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Cache Memory Principles

* Block

— The minimum unit of transfer between cache and main memory

* Frame

— To distinguish between the data transferred and the chunk of physical memory,
the term frame, or block frame, is sometimes used with reference to caches

* Line
— A portion of cache memory capable of holding one block, so-called because it
is usually drawn as a horizontal object

* Tag

— A portion of a cache line that is used for addressing purposes

* Line size
— The number of data bytes, or block size, contained in a line



Figure 5.2
Cache/Main Memory Structure

Line Memory
Nuomber Tag Block address
0 0
1 1
3z 2 Block &
. 3 (K words)
»
P (S —_—
-1
, Block Length
(K Words) .
{a) Cache »
L
Block Af —1
2" -1
, Word )
Length

(b) Main memaory



Figure 5.3

Cache Read Operation
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Figure 5.4

Typical Cache Organization
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Table 5.1
Elements of Cache Design

Cache Addresses Write Policy
Logical Write through
Physical Write back

Cache Size Line Size

Mapping Function Number of Caches
Direct Single or two level
Associative Unified or split

Set associative

Replacement Algorithm
Least recently used (LRU)
First in first out (FIFO)
Least frequently used (LFU)
Random




Cache Addresses

*Virtual Memory
* Virtual memory

— Facility that allows programs to address memory from a
logical point of view, without regard to the amount of main
memory physically available

— When used, the address fields of machine instructions
contain virtual addresses

— For reads to and writes from main memory, a hardware
memory management unit (MMU) translates each virtual
address into a physical address in main memory
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Cache Size

 Preferable for the size of the cache to be;:

— Small enough so that the overall average cost per bit is close to that of
main memory alone

— Large enough so that the overall average access time is close to that of
the cache alone

® Motivations for minimizing cache size:

— The larger the cache, the larger the number of gates involved in
addressing the cache resulting in large caches being slightly slower than
small ones

— The available chip and board area also limits cache size

m Because the performance of the cache is very sensitive to the
nature of the workload, it is impossible to arrive at a single
“optimum” cache size
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Table 5.2
Cache Sizes of Some Processors

Year of
Processor Type Introduction L1 Cache? L2 cache L3 Cache
IBM 360/85 Mainframe 1968 16 to 32 kB - -
PDP-11/70 Minicomputer 1968 1kB - -
IBM 3033 Mainframe 1968 64 kB - -
IBM 3090 Mainframe 1968 128 to 256 kB - -
Intel 80486 PC 1968 8 kB - -
Pentium PC 1968 8 kB/8 kB 256 to 512 kB -
PowerPC 620 PC 1968 32 kB/32 kB - -
IBM S/390 G6 Mainframe 1968 256 kB 8 MB -
Pentium 4 PC/server 1968 8 kB/8 kB 256 kB -
Itanium PClserver 1968 16 kB/16 kB 96 kB 4 MB
Itanium 2 PClserver 1968 32kB 256 kB 6 MB
IBM POWERS5 High-end 1968 64 kB 1.9 MB 36 MB
server
CRAY XD-1 Supercomputer 1968 64 kB/64 kB 1MB -
IBM POWERG6 PC/server 1968 64 kB/64 kB 4 MB 32 MB
IBM z10 Mainframe 1968 64 kB/128 kB 3MB 24-48 MB
Intel Core i7 Workstaton/ 1968 6 x 32 kB/32 kB 6 x 1.5 MB 12 MB
EE 990 Server
IBM Mainframe/ 1968 24 x 64 kB/128 kB 24 x 1.5 MB 24 MB L3
zEnterprise Server 192 MB L4
196
IBM z13 Mainframe/ 1968 24 x 96 kB/128 kB 24 x 2 MB/2 MB 64 MB L3
server 480 MB L4
Intel Core Workstation/ 1968 8 x 32 kB/32 kB 8 x1MB 14 MB
i0-7900X server

a2 Two values separated by a
slash refer to instruction and
data caches.

(Table can be found on page
145 in the textbook.)
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Table 5.3
Cache Access Methods

Method

Organization

Mapping of Main Memory
Blocks to Cache

Access using Main
Memory Address

Direct Mapped

Sequence of m
lines

Each block of main memory
maps to one unique line of
cache.

Line portion of address used
to access cache line; Tag
portion used to check for hit
on that line.

Fully Associative

Sequence of m
lines

Each block of main memory
can map to any line of cache.

Tag portion of address used
to check every line for hit on
that line.

Set Associative

Sequence of m
lines organized as v
sets of k lines each
(m=vxKk)

Each block of main memory
maps to one unique cache set.

Line portion of address used to
access cache set; Tag portion
used to check every line in that
set for hit on that line.
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Figure 5.6
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Figure 5.7
Direct-Mapping Cache Organization
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Figure 5.8

Direct Mapping Example
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Content-Addressable Memory (CAM)

* Also known as associative storage

* Content-addressable memory is constructed of static RAM (SRAM)
cells but is considerably more expensive and holds much less data
than regular SRAM chips

* A CAM with the same data capacity as a regular SRAM is about
60% larger

* A CAM is designed such that when a bit string is supplied, the CAM
searches its entire memory in parallel for a match

— |If the content is found, the CAM returns the address where the match
Is found and, in some architectures, also returns the associated data
word

— This process takes only one clock cycle

16



Figure 5.9
Content-Addressable Memory
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Figure 5.10

Fully Associative Cache Organization
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Figure 5.11
Associative Mapping Example
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Set Associative Mapping

* Compromise that exhibits the strengths of both the direct
and associative approaches while reducing their
disadvantages

* Cache consists of a number of sets
e Each set contains a number of lines
* Agiven block maps to any line in a given set

* e.g. 2lines per set
— 2 way associative mapping
— A given block can be in one of 2 lines in only one set

20



Figure 5.12
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Figure 5.13 k-Way

Set Associative Cache Organization
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Figure 5.14
Two-Way Set-Associative Mapping Example
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Figure 5.15
Varying Associativity over Cache Size
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Replacement Algorithms

* Once the cache has been filled, when a new block is
brought into the cache, one of the existing blocks must
be replaced

* For direct mapping there is only one possible line for any
particular block and no choice is possible

* For the associative and set-associative technigues a
replacement algorithm is needed

* To achieve high speed, an algorithm must be
Implemented in hardware

25



The most common replacement algorithms
are:

* Least recently used (LRU)
— Most effective

— Replace that block in the set that has been in the cache longest with no
reference to it

— Because of its simplicity of implementation, LRU is the most popular
replacement algorithm

* First-in-first-out (FIFO)
— Replace that block in the set that has been in the cache longest
— Easily implemented as a round-robin or circular buffer technique

* Least frequently used (LFU)
— Replace that block in the set that has experienced the fewest references
— Could be implemented by associating a counter with each line

26



Write Policy

If the old block in the cache has not
been altered then it may be
overwritten with a new block without
first writing out the old block

4
4 )

If at least one write operation has
been performed on a word in that
line of the cache then main memory
must be updated by writing the line
of cache out to the block of memory
before bringing in the new block

There are two problems to

contend with:

.

More than one device may have
access to main memory

¢

- J

-

A more complex problem occurs
when multiple processors are
attached to the same bus and each
processor has its own local cache - if
a word is altered in one cache it
could conceivably invalidate a word
in other caches

_
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Write Through

and Write Back

*  Write through

Simplest technique

— All write operations are made to main memory as well as to the cache

The main disadvantage of this technique is that it generates substantial
memory traffic and may create a bottleneck

*  Write back

Minimizes memory writes
Updates are made only in the cache

Portions of main memory are invalid and hence accesses by I/0 modules
can be allowed only through the cache

This makes for complex circuitry and a potential bottleneck
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Write Miss Alternatives

e There are two alternatives in the event of a write miss at a cache
level:
— Write allocate

— The block containing the word to be written is fetched from main memory (or
next level cache) into the cache and the processor proceeds with the write cycle

— No write allocate

— The block containing the word to be written is modified in the main memory and
not loaded into the cache

* Either of these policies can be used with either write through or
write back

* No write allocate is most commonly used with write through

*  Write allocate is most commonly used with write back

29



Cache Coherency

A new problem is introduced in a bus organization in which more than one device has a
cache and main memory is shared

If data in one cache are altered, this invalidates not only the corresponding word in main
memory, but also that same word in other caches

Even if a write-through policy is used, the other caches may contain invalid data

Possible approaches to cache coherency include:

— Bus watching with write through
« Each cache controller monitors the address lines to detect write operations to memory by other bus masters

* If another master writes to a location in shared memory that also resides in the cache memory, the cache
controller invalidates that cache entry

¢ This strategy depends on the use of a write-through policy by all cache controllers
— Hardware transparency
* Additional hardware is used to ensure that all updates to main memory via cache are reflected in all caches
* If one processor modifies a word in its cache, this update is written to main memory
— Noncacheable memory
* Only a portion of main memory is shared by more than one processor, and this is designated as noncacheable
* All accesses to shared memory are cache misses, because the shared memory is never copied into the cache
* The noncacheable memory can be identified using chip-select logic or high-address bits
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Line Size

When a block of

data is retrieved
and placed in the
cache not only the
desired word but
also some number
of adjacent words

are retrieved

As the block size
increases more
useful data are
brought into the

cache

Two specific effects
come into play:

* Larger blocks reduce the

* As a block becomes larger

farther from the requested

number of blocks that fit
into a cache

each additional word is

word

As the block size
increases the hit
ratio will at first
increase because
of the principle of
locality

The hit ratio will
begin to decrease
as the block
becomes bigger
and the probability
of using the newly
fetched information
becomes less than
the probability of
reusing the
information that
has to be replaced
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Multilevel Caches

As logic density has increased it has become possible to have a cache on the same chip as the
processor

The on-chip cache reduces the processor’s external bus activity and speeds up execution time
and increases overall system performance

— When the requested instruction or data is found in the on-chip cache, the bus access is eliminated

— On-chip cache accesses will complete appreciably faster than would even zero-wait state bus
cycles

— During this period the bus is free to support other transfers

Two-level cache:
— Internal cache designated as level 1 (L1)
— External cache designated as level 2 (L2)

Potential savings due to the use of an L2 cache depends on the hit rates in both the L1 and L2
caches

The use of multilevel caches complicates all of the design issues related to caches, including
size, replacement algorithm, and write policy
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Figure 5.16
Total Hit Ratio (L1 and L2) for 8-kB and
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Unified Versus Split Caches

* Has become common to split cache:
— One dedicated to instructions
— One dedicated to data
— Both exist at the same level, typically as two L1 caches

* Advantages of unified cache:

— Higher hit rate
®m Balances load of instruction and data fetches automatically
® Only one cache needs to be designed and implemented

* Trend is toward split caches at the L1 and unified caches for higher
levels

* Advantages of split cache:
— Eliminates cache contention between instruction fetch/decode unit and execution unit
® [mportant in pipelining
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Inclusion Policy

* Inclusive policy
— Dictates that a piece of data in one cache is guaranteed to be also found in all lower levels of caches

— Advantage is that it simplifies searching for data when there are multiple processors in the computing
system

— This property is useful in enforcing cache coherence

*  Exclusive policy
— Dictates that a piece of data in one cache is guaranteed not to be found in all lower levels of caches

— The advantage is that it does not waste cache capacity since it does not store multiple copies of the
same data in all of the caches

— The disadvantage is the need to search multiple cache levels when invalidating or updating a block

— To minimize the search time, the highest-level tag sets are typically duplicated at the lowest cache
level to centralize searching

*  Noninclusive policy

— With the noninclusive policy a piece of data in one cache may or may not be found in lower levels of
caches

— As with the exclusive policy, this policy will generally maintain all higher-level cache sets at the lowest
cache level
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Table 5.4
Intel Cache Evolution

Processor on Which

Problem Solution Feature First Appears
External memory slower than the Add external cache using faster 386

system bus. memory technology.

Increased processor speed results in Move external cache on-chip, 486

external bus becoming a bottleneck for operating at the same speed as the

cache access. processor.

Internal cache is rather small, due to Add external L2 cache using faster 486

limited space on chip. technology than main memory.

Contention occurs when both the Create separate data and Pentium
Instruction Prefetcher and the instruction caches.

Execution Unit simultaneously require
access to the cache. In that case, the
Prefetcher is stalled while the Execution
Unit's data access takes place.

Create separate back-side bus that Pentium Pro
runs at higher speed than the main
(front-side) external bus. The BSB is
Increased processor speed results in dedicated to the L2 cache.

external bus becoming a bottleneck for
L2 cache access.

Move L2 cache on to the Pentium I
processor chip.

Some applications deal with massive Add external L3 cache. Pentium 11l

databases and must have rapid access
to large amounts of data. The on-Chip
caches are too small.

Move L3 cache on-chip. Pentium 4




Figure 5.17
Pentium 4 Block Diagram
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Table 5.5
Pentium 4 Cache Operating Modes

Control Bits Operating Mode

CD NW Cache Fills Write Throughs Invalidates
0 0 Enabled Enabled Enabled
1 0 Disabled Enabled Enabled
1 1 Disabled Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.
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Figure 5.18
IBM z13 CPC Drawer Logical Structure
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Cache Timing Model

Direct-mapped cache access

The first operation is checking the Tag field of an address against the tag value in the line
designated by the Line field

If there is not a match (miss), the operation is complete

If there is a match (hit), the cache hardware reads the data block from the line in the cache and
then fetches the byte or word indicated by the Offset field of the address

An advantage is that it allows simple and fast speculation

Fully associative cache

The line number is not known until the tag comparison is competed
The hit time is the same as for direct-mapped
Because this is a content-addressable memory, the miss time is simply the tag comparison time

Set associative

It is not possible to transmit bytes and compare tags in parallel as can be done with direct-
mapped with speculative access

However, the circuitry can be designed so that the data block from each line in a set can be
loaded and then transmitted once the tag check is made
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Table 5.6

Cache Timing Equations

Time for hit

Time for miss

Direct-Mapped b=t + L, +1I, liss = Ly + Ty
2325&%?3? ed with b = Ty + L bniss = Ty + T
Fully Associative b =0+ L, + 1, biss = Lot

Set-Associative L =0+, 1T, s = 77 g
Set-Associative with Way i =ttt t (1= F) L, T==t,+t,

Prediction
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Table 5.7

Cache Performance Improvement Techniques

Technique Reduce t; Reduce (1 - h,) Reduce t .,
Way Prediction 00
Cache Capacity Small Large
Line Size Small Large
Degree of Associativity Decrease Increase

More Flexible
Replacement Policies

0o

Cache Unity

Split I-cache and
D-cache

Unified cache

Prefetching

0o

Write Through Write allocate No write allocate
Critical Word First o
adl

Victim Cache

A2

mr




Summary
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