Computer Organization and Architecture
Designing for Performance

11* Edition

WILLIAM STALLINGS

Chapter 5

Cache Memory

OMPUTER ORGANIZATION
AnD ARCHITECTURE

? Pearson Eleventh Edition

Figure 5.1

Cache and Main Memory

Block Transfer

Word Transfer

A

A

{b) Three-level cache organization

CPU Cach Main Memo
ache Iy
Fast slow
{a) Single cache
CPU » Levell Level2 |+—» Leveld |—» Main
(L1) cache (L2) cache | fg | (L3) cache [Lg | Memory
Fastest Fast
Liess Sloww
fast

Cache Memory Principles

* Block

— The minimum unit of transfer between cache and main memory

* Frame

— To distinguish between the data transferred and the chunk of physical memory,
the term frame, or block frame, is sometimes used with reference to caches

* Line
— A portion of cache memory capable of holding one block, so-called because it
is usually drawn as a horizontal object

* Tag

— A portion of a cache line that is used for addressing purposes

* Line size
— The number of data bytes, or block size, contained in a line

Figure 5.2
Cache/Main Memory Structure

Line Memory
Nuomber Tag Block address
0 0
1 1
3z 2 Block &
. 3 (K words)
»
P (S —_—
-1
, Block Length
(K Words) .
{a) Cache »
L
Block Af —1
2" -1
, Word)
Length

(b) Main memaory

Figure 5.3

Cache Read Operation

Recerve address
RA from CPU

Is block

\\ %

containing RA
in cache?

Access main
memory for block
containing RA

Feich R A word
and deliver
to CPU

Allocate cache
line for main
memory block

h

Load main
memory block
mto cache line

h

Deliver RA word
to CPU

Figure 5.4

Typical Cache Organization

Processor

Address _
¥ [—>
Address
buffer
=
=)
Control . Chilia Control , §
4
w
Data
buffer
o | } —p

Data

Table 5.1
Elements of Cache Design

Cache Addresses Write Policy
Logical Write through
Physical Write back

Cache Size Line Size

Mapping Function Number of Caches
Direct Single or two level
Associative Unified or split

Set associative

Replacement Algorithm
Least recently used (LRU)
First in first out (FIFO)
Least frequently used (LFU)
Random

Cache Addresses

*Virtual Memory
* Virtual memory

— Facility that allows programs to address memory from a
logical point of view, without regard to the amount of main
memory physically available

— When used, the address fields of machine instructions
contain virtual addresses

— For reads to and writes from main memory, a hardware
memory management unit (MMU) translates each virtual
address into a physical address in main memory

Figure 5.5

Logical and Physical Caches

Processor

Processor

Logical address Physical address
= » MMU 4
l Main
Cache memory
i Data
{a) Logical Cache
Logical address »| MMU Physical address
l Main
Cache memory
Data i

(b} Physical Cache

Cache Size

 Preferable for the size of the cache to be;:

— Small enough so that the overall average cost per bit is close to that of
main memory alone

— Large enough so that the overall average access time is close to that of
the cache alone

® Motivations for minimizing cache size:

— The larger the cache, the larger the number of gates involved in
addressing the cache resulting in large caches being slightly slower than
small ones

— The available chip and board area also limits cache size

m Because the performance of the cache is very sensitive to the
nature of the workload, it is impossible to arrive at a single
“optimum” cache size

10

Table 5.2
Cache Sizes of Some Processors

Year of
Processor Type Introduction L1 Cache? L2 cache L3 Cache
IBM 360/85 Mainframe 1968 16 to 32 kB - -
PDP-11/70 Minicomputer 1968 1kB - -
IBM 3033 Mainframe 1968 64 kB - -
IBM 3090 Mainframe 1968 128 to 256 kB - -
Intel 80486 PC 1968 8 kB - -
Pentium PC 1968 8 kB/8 kB 256 to 512 kB -
PowerPC 620 PC 1968 32 kB/32 kB - -
IBM S/390 G6 Mainframe 1968 256 kB 8 MB -
Pentium 4 PC/server 1968 8 kB/8 kB 256 kB -
Itanium PClserver 1968 16 kB/16 kB 96 kB 4 MB
Itanium 2 PClserver 1968 32kB 256 kB 6 MB
IBM POWERS5 High-end 1968 64 kB 1.9 MB 36 MB
server
CRAY XD-1 Supercomputer 1968 64 kB/64 kB 1MB -
IBM POWERG6 PC/server 1968 64 kB/64 kB 4 MB 32 MB
IBM z10 Mainframe 1968 64 kB/128 kB 3MB 24-48 MB
Intel Core i7 Workstaton/ 1968 6 x 32 kB/32 kB 6 x 1.5 MB 12 MB
EE 990 Server
IBM Mainframe/ 1968 24 x 64 kB/128 kB 24 x 1.5 MB 24 MB L3
zEnterprise Server 192 MB L4
196
IBM z13 Mainframe/ 1968 24 x 96 kB/128 kB 24 x 2 MB/2 MB 64 MB L3
server 480 MB L4
Intel Core Workstation/ 1968 8 x 32 kB/32 kB 8 x1MB 14 MB
i0-7900X server

a2 Two values separated by a
slash refer to instruction and
data caches.

(Table can be found on page
145 in the textbook.)

11

Table 5.3
Cache Access Methods

Method

Organization

Mapping of Main Memory
Blocks to Cache

Access using Main
Memory Address

Direct Mapped

Sequence of m
lines

Each block of main memory
maps to one unique line of
cache.

Line portion of address used
to access cache line; Tag
portion used to check for hit
on that line.

Fully Associative

Sequence of m
lines

Each block of main memory
can map to any line of cache.

Tag portion of address used
to check every line for hit on
that line.

Set Associative

Sequence of m
lines organized as v
sets of k lines each
(m=vxKk)

Each block of main memory
maps to one unique cache set.

Line portion of address used to
access cache set; Tag portion
used to check every line in that
set for hit on that line.

12

Figure 5.6

Mapping from Main Memory to Cache: Direct and
Associative

By ‘f Ly A
%
L » ; E
- - =
&
»
P
Bm—l > Lm—l v

First in blocks of
main memaory

{equal to size of cache) & = length of block in bits
t=length of tag in bits

cache memory

(a) Direct mapping

<——>— >
Ly
(#}
» *
[» .
» *»
one block of
main memory
Lm—l
cache memory

(b) Associative mapping

Figure 5.7
Direct-Mapping Cache Organization

Offset
. Address
Tagy Line number from CPU
s-rbits £ rhits 4 w bits
Lines
Tags Blocks
— e A

\r\rv\r‘u h I] \r‘\rv 3

Compare ™ Select
Miss {enable)

Atrass Data to
main memory £PU
for data

14

Figure 5.8

Direct Mapping Example

Teg
(hex)

0a
0a

1a
1a

1a

1a

EF
E\E;

FF
FF

Mein memory address (binary)

Teg Line + Word

~—~

o e e A B R A R

Data
13579246 = = =,
1
1
. 1
L -)
|
1
|
1
. |
* 1 Line
: 1 Tag Data Mumber
TN == === 00| 13579246 | 0000
11235813 o= = = = = = = la | 11235813 | 0001
= [a Loy ¥
FEDCBAYS |p= == = = = == 15 | FEDCBAYS | OCE7
== == FF | 11223344 | 3FFE
12345678 Jr ===t ===« 15| 12345578 | 3FFF
. L} ¢ ' ‘ '
* L} . .
N | Bhits 32 bits
: 15-Kline cache
L}
L}
ol Lo l
L}
L}
11223344 o = = =}
24682468
Neote: IMemory address values are
—> in binary representation;
32 bits oS ’

16-IByvte main mem ory

other values are in hexadecimal

Tag Line Word

Iain memory address = | |
“ > >
8 bits 14 bits 2 bits

15

Content-Addressable Memory (CAM)

* Also known as associative storage

* Content-addressable memory is constructed of static RAM (SRAM)
cells but is considerably more expensive and holds much less data
than regular SRAM chips

* A CAM with the same data capacity as a regular SRAM is about
60% larger

* A CAM is designed such that when a bit string is supplied, the CAM
searches its entire memory in parallel for a match

— |If the content is found, the CAM returns the address where the match
Is found and, in some architectures, also returns the associated data
word

— This process takes only one clock cycle

16

Figure 5.9
Content-Addressable Memory

Search data = 01101

‘ Search line drivers ‘

mismateh — = = — — | Mo
A o ot ey ©
mateh M
gl ibpiisiaiinal stz g
N ML,
mismatch i g T i g T w D\
!) _ _ _ _ _ ML3|\‘
mismaten 0 o 1 Fa 1
SL, SL, SL, SL,SL; SL 5L, SL,5L, SL,

{a) Simplified CAM circuitry

Search Data

‘ Search data register

Search Lines
LI T) a
n 5
Data Input # —p g —p]
CAM cell array S e =
Write Enable —’ 2 g a > E
s|25|e o >
Read Enable — { m words; n bits/word) R 29 X " Match
2 5] address
1o}
«earch Enable — . _b § o3 _> 3
E 2
iqtch Match line
Qutput Data Lines sutput

{during read operation)

{8} Logizal organization of CAM

17

Figure 5.10

Fully Associative Cache Organization

Offseat
Address
Tag from CPU
s bits w bits 4°
Tags {CAM) EBlocks {SRAM)
. r"———w"\-—-———"“w (—H_'_‘—'—FA"'—'—'_'_""\
&4
k] p
| &+
E\é?"“
‘;h ;/:{
L] ,‘/'{
¥ é%f‘
Y ¥ ¥ VVV \f/(¥ rrV\r\r
\ Check for hit / Ty ™ Select
Mi“l {enable)
Access Data to
CPU

main memary

for data

18

Figure 5.11
Associative Mapping Example

Nein memary address (Hinary)

Data
13579246 = = = =

Tag (hex)

D0D001 DDDDDDDD]JDDDDDDDDDDDDlDD

1
1
1
1
1
1
1
1
1
\ Line
| Tag Data Number
1 1 = =|SFFFFE| 11225544 | 0DDO
- - = = ¢ = 4058CE7 | FEDCEASE | D001
~~. 4. 1 1
1
1
FEDCBASE | =' : . i
A . ! !
= = L = & = 43FFFFD| 33333333 | 3FrFD
! ! = =4 = =|D000D0 | 13579246 | 3FFE
1 = = & = A 3FFFFF | 24582468 | 3FFF
1] 1
1] ! ‘_> X
1 | | 22 bits 32 bits
Lo ! 16 Kline Cache
1 L} 1
1 L} 1
T T ' 1
i 1]]
3FFFFD Ai{iiii it ritiTiin s 33333333 k="' !
3FFFFE 110 TIIATTIINTITIT 1_’|__’L DDU 11223344 p= == bk =2
3FFFFF TIILTITIITINITIIIITI0100) | 24682468 | - - - Note: Memory address values are
e B in binary representation,
37 bits other values are in hexadscimal
16 WByte MMain Memory
Tag Word
MMain Memory Address = | |
+ -dp-
22 bits 2 bits

19

Set Associative Mapping

* Compromise that exhibits the strengths of both the direct
and associative approaches while reducing their
disadvantages

* Cache consists of a number of sets
e Each set contains a number of lines
* Agiven block maps to any line in a given set

* e.g. 2lines per set
— 2 way associative mapping
— A given block can be in one of 2 lines in only one set

20

Figure 5.12

Mapping from Main Memory to Cache: k-Way Set

Associative

Bq

w1

_________‘_H__‘; Ly

Cache memory - set 0

First v blocks of
main memory

{equalto number of sets) %,

R~

Cache memory - set +—1

(a) v associative-mapped caches

N,
ANAN

Ev—l

First v blocks of
N Memary
{equal to numb er of se

p il

Cache memary - way 1

)

o Ly A
Cache memary - way k

(b) k direct-mapped caches

21

Figure 5.13 k-Way

Set Associative Cache Organization

Qffset

Tag

Address
Set number from CPU

A5 - d bits

Lines for Way 0

Tags Bloeks

d bits w hits,l/

Lines for Way k-1

Tags Blocks
—h e A

——M e A
o
.
Yy \rv Fyy v\r

Mizz

)

YYy F y YY Y ¥Y

—;\Compare/Lb\ Select A_

Miza

Data to
Py

Access main
memory for data

22

Figure 5.14
Two-Way Set-Associative Mapping Example

Tag Ifain memory address (hinary) Main Memory Address =
2o T: Set + Word
L "—-":E‘lg-'—"“_f——ellﬂ i Tag det Word
000 OOOONO0O0OIONOn0nO0oOTnan:| 13579246 § = = =
000 QO00NO00000000000hoo0bi00: i
I
| ————pe _ >
T T 1 2 hits 13 bits 2 bits
|
|
000 DOOOmOO0ITITAT I TATII o !
8w o AT !
. e e e E e m o m e e e e = = e = e = = = == == ==
. - Set !
. I Tag Data Nurgber Tag Data A
02c OOoIiinoooanooopiannaan [Trrirr il b -' «==--=-000[13570248 | 0000 [ozc] rirrrrry] ="
03¢ goolplTovoonpooopooonino| 11235813 = = = = == - p2c| 11235813 | o001
Dzc OODIOTIOOOTINOTINO0ITI00:| FEDCBASE = = == = = = 4 02c| FEDCBAY8 | OCE?
_____________________________________ ¢t == 1FF| 11223344 | 1FFE
0zc O00IMIToDITINIITTII1HTIO0 (12345678 F == == = + =402C| 12345a78 | 1FFF | 1FF| 24682488 |=
: ! ——> > :
. I 2 bits 32 bits Shbits 32 bits C
1rF TIITATITIOOONOO000000000; | : 1
1FF [TITETTIT000000000000I00} : 16 kline Cache :
1 1
L o 1 1
[~ [~ | 1
1 1
1 1
1FF TTLTATIDITTITTIrrrross | 11223344 | = = = = = s '
1Fr IITITTTINTITHTTTNITITLTO0 | 24682468 o =
—
32 bits

. Waote: Memory address values are
16 hByte Man Memory i bmary representation,
other values are in hexadecimal

Figure 5.15
Varying Associativity over Cache Size

Hit ratio

1.0 -
0.9 - TR TTTTR
0.8 - i il
0.7 S]
0.6 - -
05 4
0.4 -
0.3 -
0.2
0.1 -
[I'I] I 1 1 1 1 1 1 1] I
1k 2k 4k 3k 16k 32k 64k 128k 256k 3512k 1M
Cache size (hytes)
] direct
] 2-way
mm 4-way
0 3-way
Bl 16-way

24

Replacement Algorithms

* Once the cache has been filled, when a new block is
brought into the cache, one of the existing blocks must
be replaced

* For direct mapping there is only one possible line for any
particular block and no choice is possible

* For the associative and set-associative technigues a
replacement algorithm is needed

* To achieve high speed, an algorithm must be
Implemented in hardware

25

The most common replacement algorithms
are:

* Least recently used (LRU)
— Most effective

— Replace that block in the set that has been in the cache longest with no
reference to it

— Because of its simplicity of implementation, LRU is the most popular
replacement algorithm

* First-in-first-out (FIFO)
— Replace that block in the set that has been in the cache longest
— Easily implemented as a round-robin or circular buffer technique

* Least frequently used (LFU)
— Replace that block in the set that has experienced the fewest references
— Could be implemented by associating a counter with each line

26

Write Policy

If the old block in the cache has not
been altered then it may be
overwritten with a new block without
first writing out the old block

4
4)

If at least one write operation has
been performed on a word in that
line of the cache then main memory
must be updated by writing the line
of cache out to the block of memory
before bringing in the new block

There are two problems to

contend with:

.

More than one device may have
access to main memory

¢

- J

-

A more complex problem occurs
when multiple processors are
attached to the same bus and each
processor has its own local cache - if
a word is altered in one cache it
could conceivably invalidate a word
in other caches

_

27

Write Through

and Write Back

* Write through

Simplest technique

— All write operations are made to main memory as well as to the cache

The main disadvantage of this technique is that it generates substantial
memory traffic and may create a bottleneck

* Write back

Minimizes memory writes
Updates are made only in the cache

Portions of main memory are invalid and hence accesses by I/0 modules
can be allowed only through the cache

This makes for complex circuitry and a potential bottleneck

28

Write Miss Alternatives

e There are two alternatives in the event of a write miss at a cache
level:
— Write allocate

— The block containing the word to be written is fetched from main memory (or
next level cache) into the cache and the processor proceeds with the write cycle

— No write allocate

— The block containing the word to be written is modified in the main memory and
not loaded into the cache

* Either of these policies can be used with either write through or
write back

* No write allocate is most commonly used with write through

* Write allocate is most commonly used with write back

29

Cache Coherency

A new problem is introduced in a bus organization in which more than one device has a
cache and main memory is shared

If data in one cache are altered, this invalidates not only the corresponding word in main
memory, but also that same word in other caches

Even if a write-through policy is used, the other caches may contain invalid data

Possible approaches to cache coherency include:

— Bus watching with write through
« Each cache controller monitors the address lines to detect write operations to memory by other bus masters

* If another master writes to a location in shared memory that also resides in the cache memory, the cache
controller invalidates that cache entry

¢ This strategy depends on the use of a write-through policy by all cache controllers
— Hardware transparency
* Additional hardware is used to ensure that all updates to main memory via cache are reflected in all caches
* If one processor modifies a word in its cache, this update is written to main memory
— Noncacheable memory
* Only a portion of main memory is shared by more than one processor, and this is designated as noncacheable
* All accesses to shared memory are cache misses, because the shared memory is never copied into the cache
* The noncacheable memory can be identified using chip-select logic or high-address bits

30

Line Size

When a block of

data is retrieved
and placed in the
cache not only the
desired word but
also some number
of adjacent words

are retrieved

As the block size
increases more
useful data are
brought into the

cache

Two specific effects
come into play:

* Larger blocks reduce the

* As a block becomes larger

farther from the requested

number of blocks that fit
into a cache

each additional word is

word

As the block size
increases the hit
ratio will at first
increase because
of the principle of
locality

The hit ratio will
begin to decrease
as the block
becomes bigger
and the probability
of using the newly
fetched information
becomes less than
the probability of
reusing the
information that
has to be replaced

31

Multilevel Caches

As logic density has increased it has become possible to have a cache on the same chip as the
processor

The on-chip cache reduces the processor’s external bus activity and speeds up execution time
and increases overall system performance

— When the requested instruction or data is found in the on-chip cache, the bus access is eliminated

— On-chip cache accesses will complete appreciably faster than would even zero-wait state bus
cycles

— During this period the bus is free to support other transfers

Two-level cache:
— Internal cache designated as level 1 (L1)
— External cache designated as level 2 (L2)

Potential savings due to the use of an L2 cache depends on the hit rates in both the L1 and L2
caches

The use of multilevel caches complicates all of the design issues related to caches, including
size, replacement algorithm, and write policy

32

Figure 5.16
Total Hit Ratio (L1 and L2) for 8-kB and

16-kB L1

H it ratio

0.98—

0.96—

0.94—

0.92—

0.90—

0.88—

0.86—

0.84—

0.82—

0.80—

0.78

1k

I
2k

|
4k

I
Sk

I I I I I I I
16k 32k 64k 128k 2536k 512k 1M 2M

L2 Cache size (bytes)

33

Unified Versus Split Caches

* Has become common to split cache:
— One dedicated to instructions
— One dedicated to data
— Both exist at the same level, typically as two L1 caches

* Advantages of unified cache:

— Higher hit rate
®m Balances load of instruction and data fetches automatically
® Only one cache needs to be designed and implemented

* Trend is toward split caches at the L1 and unified caches for higher
levels

* Advantages of split cache:
— Eliminates cache contention between instruction fetch/decode unit and execution unit
® [mportant in pipelining

34

Inclusion Policy

* Inclusive policy
— Dictates that a piece of data in one cache is guaranteed to be also found in all lower levels of caches

— Advantage is that it simplifies searching for data when there are multiple processors in the computing
system

— This property is useful in enforcing cache coherence

* Exclusive policy
— Dictates that a piece of data in one cache is guaranteed not to be found in all lower levels of caches

— The advantage is that it does not waste cache capacity since it does not store multiple copies of the
same data in all of the caches

— The disadvantage is the need to search multiple cache levels when invalidating or updating a block

— To minimize the search time, the highest-level tag sets are typically duplicated at the lowest cache
level to centralize searching

* Noninclusive policy

— With the noninclusive policy a piece of data in one cache may or may not be found in lower levels of
caches

— As with the exclusive policy, this policy will generally maintain all higher-level cache sets at the lowest
cache level

35

Table 5.4
Intel Cache Evolution

Processor on Which

Problem Solution Feature First Appears
External memory slower than the Add external cache using faster 386

system bus. memory technology.

Increased processor speed results in Move external cache on-chip, 486

external bus becoming a bottleneck for operating at the same speed as the

cache access. processor.

Internal cache is rather small, due to Add external L2 cache using faster 486

limited space on chip. technology than main memory.

Contention occurs when both the Create separate data and Pentium
Instruction Prefetcher and the instruction caches.

Execution Unit simultaneously require
access to the cache. In that case, the
Prefetcher is stalled while the Execution
Unit's data access takes place.

Create separate back-side bus that Pentium Pro
runs at higher speed than the main
(front-side) external bus. The BSB is
Increased processor speed results in dedicated to the L2 cache.

external bus becoming a bottleneck for
L2 cache access.

Move L2 cache on to the Pentium I
processor chip.

Some applications deal with massive Add external L3 cache. Pentium 11l

databases and must have rapid access
to large amounts of data. The on-Chip
caches are too small.

Move L3 cache on-chip. Pentium 4

Figure 5.17
Pentium 4 Block Diagram

Ont-of-order | g LI inshietion - Tnstrnetion —

cache (12K ops) [

execniion leich/decode
logic unit
o4
hits
Y
Tnieger register file |(T)| FP regisier file |
A A A A A
Y) A) A p 4 A Y Y
Load Store Simple Simple Complex 103 P
address address integer integer integer MMX move
unit unit ALU ALU ALl unit unit
Y Y k 4
| 1.1 data cache {16 KR) |
250 bits

1.2 cache(512 KR

256 bils

L3 cachetl MR)

Syslem Bus

Table 5.5
Pentium 4 Cache Operating Modes

Control Bits Operating Mode

CD NW Cache Fills Write Throughs Invalidates
0 0 Enabled Enabled Enabled
1 0 Disabled Enabled Enabled
1 1 Disabled Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.

38

Figure 5.18
IBM z13 CPC Drawer Logical Structure

Procezzor Node 1 Processor Node O
Py Py Py PU
Ex224kE L1 8 x224kE L1 £ x224kE L1 8w 224kE L1
Axd4ML2 Avd4M L2 Axd4M L2 Axvd4M L2
GAMB| 3 GAMB| 3 HAMB| 3 GAMB | 3
X-Buz X-Busz
PU PrU
8 x Z24KE L1 € 5-Bus - 5C 8 x 224KE L1
&y M L2 450 ME L4 430 ME L4 8w dM LT
HAMBI 3 GAMB | 3
A-Buz A-Bus

To other drawers To other drawers

Cache Timing Model

Direct-mapped cache access

The first operation is checking the Tag field of an address against the tag value in the line
designated by the Line field

If there is not a match (miss), the operation is complete

If there is a match (hit), the cache hardware reads the data block from the line in the cache and
then fetches the byte or word indicated by the Offset field of the address

An advantage is that it allows simple and fast speculation

Fully associative cache

The line number is not known until the tag comparison is competed
The hit time is the same as for direct-mapped
Because this is a content-addressable memory, the miss time is simply the tag comparison time

Set associative

It is not possible to transmit bytes and compare tags in parallel as can be done with direct-
mapped with speculative access

However, the circuitry can be designed so that the data block from each line in a set can be
loaded and then transmitted once the tag check is made

40

Table 5.6

Cache Timing Equations

Time for hit

Time for miss

Direct-Mapped b=t + L, +1I, liss = Ly + Ty
2325&%?3? ed with b = Ty + L bniss = Ty + T
Fully Associative b =0+ L, + 1, biss = Lot

Set-Associative L =0+, 1T, s = 77 g
Set-Associative with Way i =ttt t (1= F) L, T==t,+t,

Prediction

41

Table 5.7

Cache Performance Improvement Techniques

Technique Reduce t; Reduce (1 - h,) Reduce t .,
Way Prediction 00
Cache Capacity Small Large
Line Size Small Large
Degree of Associativity Decrease Increase

More Flexible
Replacement Policies

0o

Cache Unity

Split I-cache and
D-cache

Unified cache

Prefetching

0o

Write Through Write allocate No write allocate
Critical Word First o
adl

Victim Cache

A2

mr

Summary

Chapter 5

Cache memory principles

Intel x86 cache
organization

The IBM z13 cache
organization

Cache performance
modules

— Cache timing model

— Design option for
Improving
performance

eCache

‘Memory

Elements of cache design

Cache addresses
Cache size

Logical cache
organization

Replacement algorithms
Write policy

Line size

Number of caches
Inclusion policy

43

	Slide 1
	Figure 5.1 Cache and Main Memory
	Cache Memory Principles
	Figure 5.2 Cache/Main Memory Structure
	Figure 5.3 Cache Read Operation
	Figure 5.4 Typical Cache Organization
	Table 5.1 Elements of Cache Design
	Cache Addresses
	Figure 5.5 Logical and Physical Caches
	Cache Size
	Table 5.2 Cache Sizes of Some Processors
	Table 5.3 Cache Access Methods
	Slide 13
	Figure 5.7 Direct-Mapping Cache Organization
	Figure 5.8 Direct Mapping Example
	Content-Addressable Memory (CAM)
	Figure 5.9 Content-Addressable Memory
	Figure 5.10 Fully Associative Cache Organization
	Figure 5.11 Associative Mapping Example
	Set Associative Mapping
	Slide 21
	Figure 5.13 k-Way Set Associative Cache Organization
	Figure 5.14 Two-Way Set-Associative Mapping Example
	Figure 5.15 Varying Associativity over Cache Size
	Replacement Algorithms
	The most common replacement algorithms are:
	Write Policy
	Write Through and Write Back
	Write Miss Alternatives
	Cache Coherency
	Line Size
	Multilevel Caches
	Figure 5.16 Total Hit Ratio (L1 and L2) for 8-kB and 16-kB L1
	Unified Versus Split Caches
	Inclusion Policy
	Table 5.4 Intel Cache Evolution
	Figure 5.17 Pentium 4 Block Diagram
	Table 5.5 Pentium 4 Cache Operating Modes
	Figure 5.18 IBM z13 CPC Drawer Logical Structure
	Cache Timing Model
	Table 5.6 Cache Timing Equations
	Table 5.7 Cache Performance Improvement Techniques
	Summary

