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Boolean Algebra
• Mathematical discipline used to design and analyze the behavior of 

the digital circuitry in digital computers and other digital systems

• Named after George Boole
– English mathematician
– Proposed basic principles of the algebra in 1854

• Claude Shannon suggested Boolean algebra could be used to 
solve problems in relay-switching circuit design

• Is a convenient tool:
– Analysis

▪ It is an economical way of describing the function of digital circuitry
– Design

▪ Given a desired function, Boolean algebra can be applied to develop a 
simplified implementation of that function
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Table 12.2 
Correspondence Between Boolean Algebra 
and Operations on Sets

Boolean Sets

Function Description Function Description

A AND B 1 if and only if A and B are 1 A  ∩ B Set of elements that belong to both
A and B (intersection)

A OR B 1 if A or B or both are 1; 0 if both
A and B are 0 A   B∪ Set of elements that belong to A or B

or both (union)

A OR B 1 if and only if A is 0 A Set of elements not in A
(complement of A)
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Boolean Variables and Operations

• Makes use of variables and operations
– Are logical
– A variable may take on the value 1 (TRUE) or 0 (FALSE)
– Basic logical operations are AND, OR, and NOT

• AND
– Yields true (binary value 1) if and only if both of its operands are true
– In the absence of parentheses the AND operation takes precedence over the OR 

operation
– When no ambiguity will occur the AND operation is represented by simple 

concatenation instead of the dot operator

• OR
– Yields true if either or both of its operands are true

• NOT
– Inverts the value of its operand
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Table 12.1 
Boolean Operators

(b) Boolean Operators Extended to More than Two Inputs (A, B, . . .)

Operation Expression Output = 1 if

AND A · B · … All of the set {A, B, …} are 1.

OR A + B + … Any of the set {A, B, …} are 1.

NAND A · B · … Any of the set {A, B, …} are 0.

NOR A + B + … All of the set {A, B, …} are 0.

XOR A  B  …⊕ ⊕ The set {A, B, …} contains an odd number of ones.

A B NOT A
(A)

A AND B
(A · B)

A OR B
(A + B)

A NAND B
(A · B)

A NOR B
(A + B)

A XOR B
(A   B)⊕

0 0 1 0 0 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 1 0 1

1 1 0 1 1 0 0 0

(a) Boolean Operators of Two Input Variables
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Figure 12.1 
Basic Boolean Functions of Two Variables
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Figure 12.2 
Venn Diagram for Three Boolean Variables
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Table 12.3 
Basic Identities of Boolean Algebra

Basic Postulates

Commutative Laws
Distributive Laws
Identity Elements
Inverse Elements

Other Identities

Associative Laws
DeMorgan’s Theorem
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Figure 12.3 
Basic Logic Gates
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Figure 12.4 
Some Uses of NAND Gates
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Figure 12.5 
Some Uses of NOR Gates



12

Combinational Circuit

An interconnected set of 
gates whose output at 
any time is a function 
only of the input at that 
time

The appearance of the 
input is followed almost 
immediately by the 
appearance of the output, 
with only gate delays

Consists of n binary 
inputs and m binary 
outputs

Can be defined in three 
ways:
•Truth table

• For each of the 2n possible 
combinations of input 
signals, the binary value of 
each of the m output 
signals is listed

•Graphical symbols
• The interconnected layout 

of gates is depicted
•Boolean equations

• Each output signal is 
expressed as a Boolean 
function of its input signals
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Table 12.4 
A Boolean Function of Three Variables

A B C D

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0
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Figure 12.6 
Sum-of-Products Implementation of 
Table 12.4



15

Figure 12.7 
Product-of-Sums Implementation of 
Table 12.4
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Figure 12.8 
Simplified Implementation of Table 12.4
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Figure 12.9 
The Use of Karnaugh Maps to Represent 
Boolean Functions
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Figure 12.10
The Use of Karnaugh Maps
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Figure 12.11 
Overlapping Groups
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Table 12.5 
Truth Table for the One-Digit Packed 
Decimal Incrementer

Number
Input

Number
Output

A B C D W X Y Z
0 0 0 0 0 1 0 0 0 1

1 0 0 0 1 2 0 0 1 0

2 0 0 1 0 3 0 0 1 1

3 0 0 1 1 4 0 1 0 0

4 0 1 0 0 5 0 1 0 1

5 0 1 0 1 6 0 1 1 0

6 0 1 1 0 7 0 1 1 1

7 0 1 1 1 8 1 0 0 0

8 0 0 0 0 9 1 0 0 1

9 1 0 0 1 0 0 0 0 0

Don’t
care

condition

1 0 1 0 d d d d

1 0 1 1 d d d d

1 1 0 0 d d d d

1 1 0 1 d d d d

1 1 1 0 d d d d

1 1 1 1 d d d d
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Figure 12.12 
Karnaugh Maps for the Incrementer
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Table 12.6 
First Stage of Quine–McCluskey Method

Product Term Index A B C D

1 0 0 0 1   ✔

5 0 1 0 1 ✔

6 0 1 1 0 ✔

12 1 1 0 0 ✔

7 0 1 1 1 ✔

11 1 0 1 1 ✔

13 1 1 0 1 ✔

A B C D 15 1 1 1 1 ✔
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Table 12.7 
Last Stage of Quine–McCluskey Method

ABCD

BD X X X X

 ⊗

⊗

⊗

A C D ⊗

X

X

X

X
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Figure 12.13 
NAND Implementation of Table 12.4
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Figure 12.14 
4-to-1 Multiplexer Representation
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Table 12.8 
4-to-1 Multiplexer Truth Table

S2 S1 F

0 0 D0

0 1 D1

1 0 D2

1 1 D3
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Figure 12.15 
Multiplexer Implementation
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Figure 12.16 
Multiplexer Input to Program Counter
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Figure 12.17 
Decoder with 3 Inputs and 23 = 8 Outputs
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Figure 12.18 
Address Decoding
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Figure 12.19 
Implementation of a Demultiplexer Using a 
Decoder
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Read-Only Memory (ROM)
• Memory that is implemented with combinational circuits

– Combinational circuits are often referred to as “memoryless” 
circuits because their output depends only on their current input 
and no history of prior inputs is retained

• Memory unit that performs only the read operation
– Binary information stored in a ROM is permanent and is created 

during the fabrication process
– A given input to the ROM (address lines) always produces the 

same output (data lines)
– Because the outputs are a function only of the present inputs, 

ROM is a combinational circuit
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Table 12.9
Truth Table for a ROM

Input Output

X1 X2 X3 X4 Z1 Z2 Z3 Z4

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 0 0 0

1 0 0 1 1 0 0 1

1 0 1 0 1 0 1 1

1 0 1 1 1 0 1 0

1 1 0 0 1 1 1 0

1 1 0 1 1 1 1 1

1 1 1 0 1 1 0 1

1 1 1 1 1 1 0 0
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Figure 12.20
A 64-Bit ROM
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Table 12.10 
Binary Addition Truth Tables

(a) Single- Bit Addition

A B SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

(b) Addition with Carry Input

Cin A B SUM Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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Figure 12.21 
4-Bit Adder
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Figure 12.22 
Implementation of an Adder
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Figure 12.23 
Construction of a 32-Bit Adder Using 8-Bit 
Adders
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Sequential Circuit Current output 
depends not 
only on the 

current input, 
but also on the 
past history of 

inputs

Makes use of 
combinational 

circuits

Sequential

Circuit
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Flip-Flops
• Simplest form of sequential circuit

• There are a variety of flip-flops, all of which share two 
properties:

1. The flip-flop is a bistable device.  It exists in one of two 
states and, in the absence of input, remains in that state.  
Thus, the flip-flop can function as a 1-bit memory.

2. The flip-flop has two outputs, which are always the 
complements of each other.
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Figure 12.24 
The S–R Latch Implemented with NOR 
Gates
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Figure 12.25 
NOR S–R Latch Timing Diagram
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Table 12.12 
The S–R Latch

(a) Characteristic Table

Current
Inputs

Current
State

Next
State

SR Qn Qn+1

00 0 0

00 1 1

01 0 0

01 1 0

10 0 1

10 1 1

11 0 –

11 1 –

(b) Simplified Characteristic Table

A B Qn+1

0 0 Qn

0 1 0

1 0 1

1 1 –

(c) Response to Series of Inputs

t 0 1 2 3 4 5 6 7 8 9

S 1 0 0 0 0 0 0 0 1 0

R 0 0 0 1 0 0 1 0 0 0

Qn+1 1 1 1 0 0 0 0 0 1 1



44

Figure 12.26 
Clocked S–R Flip-Flop
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Figure 12.27
D Flip-Flop
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Figure 12.28 
J–K Flip-Flop
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Figure 12.29 
Basic Flip-Flops
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Figure 12.30 
8-Bit Parallel Register
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Figure 12.31 
5-Bit Shift Register
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Counter
• A register whose value is easily incremented by 1 modulo the 

capacity of the register

• After the maximum value is achieved the next increment sets 
the counter value to 0

• An example of a counter in the CPU is the program counter

• Can be designated as: 
– Asynchronous

▪ Relatively slow because the output of one flip-flop triggers a change in 
the status of the next flip-flop

– Synchronous
▪ All of the flip-flops change state at the same time
▪ Because it is faster it is the kind used in CPUs
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Figure 12.33 
Design of a Synchronous Counter
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Table 12.13
PLD Terminology

Programmable Logic Device (PLD)
A general term that refers to any type of integrated circuit used for implementing digital hard-

ware, where the chip can be configured by the end user to realize different designs. Programming
of such a device often involves placing the chip into a special programming unit, but some chips can
also be configured “in-system.” Also referred to as a field- programmable device (FPD).
Programmable Logic Array (PLA)

A relatively small PLD that contains two levels of logic, an AND-plane and an OR- plane,
where both levels are programmable.
Programmable Array Logic (PAL)

A relatively small PLD that has a programmable AND-plane followed by a fixed OR-plane.
Simple PLD (SPLD)

A PLA or PAL.
Complex PLD (CPLD)

A more complex PLD that consists of an arrangement of multiple SPLD-like blocks on a single 
chip.
Field- Programmable Gate Array (FPGA)

A PLD featuring a general structure that allows very high logic capacity. Whereas CPLDs
feature logic resources with a wide number of inputs (AND planes), FPGAs offer more narrow logic
resources. FPGAs also offer a higher ratio of flip- flops to logic resources than do CPLDs.
Logic Block

A relatively small circuit block that is replicated in an array in an FPD. When a circuit is
implemented in an FPD, it is first decomposed into smaller subcircuits that can each be mapped into
a logic block. The term logic block is mostly used in the context of FPGAs, but it could also refer to
a block of circuitry in a CPLD.
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Figure 12.34 
An Example of a Programmable Logic 
Array (PLA)
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Figure 12.35 
Structure of an FPGA
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Figure 12.36 
A Simple FPGA Logic Block
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Summary

Chapter 12
• Boolean Algebra
• Gates
• Combinational Circuits

– Implementation of Boolean 
Functions

– Multiplexers
– Decoders
– Read-Only-Memory
– Adders

Digital
Logic

• Sequential Circuits
– Flip-Flops
– Registers
– Counters

• Programmable Logic Devices
– Programmable Logic Array
– Field-Programmable Gate 

Array
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    learning. dissemination or sale of any part of this work (including on the
        World Wide Web) will destroy the integrity of the work and is not permit-
           ted. The work and materials from it should never be made available to
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