the total time

 If the total time doubles, the mean value doubles

 For example, suppose we were interested in using a system
for large-scale simulation studies and wanted to evaluate
several alternative products. On each system we could run
the simulation multiple times with different input values for
each run, and then take the average execution time across all
runs. The use of
multiple runs with different inputs should ensure that the
results are not heavily biased by some unusual feature of a
given input set. The AM of all the runs is a good measure of
the system’s performance on simulations, and a good number
to use for system comparison.

20

 Computer
A time
(secs)

Computer
B time
(secs)

Computer
C time
(secs)

Computer
A rate

(MFLOPS)

Computer
B rate

(MFLOPS)

Computer
C rate

(MFLOPS)

Program 1
(108 FP ops)

2.0 1.0 0.75 50 100 133.33

Program 1
(108 FP ops) 0.75 2.0 4.0 133.33 50 25

Total
execution
time

2.75 3.0 4.75 – – –

Arithmetic
mean of
times

1.38 1.5 2.38 – – –

Inverse
of total
execution
time (1/sec)

0.36 0.33 0.21 – – –

Arithmetic
mean of
rates

– – – 91.67 75.00 79.17

Harmonic
mean of
rates

– – – 72.72 66.67 42.11

Table 2.2
A Comparison of Arithmetic and Harmonic Means for Rates

21

 Computer A time Computer B time Computer C time

Program 1 2.0 (1.0) 1.0 (0.5) 0.75 (0.38)

Program 2 0.75 (1.0) 2.0 (2.67) 4.0 (5.33)

Total execution time 2.75 3.0 4.75

Arithmetic mean of
normalized times 1.00 1.58 2.85

Geometric mean of
normalized times 1.00 1.15 1.41

(a) Results normalized to Computer A

(a) Results normalized to Computer B

 Computer A time Computer B time Computer C time

Program 1 2.0 (2.0) 1.0 (1.0) 0.75 (0.75)

Program 2 0.75 (0.38) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.75 3.0 4.75

Arithmetic mean of
normalized times

1.19 1.00 1.38

Geometric mean of
normalized times

0.87 1.00 1.22

Table 2.3
A Comparison of Arithmetic and Geometric Means for Normalized
Results

22

 Computer A time Computer B time Computer C time

Program 1 2.0 (1.0) 1.0 (0.5) 0.20 (0.1)

Program 2 0.4 (1.0) 2.0 (5.0) 4.0 (10.0)

Total execution time 2.4 3.00 4.2

Arithmetic mean of
normalized times 1.00 2.75 5.05

Geometric mean of
normalized times 1.00 1.58 1.00

(a) Results normalized to Computer A

(a) Results normalized to Computer B

 Computer A time Computer B time Computer C time

Program 1 2.0 (2.0) 1.0 (1.0) 0.20 (0.2)

Program 2 0.4 (0.2) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.4 3.0 4.2

Arithmetic mean of
normalized times

1.10 1.00 1.10

Geometric mean of
normalized times

0.63 1.00 0.63

Table 2.4
Another Comparison of Arithmetic and Geometric Means for
Normalized Results

23

Benchmark Principles

• Desirable characteristics of a benchmark
program:

1. It is written in a high-level language, making it portable
across different machines

2. It is representative of a particular kind of programming
domain or paradigm, such as systems programming,
numerical programming, or commercial programming

3. It can be measured easily

4. It has wide distribution

24

System Performance Evaluation
Corporation (SPEC)

• Benchmark suite
– A collection of programs, defined in a high-level language

– Together attempt to provide a representative test of a computer in a
particular application or system programming area

– SPEC
– An industry consortium

– Defines and maintains the best known collection of benchmark suites
aimed at evaluating computer systems

– Performance measurements are widely used for comparison and
research purposes

25

SPEC CPU2017

• Best known SPEC benchmark suite

• Industry standard suite for processor intensive applications

• Appropriate for measuring performance for applications that
spend most of their time doing computation rather than I/O

• Consists of 20 integer benchmarks and 23 floating-point
benchmarks written in C, C++, and Fortran

• For all of the integer benchmarks and most of the floating-
point benchmarks, there are both rate and speed benchmark
programs

• The suite contains over 11 million lines of code

26
(Table can be found on page 61 in the textbook.)Kloc = line count (including comments/whitespace) for source files used in a build/1000

Rate Speed Language Kloc Application Area

500.perlbench_
r

600.perlbench_s C 363 Perl interpreter

502.gcc_r 602.gcc_s C 1304 GNU C compiler

505.mcf_r 605.mcf_s C 3 Route planning

520.omnetpp_r 620.omnetpp_s C++ 134 Discrete event simulation -
computer network

523.xalancbmk
_r

623.xalancbmk_
s

C++ 520 XML to HTML conversion via XSLT

525.x264_r 625.x264_s C 96 Video compression

531.deepsjeng
_r

631.deepsjeng_s C++ 10 AI: alpha-beta tree search (chess)

541.leela_r 641.leela_s C++ 21 AI: Monte Carlo tree search (Go)

548.exchange2
_r

648.exchange2_
s

Fortran 1 AI: recursive solution generator
(Sudoku)

557.xz_r 657.xz_s C 33 General data compression

Table 2.5
(A)

SPEC
CPU2017

Benchmarks

27
(Table can be found on page 61 in the textbook.)Kloc = line count (including comments/whitespace) for source files used in a build/1000

Rate Speed Language Kloc Application Area

503.bwaves_r 603.bwaves_s Fortran 1 Explosion modeling

507.cactuBSSN
_r

607.cactuBSSN_s C++, C,
Fortran

257 Physics; relativity

508.namd_r C++, C 8 Molecular dynamics

510.parest_r C++ 427 Biomedical imaging; optical
tomography with finite elements

511.povray_r C++ 170 Ray tracing

519.ibm_r 619.ibm_s C 1 Fluid dynamics

521.wrf_r 621.wrf_s Fortran, C 991 Weather forecasting

526.blender_r C++ 1577 3D rendering and animation

527.cam4_r 627.cam4_s Fortran, C 407 Atmosphere modeling

 628.pop2_s Fortran, C 338 Wide-scale ocean modeling
(climate level)

538.imagick_r 638.imagick_s C 259 Image manipulation

544.nab_r 644.nab_s C 24 Molecular dynamics

549.fotonik3d_r 649.fotonik3d_s Fortran 14 Computational electromagnetics

554.roms_r 654.roms_s Fortran 210 Regional ocean modeling.

Table 2.5
(B)

SPEC
CPU2017

Benchmarks

28
(Table can be found on page 64 in the textbook.)

Table 2.6

SPEC
CPU 2017

Integer
Benchmarks

for HP
Integrity

Superdome X

(a) Rate Result
(768 copies)

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Benchmark

Base Peak

Seconds Rate Seconds Rate

500.perlbench_
r

1141 1070 933 1310

502.gcc_r
1303 835 1276 852

505.mcf_r
1433 866 1378 901

520.omnetpp_r

1664 606 1634 617

523.xalancbmk
_r

722 1120 713 1140

525.x264_r
655 2053 661 2030

531.deepsjeng_
r

604 1460 597 1470

541.leela_r
892 1410 896 1420

548.exchange2
_r

833 2420 770 2610

557.xz_r
870 953 863 961

29
(Table can be found on page 64 in the textbook.)

Benchmark

Base Peak

Seconds Ratio Seconds Ratio

600.perlbench_s

358 4.96 295 6.01

602.gcc_s
546 7.29 535 7.45

605.mcf_s
866 5.45 700 6.75

620.omnetpp_s

276 5.90 247 6.61

623.xalancbmk_s

188 7.52 179 7.91

625.x264_s
283 6.23 271 6.51

631.deepsjeng_s

407 3.52 343 4.18

641.leela_s
469 3.63 439 3.88

648.exchange2_s

329 8.93 299 9.82

657.xz_s
2164 2.86 2119 2.92

Table 2.6

SPEC
CPU 2017

Integer
Benchmarks

for HP
Integrity

Superdome X

(b) Speed
Result

 (384 threads)

30

Terms Used in SPEC Documentation

• Benchmark
– A program written in a high-level

language that can be compiled and
executed on any computer that
implements the compiler

• System under test
– This is the system to be evaluated

• Reference machine
– This is a system used by SPEC to

establish a baseline performance for all
benchmarks
▪ Each benchmark is run and

measured on this machine to
establish a reference time for that
benchmark

• Base metric
– These are required for all reported

results and have strict guidelines for
compilation

• Peak metric
– This enables users to attempt to

optimize system performance by
optimizing the compiler output

• Speed metric
– This is simply a measurement of the

time it takes to execute a compiled
benchmark
• Used for comparing the ability of a

computer to complete single tasks
• Rate metric

– This is a measurement of how many
tasks a computer can accomplish in a
certain amount of time
• This is called a throughput, capacity,

or rate measure
• Allows the system under test to

execute simultaneous tasks to take
advantage of multiple processors

31

Figure 2.7

32
(Table can be found on page 66 in the textbook.)

Benchmark Seconds Energy (kJ) Average
Power (W)

Maximum
Power (W)

600.perlbench_s

1774 1920 1080 1090

602.gcc_s
3981 4330 1090 1110

605.mcf_s
4721 5150 1090 1120

620.omnetpp_s

1630 1770 1090 1090

623.xalancbmk_s

1417 1540 1090 1090

625.x264_s
1764 1920 1090 1100

631.deepsjeng_s

1432 1560 1090 1130

641.leela_s
1706 1850 1090 1090

648.exchange2_s

2939 3200 1080 1090

657.xz_s
6182 6730 1090 1140

Table 2.7

SPECspeed
2017_int_base

Benchmark
Results for
Reference

Machine (1
thread)

33

Summary

Chapter 2
• Designing for performance

– Microprocessor speed

– Performance balance

– Improvements in chip
organization and
architecture

• Multicore

• MICs

• GPGPUs

• Amdahl’s Law

• Little’s Law

• Basic measures of computer
performance

– Clock speed

– Instruction execution rate

• Calculating the mean

– Arithmetic mean

– Harmonic mean

– Geometric mean

• Benchmark principles

• SPEC benchmarks

•Performance

•Concepts

	Slide 1
	Designing for Performance
	Microprocessor Speed
	Performance Balance
	Figure 2.1
	Improvements in Chip Organization and Architecture
	Problems with Clock Speed and Logic Density
	Figure 2.2
	Multicore
	Slide 10
	Amdahl’s Law
	Figure 2.3
	Figure 2.4
	Little’s Law
	Figure 2.5
	Table 2.1 Performance Factors and System Attributes
	Calculating the Mean
	Figure 2.6
	Arithmetic Mean
	Slide 20
	Slide 21
	Slide 22
	Benchmark Principles
	System Performance Evaluation Corporation (SPEC)
	SPEC CPU2017
	Table 2.5 (A) SPEC CPU2017 Benchmarks
	Table 2.5 (B) SPEC CPU2017 Benchmarks
	Slide 28
	Slide 29
	Terms Used in SPEC Documentation
	Figure 2.7
	Slide 32
	Summary

