
Copyright © 2019, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Computer Organization and Architecture
Designing for Performance

Chapter 12
Digital Logic

11th Edition

2

Boolean Algebra
• Mathematical discipline used to design and analyze the behavior of

the digital circuitry in digital computers and other digital systems

• Named after George Boole
– English mathematician
– Proposed basic principles of the algebra in 1854

• Claude Shannon suggested Boolean algebra could be used to
solve problems in relay-switching circuit design

• Is a convenient tool:
– Analysis

▪ It is an economical way of describing the function of digital circuitry
– Design

▪ Given a desired function, Boolean algebra can be applied to develop a
simplified implementation of that function

3

Table 12.2
Correspondence Between Boolean Algebra
and Operations on Sets

Boolean Sets

Function Description Function Description

A AND B 1 if and only if A and B are 1 A ∩ B Set of elements that belong to both
A and B (intersection)

A OR B 1 if A or B or both are 1; 0 if both
A and B are 0 A B∪ Set of elements that belong to A or B

or both (union)

A OR B 1 if and only if A is 0 A Set of elements not in A
(complement of A)

4

Boolean Variables and Operations

• Makes use of variables and operations
– Are logical
– A variable may take on the value 1 (TRUE) or 0 (FALSE)
– Basic logical operations are AND, OR, and NOT

• AND
– Yields true (binary value 1) if and only if both of its operands are true
– In the absence of parentheses the AND operation takes precedence over the OR

operation
– When no ambiguity will occur the AND operation is represented by simple

concatenation instead of the dot operator

• OR
– Yields true if either or both of its operands are true

• NOT
– Inverts the value of its operand

5

Table 12.1
Boolean Operators

(b) Boolean Operators Extended to More than Two Inputs (A, B, . . .)

Operation Expression Output = 1 if

AND A · B · … All of the set {A, B, …} are 1.

OR A + B + … Any of the set {A, B, …} are 1.

NAND A · B · … Any of the set {A, B, …} are 0.

NOR A + B + … All of the set {A, B, …} are 0.

XOR A B …⊕ ⊕ The set {A, B, …} contains an odd number of ones.

A B NOT A
(A)

A AND B
(A · B)

A OR B
(A + B)

A NAND B
(A · B)

A NOR B
(A + B)

A XOR B
(A B)⊕

0 0 1 0 0 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 1 0 1

1 1 0 1 1 0 0 0

(a) Boolean Operators of Two Input Variables

6

Figure 12.1
Basic Boolean Functions of Two Variables

7

Figure 12.2
Venn Diagram for Three Boolean Variables

8

Table 12.3
Basic Identities of Boolean Algebra

Basic Postulates

Commutative Laws
Distributive Laws
Identity Elements
Inverse Elements

Other Identities

Associative Laws
DeMorgan’s Theorem

9

Figure 12.3
Basic Logic Gates

10

Figure 12.4
Some Uses of NAND Gates

11

Figure 12.5
Some Uses of NOR Gates

12

Combinational Circuit

An interconnected set of
gates whose output at
any time is a function
only of the input at that
time

The appearance of the
input is followed almost
immediately by the
appearance of the output,
with only gate delays

Consists of n binary
inputs and m binary
outputs

Can be defined in three
ways:
•Truth table

• For each of the 2n possible
combinations of input
signals, the binary value of
each of the m output
signals is listed

•Graphical symbols
• The interconnected layout

of gates is depicted
•Boolean equations

• Each output signal is
expressed as a Boolean
function of its input signals

13

Table 12.4
A Boolean Function of Three Variables

A B C D

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

14

Figure 12.6
Sum-of-Products Implementation of
Table 12.4

15

Figure 12.7
Product-of-Sums Implementation of
Table 12.4

16

Figure 12.8
Simplified Implementation of Table 12.4

17

Figure 12.9
The Use of Karnaugh Maps to Represent
Boolean Functions

18

Figure 12.10
The Use of Karnaugh Maps

19

Figure 12.11
Overlapping Groups

20

Table 12.5
Truth Table for the One-Digit Packed
Decimal Incrementer

Number
Input

Number
Output

A B C D W X Y Z
0 0 0 0 0 1 0 0 0 1

1 0 0 0 1 2 0 0 1 0

2 0 0 1 0 3 0 0 1 1

3 0 0 1 1 4 0 1 0 0

4 0 1 0 0 5 0 1 0 1

5 0 1 0 1 6 0 1 1 0

6 0 1 1 0 7 0 1 1 1

7 0 1 1 1 8 1 0 0 0

8 0 0 0 0 9 1 0 0 1

9 1 0 0 1 0 0 0 0 0

Don’t
care

condition

1 0 1 0 d d d d

1 0 1 1 d d d d

1 1 0 0 d d d d

1 1 0 1 d d d d

1 1 1 0 d d d d

1 1 1 1 d d d d

21

Figure 12.12
Karnaugh Maps for the Incrementer

22

Table 12.6
First Stage of Quine–McCluskey Method

Product Term Index A B C D

1 0 0 0 1 ✔

5 0 1 0 1 ✔

6 0 1 1 0 ✔

12 1 1 0 0 ✔

7 0 1 1 1 ✔

11 1 0 1 1 ✔

13 1 1 0 1 ✔

A B C D 15 1 1 1 1 ✔

23

Table 12.7
Last Stage of Quine–McCluskey Method

ABCD

BD X X X X

 ⊗

⊗

⊗

A C D ⊗

X

X

X

X

24

Figure 12.13
NAND Implementation of Table 12.4

25

Figure 12.14
4-to-1 Multiplexer Representation

26

Table 12.8
4-to-1 Multiplexer Truth Table

S2 S1 F

0 0 D0

0 1 D1

1 0 D2

1 1 D3

27

Figure 12.15
Multiplexer Implementation

28

Figure 12.16
Multiplexer Input to Program Counter

29

Figure 12.17
Decoder with 3 Inputs and 23 = 8 Outputs

30

Figure 12.18
Address Decoding

31

Figure 12.19
Implementation of a Demultiplexer Using a
Decoder

32

Read-Only Memory (ROM)
• Memory that is implemented with combinational circuits

– Combinational circuits are often referred to as “memoryless”
circuits because their output depends only on their current input
and no history of prior inputs is retained

• Memory unit that performs only the read operation
– Binary information stored in a ROM is permanent and is created

during the fabrication process
– A given input to the ROM (address lines) always produces the

same output (data lines)
– Because the outputs are a function only of the present inputs,

ROM is a combinational circuit

33

Table 12.9
Truth Table for a ROM

Input Output

X1 X2 X3 X4 Z1 Z2 Z3 Z4

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 0 0 0

1 0 0 1 1 0 0 1

1 0 1 0 1 0 1 1

1 0 1 1 1 0 1 0

1 1 0 0 1 1 1 0

1 1 0 1 1 1 1 1

1 1 1 0 1 1 0 1

1 1 1 1 1 1 0 0

34

Figure 12.20
A 64-Bit ROM

35

Table 12.10
Binary Addition Truth Tables

(a) Single- Bit Addition

A B SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

(b) Addition with Carry Input

Cin A B SUM Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

36

Figure 12.21
4-Bit Adder

37

Figure 12.22
Implementation of an Adder

38

Figure 12.23
Construction of a 32-Bit Adder Using 8-Bit
Adders

39

Sequential Circuit Current output
depends not
only on the

current input,
but also on the
past history of

inputs

Makes use of
combinational

circuits

Sequential

Circuit

40

Flip-Flops
• Simplest form of sequential circuit

• There are a variety of flip-flops, all of which share two
properties:

1. The flip-flop is a bistable device. It exists in one of two
states and, in the absence of input, remains in that state.
Thus, the flip-flop can function as a 1-bit memory.

2. The flip-flop has two outputs, which are always the
complements of each other.

41

Figure 12.24
The S–R Latch Implemented with NOR
Gates

42

Figure 12.25
NOR S–R Latch Timing Diagram

43

Table 12.12
The S–R Latch

(a) Characteristic Table

Current
Inputs

Current
State

Next
State

SR Qn Qn+1

00 0 0

00 1 1

01 0 0

01 1 0

10 0 1

10 1 1

11 0 –

11 1 –

(b) Simplified Characteristic Table

A B Qn+1

0 0 Qn

0 1 0

1 0 1

1 1 –

(c) Response to Series of Inputs

t 0 1 2 3 4 5 6 7 8 9

S 1 0 0 0 0 0 0 0 1 0

R 0 0 0 1 0 0 1 0 0 0

Qn+1 1 1 1 0 0 0 0 0 1 1

44

Figure 12.26
Clocked S–R Flip-Flop

45

Figure 12.27
D Flip-Flop

46

Figure 12.28
J–K Flip-Flop

47

Figure 12.29
Basic Flip-Flops

48

Figure 12.30
8-Bit Parallel Register

49

Figure 12.31
5-Bit Shift Register

50

Counter
• A register whose value is easily incremented by 1 modulo the

capacity of the register

• After the maximum value is achieved the next increment sets
the counter value to 0

• An example of a counter in the CPU is the program counter

• Can be designated as:
– Asynchronous

▪ Relatively slow because the output of one flip-flop triggers a change in
the status of the next flip-flop

– Synchronous
▪ All of the flip-flops change state at the same time
▪ Because it is faster it is the kind used in CPUs

51

Figure 12.33
Design of a Synchronous Counter

52

Table 12.13
PLD Terminology

Programmable Logic Device (PLD)
A general term that refers to any type of integrated circuit used for implementing digital hard-

ware, where the chip can be configured by the end user to realize different designs. Programming
of such a device often involves placing the chip into a special programming unit, but some chips can
also be configured “in-system.” Also referred to as a field- programmable device (FPD).
Programmable Logic Array (PLA)

A relatively small PLD that contains two levels of logic, an AND-plane and an OR- plane,
where both levels are programmable.
Programmable Array Logic (PAL)

A relatively small PLD that has a programmable AND-plane followed by a fixed OR-plane.
Simple PLD (SPLD)

A PLA or PAL.
Complex PLD (CPLD)

A more complex PLD that consists of an arrangement of multiple SPLD-like blocks on a single
chip.
Field- Programmable Gate Array (FPGA)

A PLD featuring a general structure that allows very high logic capacity. Whereas CPLDs
feature logic resources with a wide number of inputs (AND planes), FPGAs offer more narrow logic
resources. FPGAs also offer a higher ratio of flip- flops to logic resources than do CPLDs.
Logic Block

A relatively small circuit block that is replicated in an array in an FPD. When a circuit is
implemented in an FPD, it is first decomposed into smaller subcircuits that can each be mapped into
a logic block. The term logic block is mostly used in the context of FPGAs, but it could also refer to
a block of circuitry in a CPLD.

53

Figure 12.34
An Example of a Programmable Logic
Array (PLA)

54

Figure 12.35
Structure of an FPGA

55

Figure 12.36
A Simple FPGA Logic Block

56

Summary

Chapter 12
• Boolean Algebra
• Gates
• Combinational Circuits

– Implementation of Boolean
Functions

– Multiplexers
– Decoders
– Read-Only-Memory
– Adders

Digital
Logic

• Sequential Circuits
– Flip-Flops
– Registers
– Counters

• Programmable Logic Devices
– Programmable Logic Array
– Field-Programmable Gate

Array

57

Copyright

This work is protected by United States copyright laws and is provided solely
 for the use of instructions in teaching their courses and assessing student
 learning. dissemination or sale of any part of this work (including on the
 World Wide Web) will destroy the integrity of the work and is not permit-
 ted. The work and materials from it should never be made available to
 students except by instructors using the accompanying text in their
 classes. All recipients of this work are expected to abide by these
restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials.

	Slide 1
	Boolean Algebra
	Slide 3
	Boolean Variables and Operations
	Table 12.1 Boolean Operators
	Figure 12.1 Basic Boolean Functions of Two Variables
	Figure 12.2 Venn Diagram for Three Boolean Variables
	Table 12.3 Basic Identities of Boolean Algebra
	Figure 12.3 Basic Logic Gates
	Figure 12.4 Some Uses of NAND Gates
	Figure 12.5 Some Uses of NOR Gates
	Combinational Circuit
	Table 12.4 A Boolean Function of Three Variables
	Figure 12.6 Sum-of-Products Implementation of Table 12.4
	Figure 12.7 Product-of-Sums Implementation of Table 12.4
	Figure 12.8 Simplified Implementation of Table 12.4
	Slide 17
	Figure 12.10 The Use of Karnaugh Maps
	Figure 12.11 Overlapping Groups
	Slide 20
	Figure 12.12 Karnaugh Maps for the Incrementer
	Table 12.6 First Stage of Quine–McCluskey Method
	Table 12.7 Last Stage of Quine–McCluskey Method
	Figure 12.13 NAND Implementation of Table 12.4
	Figure 12.14 4-to-1 Multiplexer Representation
	Table 12.8 4-to-1 Multiplexer Truth Table
	Figure 12.15 Multiplexer Implementation
	Figure 12.16 Multiplexer Input to Program Counter
	Figure 12.17 Decoder with 3 Inputs and 23 = 8 Outputs
	Figure 12.18 Address Decoding
	Figure 12.19 Implementation of a Demultiplexer Using a Decoder
	Read-Only Memory (ROM)
	Table 12.9 Truth Table for a ROM
	Figure 12.20 A 64-Bit ROM
	Table 12.10 Binary Addition Truth Tables
	Figure 12.21 4-Bit Adder
	Figure 12.22 Implementation of an Adder
	Figure 12.23 Construction of a 32-Bit Adder Using 8-Bit Adders
	Sequential Circuit
	Flip-Flops
	Figure 12.24 The S–R Latch Implemented with NOR Gates
	Figure 12.25 NOR S–R Latch Timing Diagram
	Table 12.12 The S–R Latch
	Figure 12.26 Clocked S–R Flip-Flop
	Figure 12.27 D Flip-Flop
	Figure 12.28 J–K Flip-Flop
	Figure 12.29 Basic Flip-Flops
	Figure 12.30 8-Bit Parallel Register
	Figure 12.31 5-Bit Shift Register
	Counter
	Figure 12.33 Design of a Synchronous Counter
	Table 12.13 PLD Terminology
	Figure 12.34 An Example of a Programmable Logic Array (PLA)
	Figure 12.35 Structure of an FPGA
	Figure 12.36 A Simple FPGA Logic Block
	Summary
	Copyright

