
Copyright © 2019, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Computer Organization and Architecture
Designing for Performance

Chapter 13
Instruction Sets:
Characteristics and
Functions

11th Edition

2

Machine Instruction Characteristics
• The operation of the processor is determined by the

instructions it executes, referred to as machine
instructions or computer instructions

• The collection of different instructions that the processor
can execute is referred to as the processor’s instruction
set

• Each instruction must contain the information required by
the processor for execution

3

Figure 13.1
Instruction Cycle State Diagram

4

Source and result operands can be in one of
four areas:
1) Main or virtual memory

– As with next instruction
references, the main or virtual
memory address must be
supplied

2) I/O device
– The instruction must specify

the I/O module and device for
the operation. If memory-
mapped I/O is used, this is
just another main or virtual
memory address

3) Processor register
– A processor contains one or

more registers that may be
referenced by machine
instructions.

– If more than one register
exists each register is
assigned a unique name or
number and the instruction
must contain the number of
the desired register

4) Immediate
– The value of the operand is

contained in a field in the
instruction being executed

5

Figure 13.2
A Simple Instruction Format

• Within the computer each instruction is represented by a
sequence of bits

• The instruction is divided into fields, corresponding to the
constituent elements of the instruction

6

Instruction Representation
• Opcodes are represented by abbreviations

 called mnemonics

• Examples include:
– ADD Add
– SUB Subtract
– MUL Multiply
– DIV Divide
– LOAD Load data from memory
– STOR Store data to memory

• Operands are also represented symbolically

• Each symbolic opcode has a fixed binary representation
– The programmer specifies the location of each symbolic operand

7

Instruction Types

• I/O instructions are
needed to transfer
programs and data into
memory and the results
of computations back
out to the user

•Test instructions are used to test the value of a data
word or the status of a computation

•Branch instructions are used to branch to a different
set of instructions depending on the decision made

•Movement of data into
or out of register and or
memory locations

•Arithmetic instructions provide computational
capabilities for processing numeric data

•Logic (Boolean) instructions operate on the bits
of a word as bits rather than as numbers, thus
they provide capabilities for processing any
other type of data the user may wish to employ

Data
processin

g
Data

storage

Data
movemen

t
Control

8

Figure 13.3
Programs to Execute Y =

9

Table 13.1
Utilization of Instruction Addresses
(Nonbranching Instructions)

Number of Addresses Symbolic Representation Interpretation

3 OP A, B, C A ← B OP C

2 OP A, B A ← A OP B

1 OP A AC ← AC OP A

0 OP T ← (T – 1) OP T

AC = accumulator
T = top of stack
(T – 1) = second element of stack
A, B, C = memory or register locations

10

Instruction Set Design

Fundamental design issues:

Operation
repertoire
•How many and which
operations to provide
and how complex
operations should be

Data types
•The various types of data
upon which operations
are performed

Instruction format
• Instruction length in bits,
number of addresses,
size of various fields, etc.

Registers
•Number of processor
registers that can be
referenced by
instructions and their use

Addressing
•The mode or modes by
which the address of an
operand is specified

Programmer’s means of controlling the processor

Defines many of the functions performed by the processor

Very complex because it affects so many aspects of the computer
system

11

Types of Operands

Addresses
Numbers

Characters Logical
Data

12

Numbers

• All machine languages include numeric data types

• Numbers stored in a computer are limited:
– Limit to the magnitude of numbers representable on a machine
– In the case of floating-point numbers, a limit to their precision

• Three types of numerical data are common in computers:
– Binary integer or binary fixed point
– Binary floating point
– Decimal

• Packed decimal
– Each decimal digit is represented by a 4-bit code with two digits stored per

byte
– To form numbers 4-bit codes are strung together, usually in multiples of 8 bits

13

Characters

• A common form of data is text or character strings

• Textual data in character form cannot be easily stored or
transmitted by data processing and communications systems
because they are designed for binary data

• Most commonly used character code is the International
Reference Alphabet (IRA)
– Referred to in the United States as the American Standard Code

for Information Interchange (ASCII)

• Another code used to encode characters is the Extended
Binary Coded Decimal Interchange Code (EBCDIC)
– EBCDIC is used on IBM mainframes

14

Logical Data

• An n-bit unit consisting of n 1-bit items of data, each item
having the value 0 or 1

• Two advantages to bit-oriented view:
– Memory can be used most efficiently for storing an array of

Boolean or binary data items in which each item can take on only
the values 1 (true) and 0 (false)

– To manipulate the bits of a data item
▪ If floating-point operations are implemented in software, we need to be

able to shift significant bits in some operations
▪ To convert from IRA to packed decimal, we need to extract the

rightmost 4 bits of each byte

15

Table 13.2
x86 Data Types

Data Type Description

General Byte, word (16 bits), doubleword (32 bits), quadword (64 bits), and double
quadword (128 bits) locations with arbitrary binary contents.

Integer A signed binary value contained in a byte, word, or doubleword, using twos
complement representation.

Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded
decimal (BCD)

A representation of a BCD digit in the range 0 through 9, with one digit in
each byte.

Packed BCD Packed byte representation of two BCD digits; value in the range 0 to 99.

Near pointer A 16-bit, 32-bit, or 64-bit effective address that represents the offset within a
segment. Used for all pointers in a nonsegmented memory and for references
within a segment in a segmented memory.

Far pointer A logical address consisting of a 16-bit segment selector and an offset of 16,
32, or 64 bits. Far pointers are used for memory references in a segmented
memory model where the identity of a segment being accessed must be
specified explicitly.

Bit field A contiguous sequence of bits in which the position of each bit is considered
as an independent unit. A bit string can begin at any bit position of any byte
and can contain up to 32 bits.

Bit string A contiguous sequence of bits, containing from zero to 223 – 1 bits.

Byte string A contiguous sequence of bytes, words, or doublewords, containing from
zero to 223 – 1 bytes.

Floating point See Figure 13.4.

Packed SIMD (single
instruction, multiple data)

Packed 64-bit and 128-bit data types. (Table can be found on page 443
In the textbook)

16

Figure 13.4
x86 Numeric Data Formats

17

Single-Instruction-Multiple-Data (SIMD)
Data Types

• Introduced to the x86 architecture as part of the
extensions of the instruction set to optimize performance
of multimedia applications

• These extensions include MMX (multimedia extensions)
and SSE (streaming SIMD extensions)

• Data types:
– Packed byte and packed byte integer
– Packed word and packed word integer
– Packed doubleword and packed doubleword integer
– Packed quadword and packed quadword integer
– Packed single-precision floating-point and packed double-

precision floating-point

18

ARM Data Types
ARM processors support
data types of:
•8 (byte)
•16 (halfword)
•32 (word) bits in length

Alignment checking
•When the appropriate
control bit is set, a data
abort signal indicates an
alignment fault for
attempting unaligned
access

Unaligned access
•When this option is
enabled, the processor uses
one or more memory
accesses to generate the
required transfer of
adjacent bytes
transparently to the
programmer

For all three data
types an unsigned
interpretation is

supported in which the
value represents an

unsigned, nonnegative
integer

All three data types
can also be used for
twos complement
signed integers

19

Figure 13.5
ARM Endian Support—Word Load/Store
with E-Bit

20

Table 13.3
Common x86
Instruction

Set
Operations

(1 of 3)

Operation Name Description

MOV Dest, Source Move data between registers or between register and memory or immediate to
register.

XCHG Op1, Op2 Swap contents between two registers or register and memory.

PUSH Source Decrements stack pointer (ESP register), then copies the source operand
to the top of stack.

POP Dest Copies top of stack to destination and increments ESP.

(a) Data Transfer

Operation Name Description

ADD Dest, Source
Adds the destination and the source operand and stores the result in the
destination. Destination can be register or memory. Source can be register,
memory, or immediate.

SUB Dest, Source Subtracts the source from the destination and stores the result in the destination.

MUL Op Unsigned integer multiplication of the operand by the AL, AX, or EAX register and
stores in the register. Opcode indicates size of register.

IMUL Op Signed integer multiplication.

DIV Op
Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers
(dividend) by the source operand (divisor) and stores the result in the AX
(AH:AL), DX:AX, EDX:EAX, or RDX:RAX registers.

IDIV Op Signed integer division.

INC Op Adds 1 to the destination operand, while preserving the state of the CF flag.

DEC Op Subtracts 1 from the destination operand, while preserving the state of the CF
flag.

NEG Op Replaces the value of operand with (0 – operand), using twos complement
representation.

CMP Op1, Op2
Compares the two operands by subtracting the second operand from the first
operand and sets the status flags in the EFLAGS register according to the
results.

(b) Arithmetic

(Table can be found on page
446-447 in the textbook.)

21

Table 13.3
Common x86
Instruction

Set
Operations

(2 of 3)

Operation Name Description

SAL Op, Quantity Shifts the source operand left by from 1 to 31 bit positions. Empty bit positions are
cleared. The CF flag is loaded with the last bit shifted out of the operand.

SAR Op, Quantity
Shifts the source operand right by from 1 to 31 bit positions. Empty bit positions
are cleared if the operand is positive and set if the operand is negative. The CF
flag is loaded with the last bit shifted out of the operand.

SHR Op, Quantity Shifts the source operand right by from 1 to 31 bit positions. Empty bit positions
are cleared and the CF flag is loaded with the last bit shifted out of the operand.

ROL Op, Quantity Rotate bits to the left, with wraparound. The CF flag is loaded with the last bit
shifted out of the operand.

ROR Op, Quantity Rotate bits to the right, with wraparound. The CF flag is loaded with the last bit
shifted out of the operand.

RCL Op, Quantity Rotate bits to the left, including the CF flag, with wraparound. This instruction
treats the CF flag as a one-bit extension on the upper end of the operand.

RCR Op, Quantity Rotate bits to the right, including the CF flag, with wraparound. This instruction
treats the CF flag as a one-bit extension on the lower end of the operand.

(c) Shift and Rotate

Operation Name Description

NOT Op Inverts each bit of the operand.

AND Dest, Source Performs a bitwise AND operation on the destination and source operands and
stores the result in the destination operand.

OR Dest, Source Performs a bitwise OR operation on the destination and source operands and
stores the result in the destination operand.

XOR Dest, Source Performs a bitwise XOR operation on the destination and source operands and
stores the result in the destination operand.

TEST Op1, Op2 Performs a bitwise AND operation on the two operands and sets the S, Z, and P
status flags. The operands are unchanged.

(d) Logical

(Table can be found on page
446-447 in the textbook.)

22

Table 13.3
Common x86
Instruction

Set
Operations

(3 of 3)

Operation Name Description

CALL proc
Saves procedure linking information on the stack and branches to the called procedure
specified using the operand. The operand specifies the address of the first instruction in
the called procedure.

RET Transfers program control to a return address located on the top of the stack. The
return is made to the instruction that follows the CALL instruction.

JMP Dest Transfers program control to a different point in the instruction stream without recording
return information. The operand specifies the address of the instruction being jumped to.

Jcc Dest
Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF,
SF, and ZF) and, if the flags are in the specified state (condition), performs a jump to the
target instruction specified by the destination operand. See Tables 13.8 and 13.9.

NOP
This instruction performs no operation. It is a one-byte or multi-byte NOP that takes up
space in the instruction stream but does not impact machine context, except for the EIP
register.

HLT
Stops instruction execution and places the processor in a HALT state. An enabled
interrupt, a debug exception, the BINIT# signal, the INIT# signal, or the RESET#
signal will resume execution.

WAIT Causes the processor to repeatedly check for and handle pending, unmasked, floating-
point exceptions before proceeding.

INT Nr Interrupts current program, runs specified interrupt program

Operation Name Description

IN Dest, Source Copies the data from the I/O port specified by the source operand to the
destination operand, which is a register location.

INS Dest, Source Copies the data from the I/O port specified by the source operand to the
destination operand, which is a memory location.

OUT Dest, Source Copies the byte, word, or doubleword value from the source register to the I/O
port specified by the destination operand.

OUTS Dest, Source Copies byte, word, or doubleword from the source operand to the I/O port
specified with the destination operand. The source operand is a memory location.

(f) Input/Output

(e) Transfer of Control

(Table can be found on page
446-447 in the textbook.)

23

Table 13.4
Processor Actions for Various Types of Operations

Data transfer

Transfer data from one location to another

If memory is involved:
Determine memory address
Perform virtual-to-actual-memory address transformation
Check cache
Initiate memory read/write

Arithmetic

May involve data transfer, before and/or after

Perform function in ALU

Set condition codes and flags

Logical Same as arithmetic

Conversion Similar to arithmetic and logical. May involve special logic to perform conversion

Transfer of
control

Update program counter. For subroutine call/return, manage parameter passing
and linkage

I/O
Issue command to I/O module

If memory-mapped I/O, determine memory-mapped address

(Table can be found on page
447 in the textbook.)

24

Data Transfer

Most
fundamental

type of
machine

instruction

Must specify:
• Location of the
source and
destination
operands

• The length of
data to be
transferred must
be indicated

• The mode of
addressing for
each operand
must be
specified

25

Table 13.5
Examples of IBM EAS/390 Data Transfer
Operations

Operation
Mnemonic Name

Number of Bits
Transferred Description

L Load 32 Transfer from memory to register

LH Load Halfword 16 Transfer from memory to register

LR Load 32 Transfer from register to register

LER Load (short) 32 Transfer from floating-point register to
floating-point register

LE Load (short) 32 Transfer from memory to floating-point
register

LDR Load (long) 64 Transfer from floating-point register to floating-point
register

LD Load (long) 64 Transfer from memory to floating-point register

ST Store 32 Transfer from register to memory

STH Store Halfword 16 Transfer from register to memory

STC Store Character 8 Transfer from register to memory

STE Store (short) 32 Transfer from floating-point register
to memory

STD Store (long) 64 Transfer from floating-point register
to memory

(Table can be found on page 448 in the textbook.)

26

Arithmetic
• Most machines provide the basic arithmetic operations of

add, subtract, multiply, and divide

• These are provided for signed integer (fixed-point) numbers

• Often they are also provided for floating-point and packed
decimal numbers

• Other possible operations include a variety of single-operand
instructions:
– Absolute

 Take the absolute value of the operand
– Negate

 Negate the operand
– Increment

 Add 1 to the operand
– Decrement
 Subtract 1 from the operand

27

Table 13.6
Basic Logical Operations

P Q NOT P P AND Q P OR Q P XOR Q P = Q

0 0 1 0 0 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 0

1 1 0 1 1 0 1

28

Figure 13.6
Shift and Rotate Operations

29

Table 13.7
Examples of Shift and Rotate Operations

Input Operation Result
10100110 Logical right shift (3 bits) 00010100

10100110 Logical left shift (3 bits) 00110000

10100110 Arithmetic right shift (3 bits) 11110100

10100110 Arithmetic left shift (3 bits) 10110000

10100110 Right rotate (3 bits) 11010100

10100110 Left rotate (3 bits) 00110101

30

Instructions
that change
the format or

operate on the
format of data

An example
is

converting
from

decimal to
binary

An example of
a more

complex
editing

instruction is
the EAS/390

Translate (TR)
instruction

Conversion

31

Input/Output

• Variety of approaches taken:
– Isolated programmed I/O
– Memory-mapped programmed I/O
– DMA
– Use of an I/O processor

• Many implementations provide only a few I/O instructions, with
the specific actions specified by parameters, codes, or
command words

32

System Control
Instructions that can be executed only while the processor is in
a certain privileged state or is executing a program in a special
privileged area of memory

Typically these instructions are reserved for the use of the
operating system

Examples of system control operations:

A system control
instruction may read or
alter a control register

An instruction to read or
modify a storage

protection key

Access to process control
blocks in a

multiprogramming
system

33

Transfer of Control
• Reasons why transfer-of-control operations are required:

– It is essential to be able to execute each instruction more than once
– Virtually all programs involve some decision making
– It helps if there are mechanisms for breaking the task up into smaller

pieces that can be worked on one at a time

• Most common transfer-of-control operations found in
instruction sets:
– Branch
– Skip
– Procedure call

34

Figure 13.7
Branch Instructions

35

Skip Instructions

Includes an implied
address

Typically implies that
one instruction be
skipped, thus the

implied address equals
the address of the next

instruction plus one
instruction length

Because the skip
instruction does not
require a destination

address field it is free to
do other things

Example is the
increment-and-skip-if-
zero (ISZ) instruction

36

Procedure Call Instructions

• Self-contained computer program that is incorporated into a
larger program
– At any point in the program the procedure may be invoked, or called
– Processor is instructed to go and execute the entire procedure and then

return to the point from which the call took place

• Two principal reasons for use of procedures:
– Economy

▪ A procedure allows the same piece of code to be used many times
– Modularity

• Involves two basic instructions:
– A call instruction that branches from the present location to the procedure
– Return instruction that returns from the procedure to the place from which it

was called

37

Figure 13.8
Nested Procedures

38

Figure 13.9
Use of Stack to Implement Nested
Subroutines of Figure 13.8

39

Figure 13.10
Stack Frame Growth Using Sample
Procedures P and Q

40

x86 Operation Types

• The x86 provides a complex array of operation types including a number of
specialized instructions

• The intent was to provide tools for the compiler writer to produce optimized
machine language translation of high-level language programs

• Provides four instructions to support procedure call/return:
– CALL
– ENTER
– LEAVE
– RETURN

• When a new procedure is called the following must be performed upon entry to
the new procedure:
– Push the return point on the stack
– Push the current frame pointer on the stack
– Copy the stack pointer as the new value of the frame pointer
– Adjust the stack pointer to allocate a frame

41

Table 13.8
x86 Status Flags

Status Bit Name Description

C Carry
Indicates carrying or borrowing out of the left-
most bit position following an arithmetic operation. Also
modified by some of the shift and rotate operations.

P Parity
Parity of the least-significant byte of the result of an arithmetic
or logic operation. 1 indicates even parity; 0 indicates odd
parity.

A Auxiliary Carry
Represents carrying or borrowing between half-
bytes of an 8-bit arithmetic or logic operation. Used in binary-
coded decimal arithmetic.

Z Zero Indicates that the result of an arithmetic or logic operation is 0.

S Sign Indicates the sign of the result of an arithmetic or logic
operation.

O Overflow Indicates an arithmetic overflow after an addition or subtraction
for twos complement arithmetic.

42

Table 13.9
x86 Condition

Codes for
Conditional

Jump and SETcc
Instructions

Symbol Condition Tested Comment

A, NBE C = 0 AND Z = 0 Above; Not below or equal (greater than, unsigned)

AE, NB, NC C = 0 Above or equal; Not below (greater than or equal,
unsigned); Not carry

B, NAE, C C = 1 Below; Not above or equal (less than, unsigned);
Carry set

BE, NA C = 1 OR Z = 1 Below or equal; Not above (less than or equal, unsigned)

E, Z Z = 1 Equal; Zero (signed or unsigned)

G, NLE [(S = 1 AND O = 1) OR (S = 0
AND O = 0)]AND[Z = 0]

Greater than; Not less than or equal (signed)

GE, NL (S = 1 AND O = 1) OR (S = 0
AND O = 0)

Greater than or equal; Not less than (signed)

L, NGE (S = 1 AND O = 0) OR (S = 0
AND O = 0)

Less than; Not greater than or equal (signed)

LE, NG (S = 1 AND O = 0) OR (S = 0
AND O = 1) OR (Z = 1)

Less than or equal; Not greater than (signed)

NE, NZ Z = 0 Not equal; Not zero (signed or unsigned)

NO O = 0 No overflow

NS S = 0 Not sign (not negative)

NP, PO P = 0 Not parity; Parity odd

O O = 1 Overflow

P P = 1 Parity; Parity even

S S = 1 Sign (negative)

(Table can be found on page 460 in the textbook.)

43

x86 Single-Instruction, Multiple-Data
(SIMD) Instructions

• 1996 Intel introduced MMX technology into its Pentium
product line
– MMX is a set of highly optimized instructions for multimedia tasks

• Video and audio data are typically composed of large arrays of
small data types

• Three new data types are defined in MMX
– Packed byte
– Packed word
– Packed doubleword

• Each data type is 64 bits in length and consists of multiple
smaller data fields, each of which holds a fixed-point integer

44

Table 13.10

MMX
Instruction

Set

Note: If an instruction supports multiple data types [byte (B), word (W), doubleword (D), quadword (Q)], the data
types are indicated in brackets.

Category Instruction Description

Arithmetic

PADD [B, W, D] Parallel add of packed eight bytes, four 16-bit words, or two
32-bit doublewords, with wraparound.

PADDS [B, W] Add with saturation.

PADDUS [B, W] Add unsigned with saturation.

PSUB [B, W, D] Subtract with wraparound.

PSUBS [B, W] Subtract with saturation.

PSUBUS [B, W] Subtract unsigned with saturation.

PMULHW Parallel multiply of four signed 16-bit words, with high-
order 16 bits of 32-bit result chosen.

PMULLW Parallel multiply of four signed 16-bit words, with low-order 16 bits of 32-bit
result chosen.

PMADDWD Parallel multiply of four signed 16-bit words; add together
adjacent pairs of 32-bit results.

Comparison
PCMPEQ [B, W, D] Parallel compare for equality; result is mask of 1s if true or 0s if false.

PCMPGT [B, W, D] Parallel compare for greater than; result is mask of 1s if true or 0s if false.

Conversion

PACKUSWB Pack words into bytes with unsigned saturation.

PACKSS [WB, DW] Pack words into bytes, or doublewords into words, with signed saturation.

PUNPCKH [BW, WD, DQ] Parallel unpack (interleaved merge) high-
order bytes, words, or doublewords from MMX register.

PUNPCKL [BW, WD, DQ] Parallel unpack (interleaved merge) low-
order bytes, words, or doublewords from MMX register.

Logical

PAND 64-bit bitwise logical AND

PNDN 64-bit bitwise logical AND NOT

POR 64-bit bitwise logical OR

PXOR 64-bit bitwise logical XOR

Shift

PSLL [W, D, Q] Parallel logical left shift of packed words, doublewords, or quadword by amount
specified in MMX register or immediate value.

PSRL [W, D, Q] Parallel logical right shift of packed words, doublewords, or quadword.

PSRA [W, D] Parallel arithmetic right shift of packed words, doublewords, or quadword.

Data transfer MOV [D, Q] Move doubleword or quadword to/from MMX register.

Statemgt EMMS Empty MMX state (empty FP registers tag bits).

(Table can be found on page 462 in the textbook.)

45

Figure 13.11
Image Compositing

on Color Plane
Representation

46

ARM Operation Types

Load and store
instructions

Branch
instructions

Data-
processing
instructions

Multiply
instructions

Parallel
addition and
subtraction
instructions

Extend
instructions

Status register
access

instructions

47

Table 13.11
ARM Conditions
for Conditional

Instruction
Execution

Code Symbol Condition Tested Comment

0000 EQ Z = 1 Equal

0001 NE Z = 0 Not equal

0010 CS/HS C = 1 Carry set/unsigned higher or same

0011 CC/LO C = 0 Carry clear/unsigned lower

00100 MI N = 1 Minus/negative

00101 PL N = 0 Plus/positive or zero

00110 VS V = 1 Overflow

00111 VC V = 0 No overflow

1000 HI C = 1 AND Z = 0 Unsigned higher

1001 LS C = 0 OR Z = 1 Unsigned lower or same

1010 GE N = V
[(N = 1 AND V = 1)
OR (N = 0 AND V = 0)]

Signed greater than or equal

1011 LT N ≠ V
[(N = 1 AND V = 0)
OR (N = 0 AND V = 1)]

Signed less than

1100 GT (Z = 0) AND (N = V) Signed greater than

1101 LE (Z = 1) OR (N ≠ V) Signed less than or equal

1110 AL – Always (unconditional)

1111 – – This instruction can only be executed
unconditionally

(Table can be found on page 465 in the textbook.)

48

Summary

Chapter 13
• Machine instruction

characteristics
– Elements of a machine

instruction
– Instruction representation
– Instruction types
– Number of addresses
– Instruction set design

• Types of operands
– Numbers
– Characters
– Logical data

•Instruction Sets:

•Characteristics and
Functions

• Intel x86 and ARM data types

• Types of operations
– Data transfer
– Arithmetic
– Logical
– Conversion
– Input/output
– System control
– Transfer of control

• Intel x86 and ARM operation
types

	Slide 1
	Machine Instruction Characteristics
	Figure 13.1 Instruction Cycle State Diagram
	Source and result operands can be in one of four areas:
	Figure 13.2 A Simple Instruction Format
	Instruction Representation
	Instruction Types
	Figure 13.3 Programs to Execute Y =
	Slide 9
	Instruction Set Design
	Types of Operands
	Numbers
	Characters
	Logical Data
	Table 13.2 x86 Data Types
	Figure 13.4 x86 Numeric Data Formats
	Single-Instruction-Multiple-Data (SIMD) Data Types
	ARM Data Types
	Figure 13.5 ARM Endian Support—Word Load/Store with E-Bit
	Table 13.3 Common x86 Instruction Set Operations (1 of 3)
	Table 13.3 Common x86 Instruction Set Operations (2 of 3)
	Table 13.3 Common x86 Instruction Set Operations (3 of 3)
	Table 13.4 Processor Actions for Various Types of Operations
	Data Transfer
	Table 13.5 Examples of IBM EAS/390 Data Transfer Operations
	Arithmetic
	Table 13.6 Basic Logical Operations
	Figure 13.6 Shift and Rotate Operations
	Table 13.7 Examples of Shift and Rotate Operations
	Conversion
	Input/Output
	System Control
	Transfer of Control
	Figure 13.7 Branch Instructions
	Skip Instructions
	Procedure Call Instructions
	Figure 13.8 Nested Procedures
	Slide 38
	Figure 13.10 Stack Frame Growth Using Sample Procedures P and Q
	x86 Operation Types
	Table 13.8 x86 Status Flags
	Slide 42
	x86 Single-Instruction, Multiple-Data (SIMD) Instructions
	Table 13.10 MMX Instruction Set
	Figure 13.11 Image Compositing on Color Plane Representation
	ARM Operation Types
	Slide 47
	Summary

