
Copyright © 2019, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Computer Organization and Architecture
Designing for Performance

Chapter 16
Processor Structure and
Function

11th Edition

Processor Organization

Processor Requirements:
• Fetch instruction

– The processor reads an instruction from memory (register, cache, main memory)
• Interpret instruction

– The instruction is decoded to determine what action is required
• Fetch data

– The execution of an instruction may require reading data from memory or an I/O
module

• Process data
– The execution of an instruction may require performing some arithmetic or logical

operation on data
• Write data

– The results of an execution may require writing data to memory or an I/O module
• In order to do these things the processor needs to store some data

temporarily and therefore needs a small internal memory

Figure 16.1
Internal Structure of the CPU

Register Organization

• Enable the machine or
assembly language
programmer to minimize main
memory references by
optimizing use of registers

• Used by the control unit to
control the operation of the
processor and by privileged
operating system programs to
control the execution of
programs

• Control and Status Registers

• Within the processor there is a set of registers that function as
a level of memory above main memory and cache in the
hierarchy

• The registers in the processor perform two roles:

• User-Visible Registers

User-Visible Registers

Referenced by means
of the machine

language that the
processor executes

• General purpose
• Can be assigned to a variety of functions

by the programmer
• Data
• May be used only to hold data and

cannot be employed in the calculation of
an operand address

• Address
• May be somewhat general purpose or

may be devoted to a particular
addressing mode

• Examples: segment pointers, index
registers, stack pointer

• Condition codes
• Also referred to as flags
• Bits set by the processor hardware as the

result of operations

Categories:

Table 16.1
Condition Codes

Advantages Disadvantages
1. Because condition codes are set by

normal arithmetic and data movement
instructions, they should reduce the
number of COMPARE and TEST
instructions needed.

2. Conditional instructions such as BRANCH
are simplified relative to composite
instructions, such as TEST and BRANCH.

3. Condition codes facilitate multiway
branches. For example, a TEST
instruction can be followed by two
branches, one on less than or equal to
zero and one on greater than zero.

4. Condition codes can be saved on the
stack during subroutine calls along with
other register information.

1. Condition codes add complexity, both to
the hardware and software. Condition
code bits are often modified in different
ways by different instructions, making life
more difficult for both the
microprogrammer and compiler writer.

2. Condition codes are irregular; they are
typically not part of the main data path, so
they require extra hardware connections.

3. Often condition code machines must add
special non-condition-code instructions for
special situations anyway, such as bit
checking, loop control, and atomic
semaphore operations.

4. In a pipelined implementation, condition
codes require special synchronization to
avoid conflicts.

Control and Status Registers

Four registers are essential to instruction execution:
• Program counter (PC)

– Contains the address of an instruction to be fetched

• Instruction register (IR)
– Contains the instruction most recently fetched

• Memory address register (MAR)
– Contains the address of a location in memory

• Memory buffer register (MBR)
– Contains a word of data to be written to memory or the word most

recently read

Program Status Word (PSW)

Register or set of registers that
contain status information

Common fields or flags include:
• Sign
• Zero
• Carry
• Equal
• Overflow
• Interrupt Enable/Disable
• Supervisor

Figure 16.2
Example Microprocessor Register
Organizations

Includes the following
stages:

Fetch

Read the next
instruction from
memory into the

processor

Execute

Interpret the opcode
and perform the

indicated operation

Interrupt

If interrupts are
enabled and an

interrupt has
occurred, save the

current process state
and service the

interrupt

Instruction
Cycle

Figure 16.3
The Instruction Cycle

Figure 16.4
Instruction Cycle State Diagram

Figure 16.5
Data Flow, Fetch Cycle

Figure 16.6
Data Flow, Indirect Cycle

Figure 16.7
Data Flow, Interrupt Cycle

Pipelining Strategy

Similar to the use
of an assembly line
in a manufacturing

plant

New inputs are
accepted at one

end before
previously

accepted inputs
appear as outputs
at the other end

To apply this
concept to
instruction

execution we must
recognize that an
instruction has a
number of stages

Figure 16.8
Two-Stage Instruction Pipeline

Figure 16.9
Simplified Pipeline Architecture

Additional Stages

• Fetch instruction (FI)
– Read the next expected instruction

into a buffer

• Decode instruction (DI)
– Determine the opcode and the

operand specifiers

• Calculate operands (CO)
– Calculate the effective address of

each source operand
– This may involve displacement,

register indirect, indirect, or other
forms of address calculation

• Fetch operands (FO)
– Fetch each operand from

memory
– Operands in registers need

not be fetched

• Execute instruction (EI)
– Perform the indicated

operation and store the
result, if any, in the specified
destination operand location

• Write operand (WO)
– Store the result in memory

Figure 16.10
Timing Diagram for Instruction Pipeline
Operation

Figure 16.11
The Effect of a Conditional Branch on
Instruction Pipeline Operation

Figure 16.12
Six-Stage CPU Instruction Pipeline

Figure 16.13
An Alternative Pipeline Depiction

Figure 16.14
Speedup Factors with Instruction Pipelining

Pipeline Hazards

Occur when the
pipeline, or some

portion of the
pipeline, must stall
because conditions

do not permit
continued execution

Also referred to as a
pipeline bubble

There are three
types of hazards:
• Resource
• Data
• Control

Figure 16.15
Example of Resource Hazard

Figure 16.16
Example of Data Hazard

Types of Data Hazard

• Read after write (RAW), or true dependency
– An instruction modifies a register or memory location
– Succeeding instruction reads data in memory or register location
– Hazard occurs if the read takes place before write operation is complete

• Write after read (WAR), or antidependency
– An instruction reads a register or memory location
– Succeeding instruction writes to the location
– Hazard occurs if the write operation completes before the read operation

takes place

• Write after write (WAW), or output dependency
– Two instructions both write to the same location
– Hazard occurs if the write operations take place in the reverse order of

the intended sequence

Control Hazard

• Also known as a branch hazard

• Occurs when the pipeline makes the wrong decision on a
branch prediction

• Brings instructions into the pipeline that must subsequently
be discarded

• Dealing with Branches:
– Multiple streams
– Prefetch branch target
– Loop buffer
– Branch prediction
– Delayed branch

Multiple Streams
A simple pipeline suffers a penalty for a branch
instruction because it must choose one of two
instructions to fetch next and may make the wrong
choice

A brute-force approach is to replicate the initial
portions of the pipeline and allow the pipeline to fetch
both instructions, making use of two streams

Drawbacks:
• With multiple pipelines there are contention delays for access to
the registers and to memory

• Additional branch instructions may enter the pipeline before the
original branch decision is resolved

Prefetch Branch Target

• When a conditional branch is recognized, the target of the
branch is prefetched, in addition to the instruction following
the branch

• Target is then saved until the branch instruction is executed

• If the branch is taken, the target has already been prefetched

• IBM 360/91 uses this approach

Loop Buffer

• Small, very-high speed memory maintained by the instruction fetch
stage of the pipeline and containing the n most recently fetched
instructions, in sequence

• Benefits:
– Instructions fetched in sequence will be available without the usual memory

access time
– If a branch occurs to a target just a few locations ahead of the address of the

branch instruction, the target will already be in the buffer
– This strategy is particularly well suited to dealing with loops

• Similar in principle to a cache dedicated to instructions
– Differences:

▪ The loop buffer only retains instructions in sequence
▪ Is much smaller in size and hence lower in cost

Figure 16.17
Loop Buffer

Branch Prediction

• Various techniques can be used to predict whether a
branch will be taken:

1. Predict never taken
2. Predict always taken
3. Predict by opcode

4. Taken/not taken switch
5. Branch history table

• These approaches are static
• They do not depend on the

execution history up to the time of
the conditional branch instruction

• These approaches are dynamic
• They depend on the execution history

Figure 16.18
Branch Prediction Flowchart

Figure 16.19
Branch Prediction State Diagram

Figure 16.20
Dealing with Branches

Intel 80486 Pipelining

Write back

Updates registers and status flags modified during the preceding execute stage

Execute
Stage includes ALU operations, cache access, and register update

Decode stage 2
Expands each opcode into control signals for the ALU Also controls the computation of the more complex addressing

modes

Decode stage 1
All opcode and addressing-mode information

is decoded in the D1 stage
3 bytes of instruction are passed to the D1

stage from the prefetch buffers
D1 decoder can then direct the D2 stage to

capture the rest of the instruction

Fetch
Objective is to fill the prefetch buffers with new data as soon as the

old data have been consumed by the instruction decoder
Operates independently of the other stages to keep the prefetch

buffers full

Figure 16.21
80486 Instruction Pipeline Examples

Figure 16.22
Approaches to Pipeline Organization

Figure 16.23
Improved Pipeline Organization

Figure 16.24
Reservation Station Contents

(a) Integer Unit in 32-bit Mode

Type Number Length (bits) Purpose

General 8 32 General-purpose user registers

Segment 6 16 Contain segment selectors

EFLAGS 1 32 Status and control bits

Instruction Pointer 1 32 Instruction pointer

(b) Integer Unit in 64-bit Mode

Type Number Length (bits) Purpose

General 16 32 General-purpose user registers

Segment 6 16 Contain segment selectors

RFLAGS 1 64 Status and control bits

Instruction Pointer 1 64 Instruction pointer

(c) Floating-Point Unit

Type Number Length (bits) Purpose

Numeric 8 80 Hold floating-point numbers

Control 1 16 Control bits

Status 1 16 Status bits

Tag Word 1 16 Specifies contents of numeric
registers

Instruction Pointer 1 48 Points to instruction interrupted by
exception

Data Pointer 1 48 Points to operand interrupted by
exception

Table 16.2

x86
Processor
Registers

Figure 16.25
x86 EFLAGS Register

Figure 16.26
x86 Control Registers

Figure 16.27
Mapping of MMX Registers to Floating-
Point Registers

Interrupt Processing

Interrupts and Exceptions
• Interrupts

– Generated by a signal from hardware and it may occur at random times
during the execution of a program

– Maskable
– Nonmaskable

• Exceptions
– Generated from software and is provoked by the execution of an

instruction
– Processor detected
– Programmed

• Interrupt vector table
– Every type of interrupt is assigned a number
– Number is used to index into the interrupt vector table

Vector Number Description

0 Divide error; division overflow or division by zero

1 Debug exception; includes various faults and traps related to debugging

2 NMI pin interrupt; signal on NMI pin

3 Breakpoint; caused by INT 3 instruction, which is a 1-byte instruction useful for
debugging

4 INTO-detected overflow; occurs when the processor executes INTO with the OF flag set

5 BOUND range exceeded; the BOUND instruction compares a register with boundaries
stored in memory and generates an interrupt if the contents of the register is out
of bounds

6 Undefined opcode

7 Device not available; attempt to use ESC or WAIT instruction fails due to lack of
external device

8 Double fault; two interrupts occur during the same instruction and cannot be handled
serially

9 Reserved

10 Invalid task state segment; segment describing a requested task is not initialized or
not valid

11 Segment not present; required segment not present

12 Stack fault; limit of stack segment exceeded or stack segment not present

13 General protection; protection violation that does not cause another exception (e.g.,
writing to a read-only segment)

14 Page fault

15 Reserved

16 Floating-point error; generated by a floating-point arithmetic instruction

17 Alignment check; access to a word stored at an odd byte address or a doubleword
stored at an address not a multiple of 4

18 Machine check; model specific

19–31 Reserved

32–255 User interrupt vectors; provided when INTR signal is activated

Unshaded: exceptions
Shaded: interrupts

Table
16.3
x86

Exception
and

Interrupt
Vector
Table

The ARM Processor

ARM is primarily a RISC system with the following
attributes:
• Moderate array of uniform registers

• A load/store model of data processing in which operations only perform on
operands in registers and not directly in memory

• A uniform fixed-length instruction of 32 bits for the standard set and 16 bits for the
Thumb instruction set

• Separate arithmetic logic unit (ALU) and shifter units

• A small number of addressing modes with all load/store addresses determined
from registers and instruction fields

• Auto-increment and auto-decrement addressing modes are used to improve the
operation of program loops

• Conditional execution of instructions minimizes the need for conditional branch
instructions, thereby improving pipeline efficiency, because pipeline flushing is
reduced

Figure 16.28
Simplified ARM Organization

Processor Modes

ARM
architecture

supports
seven

execution
modes

Most application
programs
execute in user
mode
• While the processor is

in user mode the
program being
executed is unable to
access protected
system resources or
to change mode,
other than by causing
an exception to occur

Remaining six
execution
modes are
referred to as
privileged
modes
• These modes are

used to run
system software

Advantages to
defining so many
different privileged
modes
•The OS can tailor the
use of system software
to a variety of
circumstances

•Certain registers are
dedicated for use for
each of the privileged
modes, allows swifter
changes in context

Exception Modes

Have full
access to
system

resources and
can change

modes freely

Entered when
specific

exceptions
occur

Exception
modes:
• Supervisor mode
• Abort mode
• Undefined mode
• Fast interrupt

mode
• Interrupt mode

System mode:
• Not entered by any

exception and uses
the same registers
available in User
mode

• Is used for running
certain privileged
operating system
tasks

• May be interrupted by
any of the five
exception categories

Figure 16.29
ARM Register Organization

Figure 16.30
Format of ARM CPSR and SPSR

Exception type Mode
Normal entry

address Description

Reset Supervisor 0x00000000 Occurs when the system is initialized.

Data abort Abort 0x00000010 Occurs when an invalid memory address
has been accessed, such as if there is no
physical memory for an address or the
correct access permission is lacking.

FIQ (fast interrupt) FIQ 0x0000001C Occurs when an external device asserts the
FIQ pin on the processor. An interrupt cannot
be interrupted except by an FIQ. FIQ
is designed to support a data transfer or
channel process, and has sufficient private
registers to remove the need for register
saving in such applications, therefore minimizing
the overhead of context switching.
A fast interrupt cannot be interrupted.

IRQ (interrupt) IRQ 0x00000018 Occurs when an external device asserts the
IRQ pin on the processor. An interrupt
cannot be interrupted except by an FIQ.

Prefetch abort Abort 0x0000000C Occurs when an attempt to fetch an
instruction results in a memory fault. The
exception is raised when the instruction
enters the execute stage of the pipeline.

Undefined instructions Undefined 0x00000004 Occurs when an instruction not in the
instruction set reaches the execute stage of
the pipeline.

Software interrupt Supervisor 0x00000008 Generally used to allow user mode programs
to call the OS. The user program
executes a SWI instruction with an argument
that identifies the function the user
wishes to perform.

Table
16.4

ARM
Interrupt

Vector

Summary

Chapter 16
• Processor organization

• Register organization
– User-visible registers
– Control and status registers

• Instruction cycle
– The indirect cycle
– Data flow

• The x86 processor family
– Register organization
– Interrupt processing

•Processor Structure
and Function

• Instruction pipelining
– Pipelining strategy
– Pipeline performance
– Pipeline hazards
– Dealing with branches
– Intel 80486 pipelining

• The Arm processor
– Processor organization
– Processor modes
– Register organization
– Interrupt processing

	Computer Organization and Architecture Designing for Performanc
	Processor Organization
	Figure 16.1 Internal Structure of the CPU
	Register Organization
	User-Visible Registers
	Table 16.1 Condition Codes
	Control and Status Registers
	Program Status Word (PSW)
	Figure 16.2 Example Microprocessor Register Organizations
	Instruction Cycle
	Figure 16.3 The Instruction Cycle
	Figure 16.4 Instruction Cycle State Diagram
	Figure 16.5 Data Flow, Fetch Cycle
	Figure 16.6 Data Flow, Indirect Cycle
	Figure 16.7 Data Flow, Interrupt Cycle
	Pipelining Strategy
	Figure 16.8 Two-Stage Instruction Pipeline
	Figure 16.9 Simplified Pipeline Architecture
	Additional Stages
	Figure 16.10 Timing Diagram for Instruction Pipeline Operation
	Figure 16.11 The Effect of a Conditional Branch on Instruction
	Figure 16.12 Six-Stage CPU Instruction Pipeline
	Figure 16.13 An Alternative Pipeline Depiction
	Figure 16.14 Speedup Factors with Instruction Pipelining
	Pipeline Hazards
	Figure 16.15 Example of Resource Hazard
	Figure 16.16 Example of Data Hazard
	Types of Data Hazard
	Control Hazard
	Multiple Streams
	Prefetch Branch Target
	Loop Buffer
	Figure 16.17 Loop Buffer
	Branch Prediction
	Figure 16.18 Branch Prediction Flowchart
	Figure 16.19 Branch Prediction State Diagram
	Figure 16.20 Dealing with Branches
	Intel 80486 Pipelining
	Figure 16.21 80486 Instruction Pipeline Examples
	Figure 16.22 Approaches to Pipeline Organization
	Figure 16.23 Improved Pipeline Organization
	Figure 16.24 Reservation Station Contents
	Table 16.2 x86 Processor Registers
	Figure 16.25 x86 EFLAGS Register
	Figure 16.26 x86 Control Registers
	Figure 16.27 Mapping of MMX Registers to Floating- Point Regis
	Interrupt Processing
	Table 16.3 x86 Exception and Interrupt Vector Table
	The ARM Processor
	Figure 16.28 Simplified ARM Organization
	Processor Modes
	Exception Modes
	Figure 16.29 ARM Register Organization
	Figure 16.30 Format of ARM CPSR and SPSR
	Table 16.4 ARM Interrupt Vector
	Summary

