
Computer Organization and Architecture
Designing for Performance

11th Edition

Chapter 5

Cache Memory

2

Figure 5.1
Cache and Main Memory

3

Cache Memory Principles

• Block
– The minimum unit of transfer between cache and main memory

• Frame
– To distinguish between the data transferred and the chunk of physical memory,

the term frame, or block frame, is sometimes used with reference to caches

• Line
– A portion of cache memory capable of holding one block, so-called because it

is usually drawn as a horizontal object

• Tag
– A portion of a cache line that is used for addressing purposes

• Line size
– The number of data bytes, or block size, contained in a line

4

Figure 5.2
Cache/Main Memory Structure

5

Figure 5.3
Cache Read Operation

6

Figure 5.4
Typical Cache Organization

7

Cache Addresses
Logical
Physical

Cache Size
Mapping Function

Direct
Associative
Set associative

Replacement Algorithm
Least recently used (LRU)
First in first out (FIFO)
Least frequently used (LFU)
Random

Write Policy
Write through
Write back

Line Size
Number of Caches

Single or two level
Unified or split

Table 5.1
Elements of Cache Design

8

Cache Addresses

•Virtual Memory
• Virtual memory

– Facility that allows programs to address memory from a
logical point of view, without regard to the amount of main
memory physically available

– When used, the address fields of machine instructions
contain virtual addresses

– For reads to and writes from main memory, a hardware
memory management unit (MMU) translates each virtual
address into a physical address in main memory

9

Figure 5.5
Logical and Physical Caches

10

Cache Size

• Preferable for the size of the cache to be:
– Small enough so that the overall average cost per bit is close to that of

main memory alone

– Large enough so that the overall average access time is close to that of
the cache alone

▪ Motivations for minimizing cache size:
– The larger the cache, the larger the number of gates involved in

addressing the cache resulting in large caches being slightly slower than
small ones

– The available chip and board area also limits cache size

▪ Because the performance of the cache is very sensitive to the
nature of the workload, it is impossible to arrive at a single
“optimum” cache size

11

Processor Type
Year of

Introduction L1 Cachea L2 cache L3 Cache

IBM 360/85 Mainframe 1968 16 to 32 kB – –

PDP-11/70 Minicomputer 1968 1 kB – –

IBM 3033 Mainframe 1968 64 kB – –

IBM 3090 Mainframe 1968 128 to 256 kB – –

Intel 80486 PC 1968 8 kB – –

Pentium PC 1968 8 kB/8 kB 256 to 512 kB –

PowerPC 620 PC 1968 32 kB/32 kB – –

IBM S/390 G6 Mainframe 1968 256 kB 8 MB –

Pentium 4 PC/server 1968 8 kB/8 kB 256 kB –

Itanium PC/server 1968 16 kB/16 kB 96 kB 4 MB

Itanium 2 PC/server 1968 32 kB 256 kB 6 MB

IBM POWER5 High-end
server

1968 64 kB 1.9 MB 36 MB

CRAY XD-1 Supercomputer 1968 64 kB/64 kB 1 MB –

IBM POWER6 PC/server 1968 64 kB/64 kB 4 MB 32 MB

IBM z10 Mainframe 1968 64 kB/128 kB 3 MB 24-48 MB

Intel Core i7
EE 990

Workstaton/
Server

1968 6 × 32 kB/32 kB 6 × 1.5 MB 12 MB

IBM
zEnterprise

196

Mainframe/
Server

1968 24 × 64 kB/128 kB 24 × 1.5 MB 24 MB L3
192 MB L4

IBM z13 Mainframe/
server

1968 24 × 96 kB/128 kB 24 × 2 MB/2 MB 64 MB L3
480 MB L4

Intel Core
i0-7900X

Workstation/
server

1968 8 × 32 kB/32 kB 8 × 1 MB 14 MB

a Two values separated by a
slash refer to instruction and
data caches.

(Table can be found on page
145 in the textbook.)

Table 5.2
Cache Sizes of Some Processors

12

Method Organization
Mapping of Main Memory

Blocks to Cache
Access using Main
Memory Address

Direct Mapped Sequence of m
lines

Each block of main memory
maps to one unique line of
cache.

Line portion of address used
to access cache line; Tag
portion used to check for hit
on that line.

Fully Associative Sequence of m
lines

Each block of main memory
can map to any line of cache.

Tag portion of address used
to check every line for hit on
that line.

Set Associative Sequence of m
lines organized as v
sets of k lines each
(m = v × k)

Each block of main memory
maps to one unique cache set.

Line portion of address used to
access cache set; Tag portion
used to check every line in that
set for hit on that line.

Table 5.3
Cache Access Methods

13

Figure 5.6
Mapping from Main Memory to Cache: Direct and
Associative

14

Figure 5.7
Direct-Mapping Cache Organization

15

Figure 5.8
Direct Mapping Example

16

Content-Addressable Memory (CAM)

• Also known as associative storage

• Content-addressable memory is constructed of static RAM (SRAM)
cells but is considerably more expensive and holds much less data
than regular SRAM chips

• A CAM with the same data capacity as a regular SRAM is about
60% larger

• A CAM is designed such that when a bit string is supplied, the CAM
searches its entire memory in parallel for a match

– If the content is found, the CAM returns the address where the match
is found and, in some architectures, also returns the associated data
word

– This process takes only one clock cycle

17

Figure 5.9
Content-Addressable Memory

18

Figure 5.10
Fully Associative Cache Organization

19

Figure 5.11
Associative Mapping Example

20

Set Associative Mapping

• Compromise that exhibits the strengths of both the direct
and associative approaches while reducing their
disadvantages

• Cache consists of a number of sets

• Each set contains a number of lines

• A given block maps to any line in a given set

• e.g. 2 lines per set
– 2 way associative mapping

– A given block can be in one of 2 lines in only one set

21

Figure 5.12
Mapping from Main Memory to Cache: k-Way Set
Associative

22

Figure 5.13 k-Way
Set Associative Cache Organization

23

Figure 5.14
Two-Way Set-Associative Mapping Example

24

Figure 5.15
Varying Associativity over Cache Size

25

Replacement Algorithms

• Once the cache has been filled, when a new block is
brought into the cache, one of the existing blocks must
be replaced

• For direct mapping there is only one possible line for any
particular block and no choice is possible

• For the associative and set-associative techniques a
replacement algorithm is needed

• To achieve high speed, an algorithm must be
implemented in hardware

26

The most common replacement algorithms
are:

• Least recently used (LRU)
– Most effective

– Replace that block in the set that has been in the cache longest with no
reference to it

– Because of its simplicity of implementation, LRU is the most popular
replacement algorithm

• First-in-first-out (FIFO)
– Replace that block in the set that has been in the cache longest

– Easily implemented as a round-robin or circular buffer technique

• Least frequently used (LFU)
– Replace that block in the set that has experienced the fewest references

– Could be implemented by associating a counter with each line

27

Write Policy
When a block that is

resident in the cache is to be
replaced there are two cases

to consider:

If the old block in the cache has not
been altered then it may be

overwritten with a new block without
first writing out the old block

If at least one write operation has
been performed on a word in that

line of the cache then main memory
must be updated by writing the line
of cache out to the block of memory

before bringing in the new block

There are two problems to
contend with:

More than one device may have
access to main memory

A more complex problem occurs
when multiple processors are

attached to the same bus and each
processor has its own local cache - if

a word is altered in one cache it
could conceivably invalidate a word

in other caches

28

Write Through
and Write Back

• Write through
– Simplest technique

– All write operations are made to main memory as well as to the cache

– The main disadvantage of this technique is that it generates substantial
memory traffic and may create a bottleneck

• Write back
– Minimizes memory writes

– Updates are made only in the cache

– Portions of main memory are invalid and hence accesses by I/O modules
can be allowed only through the cache

– This makes for complex circuitry and a potential bottleneck

29

Write Miss Alternatives

• There are two alternatives in the event of a write miss at a cache
level:
– Write allocate

– The block containing the word to be written is fetched from main memory (or
next level cache) into the cache and the processor proceeds with the write cycle

– No write allocate
– The block containing the word to be written is modified in the main memory and

not loaded into the cache

• Either of these policies can be used with either write through or
write back

• No write allocate is most commonly used with write through

• Write allocate is most commonly used with write back

30

Cache Coherency

• A new problem is introduced in a bus organization in which more than one device has a
cache and main memory is shared

• If data in one cache are altered, this invalidates not only the corresponding word in main
memory, but also that same word in other caches

• Even if a write-through policy is used, the other caches may contain invalid data

• Possible approaches to cache coherency include:
– Bus watching with write through

• Each cache controller monitors the address lines to detect write operations to memory by other bus masters

• If another master writes to a location in shared memory that also resides in the cache memory, the cache
controller invalidates that cache entry

• This strategy depends on the use of a write-through policy by all cache controllers

– Hardware transparency
• Additional hardware is used to ensure that all updates to main memory via cache are reflected in all caches

• If one processor modifies a word in its cache, this update is written to main memory

– Noncacheable memory
• Only a portion of main memory is shared by more than one processor, and this is designated as noncacheable

• All accesses to shared memory are cache misses, because the shared memory is never copied into the cache

• The noncacheable memory can be identified using chip-select logic or high-address bits

31

Line Size

When a block of
data is retrieved
and placed in the
cache not only the
desired word but

also some number
of adjacent words

are retrieved

As the block size
increases the hit
ratio will at first

increase because
of the principle of

locality

As the block size
increases more
useful data are
brought into the

cache

The hit ratio will
begin to decrease

as the block
becomes bigger

and the probability
of using the newly
fetched information
becomes less than
the probability of

reusing the
information that

has to be replaced

Two specific effects
come into play:
•Larger blocks reduce the
number of blocks that fit
into a cache

•As a block becomes larger
each additional word is
farther from the requested
word

32

Multilevel Caches

• As logic density has increased it has become possible to have a cache on the same chip as the
processor

• The on-chip cache reduces the processor’s external bus activity and speeds up execution time
and increases overall system performance

– When the requested instruction or data is found in the on-chip cache, the bus access is eliminated

– On-chip cache accesses will complete appreciably faster than would even zero-wait state bus
cycles

– During this period the bus is free to support other transfers

• Two-level cache:

– Internal cache designated as level 1 (L1)

– External cache designated as level 2 (L2)

• Potential savings due to the use of an L2 cache depends on the hit rates in both the L1 and L2
caches

• The use of multilevel caches complicates all of the design issues related to caches, including
size, replacement algorithm, and write policy

33

Figure 5.16
Total Hit Ratio (L1 and L2) for 8-kB and
16-kB L1

34

Unified Versus Split Caches

• Has become common to split cache:
– One dedicated to instructions

– One dedicated to data

– Both exist at the same level, typically as two L1 caches

• Advantages of unified cache:
– Higher hit rate

▪ Balances load of instruction and data fetches automatically

▪ Only one cache needs to be designed and implemented

• Trend is toward split caches at the L1 and unified caches for higher
levels

• Advantages of split cache:
– Eliminates cache contention between instruction fetch/decode unit and execution unit

▪ Important in pipelining

35

Inclusion Policy

• Inclusive policy

– Dictates that a piece of data in one cache is guaranteed to be also found in all lower levels of caches

– Advantage is that it simplifies searching for data when there are multiple processors in the computing
system

– This property is useful in enforcing cache coherence

• Exclusive policy

– Dictates that a piece of data in one cache is guaranteed not to be found in all lower levels of caches

– The advantage is that it does not waste cache capacity since it does not store multiple copies of the
same data in all of the caches

– The disadvantage is the need to search multiple cache levels when invalidating or updating a block

– To minimize the search time, the highest-level tag sets are typically duplicated at the lowest cache
level to centralize searching

• Noninclusive policy

– With the noninclusive policy a piece of data in one cache may or may not be found in lower levels of
caches

– As with the exclusive policy, this policy will generally maintain all higher-level cache sets at the lowest
cache level

36

Problem Solution
Processor on Which

Feature First Appears

External memory slower than the
system bus.

Add external cache using faster
memory technology.

386

Increased processor speed results in
external bus becoming a bottleneck for
cache access.

Move external cache on-chip,
operating at the same speed as the
processor.

486

Internal cache is rather small, due to
limited space on chip.

Add external L2 cache using faster
technology than main memory.

486

Contention occurs when both the
Instruction Prefetcher and the
Execution Unit simultaneously require
access to the cache. In that case, the
Prefetcher is stalled while the Execution
Unit’s data access takes place.

Create separate data and
instruction caches.

Pentium

Increased processor speed results in
external bus becoming a bottleneck for
L2 cache access.

Create separate back-side bus that
runs at higher speed than the main
(front-side) external bus. The BSB is
dedicated to the L2 cache.

Pentium Pro

Move L2 cache on to the
processor chip.

Pentium II

Some applications deal with massive
databases and must have rapid access
to large amounts of data. The on-Chip
caches are too small.

Add external L3 cache. Pentium III

Move L3 cache on-chip. Pentium 4

Table 5.4
Intel Cache Evolution

37

Figure 5.17
Pentium 4 Block Diagram

38

Control Bits Operating Mode

CD NW Cache Fills Write Throughs Invalidates

0 0 Enabled Enabled Enabled

1 0 Disabled Enabled Enabled

1 1 Disabled Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.

Table 5.5
Pentium 4 Cache Operating Modes

39

Figure 5.18
IBM z13 CPC Drawer Logical Structure

40

Cache Timing Model
• Direct-mapped cache access

– The first operation is checking the Tag field of an address against the tag value in the line
designated by the Line field

– If there is not a match (miss), the operation is complete

– If there is a match (hit), the cache hardware reads the data block from the line in the cache and
then fetches the byte or word indicated by the Offset field of the address

– An advantage is that it allows simple and fast speculation

• Fully associative cache
– The line number is not known until the tag comparison is competed

– The hit time is the same as for direct-mapped

– Because this is a content-addressable memory, the miss time is simply the tag comparison time

• Set associative
– It is not possible to transmit bytes and compare tags in parallel as can be done with direct-

mapped with speculative access

– However, the circuitry can be designed so that the data block from each line in a set can be
loaded and then transmitted once the tag check is made

41

Time for hit Time for miss

Direct-Mapped thit = trl + txb + tct tmiss = trl + tct

Direct-Mapped with
Speculation

thit = trl + txb tmiss = trl + tct

Fully Associative thit = trl + txb + tct tmiss = tct

Set-Associative thit = trl + txb + tct tmiss = trl + tct

Set-Associative with Way
Prediction

thit = trl + txb + (1 – Fp) tct T= = trl + tct

Table 5.6
Cache Timing Equations

42

Technique Reduce t1 Reduce (1 – h1) Reduce tpenalty

Way Prediction  

Cache Capacity Small Large

Line Size Small Large

Degree of Associativity Decrease Increase

More Flexible
Replacement Policies



Cache Unity Split I-cache and
D-cache

Unified cache

Prefetching 

Write Through Write allocate No write allocate

Critical Word First 

Victim Cache


Wider Busses 

Table 5.7
Cache Performance Improvement Techniques

43

Summary •Cache

•MemoryChapter 5

• Cache memory principles

• Intel x86 cache
organization

• The IBM z13 cache
organization

• Cache performance
modules

– Cache timing model

– Design option for
improving
performance

• Elements of cache design

– Cache addresses

– Cache size

– Logical cache
organization

– Replacement algorithms

– Write policy

– Line size

– Number of caches

– Inclusion policy

	Slide 1
	Figure 5.1 Cache and Main Memory
	Cache Memory Principles
	Figure 5.2 Cache/Main Memory Structure
	Figure 5.3 Cache Read Operation
	Figure 5.4 Typical Cache Organization
	Table 5.1 Elements of Cache Design
	Cache Addresses
	Figure 5.5 Logical and Physical Caches
	Cache Size
	Table 5.2 Cache Sizes of Some Processors
	Table 5.3 Cache Access Methods
	Slide 13
	Figure 5.7 Direct-Mapping Cache Organization
	Figure 5.8 Direct Mapping Example
	Content-Addressable Memory (CAM)
	Figure 5.9 Content-Addressable Memory
	Figure 5.10 Fully Associative Cache Organization
	Figure 5.11 Associative Mapping Example
	Set Associative Mapping
	Slide 21
	Figure 5.13 k-Way Set Associative Cache Organization
	Figure 5.14 Two-Way Set-Associative Mapping Example
	Figure 5.15 Varying Associativity over Cache Size
	Replacement Algorithms
	The most common replacement algorithms are:
	Write Policy
	Write Through and Write Back
	Write Miss Alternatives
	Cache Coherency
	Line Size
	Multilevel Caches
	Figure 5.16 Total Hit Ratio (L1 and L2) for 8-kB and 16-kB L1
	Unified Versus Split Caches
	Inclusion Policy
	Table 5.4 Intel Cache Evolution
	Figure 5.17 Pentium 4 Block Diagram
	Table 5.5 Pentium 4 Cache Operating Modes
	Figure 5.18 IBM z13 CPC Drawer Logical Structure
	Cache Timing Model
	Table 5.6 Cache Timing Equations
	Table 5.7 Cache Performance Improvement Techniques
	Summary

