
Copyright © 2019, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Computer Organization and Architecture
Designing for Performance

Chapter 15
Assembly Language and
Related Topics

11th Edition

Assembler
A program that translates assembly language into machine code.

Assembly Language

A symbolic representation of the machine language of a specific processor, augmented by additional
types of statements that facilitate program writing and that provide instructions to the assembler.

Compiler

A program that converts another program from some source language (or programming language)
to machine language (object code). Some compilers output assembly language which is then con-
verted to machine language by a separate assembler. A compiler is distinguished from an assembler
by the fact that each input statement does not, in general, correspond to a single machine instruction
or fixed sequence of instructions. A compiler may support such features as automatic allocation
of variables, arbitrary arithmetic expressions, control structures such as FOR and WHILE loops,
variable scope, input/output operations, higher-order functions and portability of source code.
Executable Code
The machine code generated by a source code language processor such as an assembler or
compiler.
This is software in a form that can be run in the computer.

Instruction Set
The collection of all possible instructions for a particular computer; that is, the collection of
machine language instructions that a particular processor understands.

Linker
A utility program that combines one or more files containing object code from separately compiled
program modules into a single file containing loadable or executable code.
Loader
A program routine that copies an executable program into memory for execution.

Machine Language, or Machine Code
The binary representation of a computer program which is actually read and interpreted by the
computer. A program in machine code consists of a sequence of machine instructions (possibly
interspersed with data). Instructions are binary strings which may be either all the same size (e.g.,
one 32-bit word for many modern RISC microprocessors) or of different sizes.

Object Code
The machine language representation of programming source code. Object code is created by a
compiler or assembler and is then turned into executable code by the linker.

(Table can be found on page 508 in the textbook.)

Table 15.1

Key Terms
For This
Chapter

Figure 15.1
Programming the Statement n = i + j+ k

Motivation for Assembly Language
Programming

• Assembly language is a programming language that is one
step away from machine language

• Typically each assembly language instruction is translated into
one machine instruction by the assembler

• Assembly language is hardware dependent, with a different
assembly language for each type of processor

• Assembly language instructions can make reference to
specific registers in the processor, include all of the opcodes of
the processor, and reflect the bit length of the various registers
of the processor and operands of the machine language
– Therefore, an assembly language programmer must understand the

computer’s architecture

Assembly Language Programming (1 of 2)

Disadvantages
• The disadvantages of using an assembly language

rather than an HLL include:
– Development time
– Reliability and security
– Debugging and verifying
– Maintainability
– Portability
– System code can use intrinsic functions instead of assembly
– Application code can use intrinsic functions or vector classes

instead of assembly
– Compilers have been improved a lot in recent years

Assembly Language Programming (2 of 2)

Advantages
• Advantages to the occasional use of assembly

language include:
– Debugging and verifying
– Making compilers
– Embedded systems
– Hardware drivers and system code
– Accessing instructions that are not accessible from high-level

language
– Self-modifying code
– Optimizing code for size
– Optimizing code for speed
– Function libraries
– Making function libraries compatible with multiple compilers and

operating systems

Assembly Language vs. Machine Language

• The terms assembly language and machine language are
sometimes, erroneously, used synonymously

• Machine language:
▪ Consists of instructions directly executable by the processor
▪ Each machine language instruction is a binary string containing an opcode,

operand references, and perhaps other bits related to execution, such as flags
▪ For convenience, instead of writing an instruction as a bit string, it can be

written symbolically, with names for opcodes and registers

• Assembly language:
▪ Makes much greater use of symbolic names, including assigning names to

specific main memory locations and specific instruction locations
▪ Also includes statements that are not directly executable but serve as

instructions to the assembler that produces machine code from an assembly
language program

Figure 15.2
Assembly-Language Statement Structure

Statements (1 of 3)

Label
• If a label is present, the assembler defines the label as equivalent to the

address into which the first byte of the object code generated for that
instruction will be loaded

• The programmer may subsequently use the label as an address or as
data in another instruction’s address field

• The assembler replaces the label with the assigned value when creating
an object program

• Labels are most frequently used in branch instructions

• Reasons for using a label:
– Makes a program location easier to find and remember
– Can easily be moved to correct a program
– Programmer does not have to calculate relative or absolute memory addresses, but

just uses labels as needed

Statements (2 of 3)

Mnemonic

• The mnemonic is the name of the operation or function of the
assembly language statement

• In the case of a machine instruction, a mnemonic is the
symbolic name associated with a particular opcode

Statements (3 of 3)

Operands
• An assembly language statement includes zero or more

operands

• Each operand identifies an immediate value, a register value,
or a memory location

• Typically the assembly language provides conventions for
distinguishing among the three types of operand references,
as well as conventions for indicating addressing mode

Figure 15.3
Intel x86 Program Execution Registers

Statements (1 of 2)

Comment
• All assembly languages allow the placement of comments in

the program

• A comment can either occur at the right-hand end of an
assembly statement or can occupy and entire test line

• The comment begins with a special character that signals to
the assembler that the rest of the line is a comment and is to
be ignored by the assembler

• Typically, assembly languages for the x86 architecture use a
semicolon (;) for the special character

Statements (2 of 2)

Pseudo-instructions
• Pseudo-instructions are statements which, though not real x86

machine instructions, are used in the instruction field anyway
because that’s the most convenient place to put them

• Pseudo-instructions are not directly translated into machine
language instructions

• Instead, directives are instructions to the assembler to perform
specified actions during the assembly process

• Examples include:
– Define constants
– Designate areas of memory for data storage
– Initialize areas of memory
– Place tables or other fixed data in memory
– Allow references to other programs

Table 15.2
Some NASM Assembly-Language Directives

(a) Letters for RESx and Dx Directives
Unit Letter

byte B

word (2 bytes) W

double word (4 bytes) D

quad word (8 bytes) Q

ten bytes T

(b) Directives
Name Description Example

DB, DW,
DD, DQ,
DT

Initialize locations L6 DD 1A92H
;doubleword at L6 initialized to 1A92H

RESB,
RESW,
RESD,
RESQ,
REST

Reserve uninitialized
locations

BUFFER RESB 64
;reserve 64 bytes starting at BUFFER

INCBIN Include binary file in
output INCBIN “file.dat” ; include this file

EQU Define a symbol to a
given constant value

MSGLEN EQU 25
;the constant MSGLEN equals decimal 25

TIMES Repeat instruction
multiple times

ZEROBUF TIMES 64 DB 0
;initialize 64-byte buffer to all zeros

(Table can be found on page 515 in the textbook)

Macro Definitions (1 of 2)

• A macro definition is similar to a subroutine in several ways
– A subroutine is a section of a program that is written once, and can be used multiple times

by calling the subroutine from any point in the program
– When a program is compiled or assembled, the subroutine is loaded only once
– A call to the subroutine transfers control to the subroutine and a return instruction in the

subroutine returns control to the point of the call

• Similarly, a macro definition is a section of code that the programmer writes
once, and then can use many times
– The main difference is that when the assembler encounters a macro call, it replaces the

macro call with the macro itself
– This process is call macro expansion

• Macros are handled by the assembler at assembly time

• Macros provide the same advantage as subroutines in terms of modular
programming, but without the runtime overhead of a subroutine call and
return
– The tradeoff is that the macro approach uses more space in the object code

Macro Definitions (2 of 2)

In NASM and many other
assemblers, a distinction is
made between a single-line

macro and a multi-line
macro

In NASM, single-line macros
are defined using the

%DEFINE directive

Multiline macros are
defined using the

mnemonic %MACRO

Directives

• A directive is a command embedded in
the assembly source code that is
recognized and acted upon by the
assembler

• NASM includes the following directives:

• BITS
– Specifies whether NASM should generate

code designed to run on a processor
operating in 16-bit mode, 32-bit mode, or 64-
bit mode

• DEFAULT
– Can change some assembler defaults, such

as whether to use relative or absolute
addressing

• SECTION or SEGMENT
– Changes that section of the output file the

source code will be assembled into

• EXTERN
– Used to declare a symbol which is not

defined anywhere in the module being
assembled, but is assumed to be defined in
some other module and needs to be referred
to by this one

• GLOBAL
– Is the other end of EXTERN: if one module

declares a symbol as EXTERN and refers to
it, then in order to prevent linker errors,
some other module must actually define the
symbol and declare it as GLOBAL

• COMMON
– Used to declare common variables

• CPU
– Restricts assembly to those instructions that

are available on the specified CPU

• FLOAT
– Allows the programmer to change some of

the default settings to options other than
those used in IEEE 754

• [WARNING]
– Used to enable or disable classes of

warnings

System Calls

• The assembler makes use of the x86 INT instruction to make
system calls

• There are six registers that store the arguments of the system call
used
• EBX
• ECX
• EDX
• ESI
• EDI
• EDP

• These registers take the consecutive arguments, starting with the
EBX register

• If there are more than six arguments, then the memory location of
the first argument is stored in the EBX register

Figure 15.4
Assembly Programs for Greatest Common
Divisor

Figure 15.5
C Program for Generating Prime Numbers

Figure 15.6
Assembly
Program for
Generating Prime
Numbers

Table 15.3
x86 String Instructions

Operation Name Description

MOVSB Moves the string byte addressed by the ESI register to the location
addressed by the EDI register.

CMPSB Subtracts the destination string byte from the source string element and
updates the status flags in the EFLAGS register according to the results.

SCASB Subtracts the destination string byte from the contents of the AL register
and updates the status flags according to the results.

LODSB Loads the source string byte identified by the ESI register into the EAX
register.

STOSSB Stores the source string byte from the AL register into the memory
location identified with the EDI register.

REP Repeat while the ECX register is not zero.

REPE/REPZ Repeat while the ECX register is not zero and the ZF flag is set.

REPNE/REPNZ Repeat while the ECX register is not zero and the ZF flag is clear.

Figure 15.7
Assembly Program for Moving a String

TYPES OF ASSEMBLERS

• An assembler is a software that translates assembly language into
machine language

• Although all assemblers perform the same tasks, their
implementations vary

• Some of the common terms that describe types of assemblers:
– Cross-assembler
– Resident assembler
– Macroassembler
– Microassembler
– Meta-assembler
– One-pass assembler
– Two-pass assembler

Figure 15.8
Flowchart of Two-Pass Assembler

Figure 15.9
Translating an ARM Assembly Instruction
into a Binary Machine Instruction

One-Pass Assembler

• It is possible to implement as assembler that makes only a single pass through
the source code

• The main difficulty in trying to assemble a program in one pass involves
forward references to labels

• Instruction operands may be symbols that have not yet been defined in the
source program
– Therefore, the assembler does not know with relative address to insert in the

translated instruction

• When the assembler encounters an instruction operand that is a symbol that is
not yet defined, the assembler does the following:
– It leaves the instruction operand field empty in the assembled binary instruction
– The symbol used as an operand is entered in the symbol table and the table entry is

flagged to indicate that the symbol is undefined
– The address of the operand field in the instruction that refers to the undefined symbol

is added to a list of forward references associated with the symbol table entry

Figure 15.10
The Loading Function

Figure 15.11
A Linking and Loading Scenario

Figure 15.12
Addressing Requirements for a Process

Table 15.4
Address Binding (a) Loader

Binding Time Function

Programming time All actual physical addresses are directly specified by the programmer in the
program itself.

Compile or assembly
time

The program contains symbolic address references, and these are converted to
actual physical addresses by the compiler or assembler.

Load time The compiler or assembler produces relative addresses. The loader translates
these to absolute addresses at the time of program loading.

Run time The loaded program retains relative addresses. These are converted dynami-
cally to absolute addresses by processor hardware.

(b) Linker
Linkage Time Function

Programming time
No external program or data references are allowed. The programmer
must place into the program the source code for all subprograms that are
referenced.

Compile or assembly time The assembler must fetch the source code of every subroutine that is refer-
enced and assemble them as a unit.

Load module creation
All object modules have been assembled using relative addresses. These mod-
ules are linked together, and all references are restated relative to the origin
of the final load module.

Load time
External references are not resolved until the load module is to be loaded into
main memory. At that time, referenced dynamic link modules are appended
to the load module, and the entire package is loaded into main or virtual
memory.

Run time
External references are not resolved until the external call is executed by the
processor. At that time, the process is interrupted and the desired module is
linked to the calling program.

(Table can be
found on

 page 529 in
the textbook)

Figure 15.13
Absolute and Relocatable Load Modules

Figure 15.14
The Linking Function

Load-Time Dynamic Linking
• Dynamic Linking is used to refer to the practice of deferring
the linkage of some external modules until after the load
module has been created

• For load-time dynamic linking the steps occur following:
– The load module to be loaded is read into memory
– Any reference to an external module causes the loader to find the target module, load

it, and alter the reference to a relative address in memory from the beginning of the
application module

• Advantages to approach over what might be called static
linking

– It becomes easier to incorporate changed or upgraded versions of the target module
– Having target code in a dynamic link file paves the way for automatic code sharing
– It becomes easier for independent software developers to extend the functionality of a

widely-used operating system such as Linux

• With run-time dynamic linking some of the linking is postponed until
execution time
▪ External references to target modules remain in the loaded program
▪ When a call is made to the absent module, the operating system locates the

module, loads it, and links it to the calling module
▪ Such modules are typically shareable
▪ In the Windows environment these are called dynamic-link libraries (DLLs)
▪ If one process is already making use of a dynamically linked shared module, then

that module is in main memory and a new process can simply link to the already-
loaded module

• The use of DLLs can lead to a problem commonly referred to as DLL
hell
▪ DLL hell occurs if two or more processes are sharing a DLL module, but expect

different versions of the module

Run-Time Dynamic Linking

Summary

Chapter 15
• Assembly language

concepts

• Motivation for assembly
language programming

• Assembly language
elements
– Statements
– Pseudo-instructions
– Macro definitions
– Directives
– System calls

•Assembly
Language and
Related Topics

• Types of assemblers

• Assemblers
– Two-pass assembler
– One-pass assembler

• Loading and linking
– Relocation
– Loading
– Linking

	Computer Organization and Architecture Designing for Performanc
	Table 15.1 Key Terms For This Chapter
	Figure 15.1 Programming the Statement n = i + j+ k
	Motivation for Assembly Language Programming
	Assembly Language Programming (1 of 2)
	Assembly Language Programming (2 of 2)
	Assembly Language vs. Machine Language
	Figure 15.2 Assembly-Language Statement Structure
	Statements (1 of 3)
	Statements (2 of 3)
	Statements (3 of 3)
	Figure 15.3 Intel x86 Program Execution Registers
	Statements (1 of 2)
	Statements (2 of 2)
	Table 15.2 Some NASM Assembly-Language Directives
	Macro Definitions (1 of 2)
	Macro Definitions (2 of 2)
	Directives
	System Calls
	Figure 15.4 Assembly Programs for Greatest Common Divisor
	Figure 15.5 C Program for Generating Prime Numbers
	Figure 15.6 Assembly Program for Generating Prime Numbers
	Table 15.3 x86 String Instructions
	Figure 15.7 Assembly Program for Moving a String
	TYPES OF ASSEMBLERS
	Figure 15.8 Flowchart of Two-Pass Assembler
	Figure 15.9 Translating an ARM Assembly Instruction into a Bin
	One-Pass Assembler
	Figure 15.10 The Loading Function
	Figure 15.11 A Linking and Loading Scenario
	Figure 15.12 Addressing Requirements for a Process
	Table 15.4 Address Binding
	Figure 15.13 Absolute and Relocatable Load Modules
	Figure 15.14 The Linking Function
	Load-Time Dynamic Linking
	Run-Time Dynamic Linking
	Summary

