
Copyright © 2019, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Computer Organization and Architecture
Designing for Performance

Chapter 17
Reduced Instruction
Set Computers

11th Edition

2

Complex Instruction Set
(CISC)Computer

Reduced Instruction
Set (RISC) Computer

Characteristic IBM
370/168

VAX
11/780

Intel
80486 SPARC MIPS

R4000

Year developed 1973 1978 1989 1987 1991

Number of instructions 208 303 235 69 94

Instruction size (bytes) 2–6 2–57 1–11 4 4

Addressing modes 4 22 11 1 1

Number of general-
purpose registers 16 16 8 40–520 32

Control memory size
(kbits) 420 480 246 – –

Cache size (kB) 64 64 8 32 128

(Table can be found on page 589 in the textbook.)

Table 17.1
Characteristics of Some CISCs, RISCs,
and Superscalar Processors (1 of 2)

3

Superscalar

Characteristic PowerPC Ultra
SPARC

MIPS
R10000

Year developed 1993 1996 1996

Number of instructions 225

Instruction size (bytes) 4 4 4

Addressing modes 2 1 1

Number of general-purpose
registers 32 40–520 32

Control memory size
(kbits) – – –

Cache size (kB) 16–32 32 64

(Table can be found on page 589 in the textbook.)

Table 17.1
Characteristics of Some CISCs, RISCs,
and Superscalar Processors (2 of 2)

4

High-level languages (HLLs)
•Allow the programmer to express algorithms
more concisely

•Allow the compiler to take care of details that
are not important in the programmer’s
expression of algorithms

•Often support naturally the use of structured
programming and/or object-oriented design

Semantic gap
•The difference between the
operations provided in HLLs
and those provided in
computer architecture

Operations performed
•Determine the functions to be
performed by the processor
and its interaction with
memory

Operands used
•The types of operands and the
frequency of their use
determine the memory
organization for storing them
and the addressing modes for
accessing them

Execution sequencing
•Determines the control and
pipeline organization

Instruction
Execution
Characteristics

5

Dynamic Occurrence
Machine-Instruction

Weighted
Memory-Reference

Weighted

Pascal C Pascal C Pascal C

ASSIGN 45% 38% 13% 13% 14% 15%

LOOP 5% 3% 42% 32% 33% 26%

CALL 15% 12% 31% 33% 44% 45%

IF 29% 43% 11% 21% 7% 13%

GOTO – 3% – – – –

OTHER 6% 1% 3% 1% 2% 1%

(Table can be found on page 591 in the textbook.)

Table 17.2
Weighted Relative Dynamic Frequency
of HLL Operations [PATT82a]

6

Table 17.3
Dynamic Percentage of Operands

Pascal C Average

Integer constant 16% 23% 20%

Scalar variable 58% 53% 55%

Array/Structure 26% 24% 25%

7

Table 17.4
Procedure Arguments and Local Scalar
Variables

Percentage of Executed
Procedure Calls With

Compiler, Interpreter,
and Typesetter

Small Nonnumeric
Programs

> 3 arguments 0–7% 0–5%

> 5 arguments 0–3% 0%

> 8 words of arguments
and local scalars 1–20% 0–6%

> 12 words of arguments
and local scalars 1–6% 0–3%

(Table can be found on page 592 in the textbook.)

8

Implications

• HLLs can best be supported by optimizing performance of the
most time-consuming features of typical HLL programs

• Three elements characterize RISC architectures:
– Use a large number of registers or use a compiler to optimize

register usage

– Careful attention needs to be paid to the design of instruction
pipelines

– Instructions should have predictable costs and be consistent with
a high-performance implementation

9

The Use of a Large Register File

Software Solution
• Requires compiler to

allocate registers

• Allocates based on most
used variables in a given
time

• Requires sophisticated
program analysis

• Hardware Solution
• More registers

• Thus more variables will be in
registers

10

Figure 17.1
Overlapping Register Windows

11

Figure 17.2
Circular-Buffer Organization of Overlapped
Windows

12

Global Variables

• Variables declared as global in an HLL can be assigned memory
locations by the compiler and all machine instructions that reference
these variables will use memory reference operands
– However, for frequently accessed global variables this scheme is inefficient

• Alternative is to incorporate a set of global registers in the processor
– These registers would be fixed in number and available to all procedures
– A unified numbering scheme can be used to simplify the instruction format

• There is an increased hardware burden to accommodate the split in
register addressing

• In addition, the linker must decide which global variables should be
assigned to registers

13

Table 17.5
Characteristics of Large-Register-File
and Cache Organizations

Large Register File Cache

All local scalars Recently-used local scalars

Individual variables Blocks of memory

Compiler-assigned global variables Recently-used global variables

Save/Restore based on procedure nesting
depth

Save/Restore based on cache
replacement algorithm

Register addressing Memory addressing

Multiple operands addressed and accessed
in one cycle

One operand addressed and
accessed per cycle

(Table can be found on page 597 in the textbook.)

14

Figure 17.3
Referencing a Scalar

15

Figure 17.4
Graph Coloring Approach

16

Why CISC ?
(Complex Instruction Set Computer)
• There is a trend to richer instruction sets which include a

larger and more complex number of instructions

• Two principal reasons for this trend:
– A desire to simplify compilers
– A desire to improve performance

• There are two advantages to smaller programs:
– The program takes up less memory
– Should improve performance

 Fewer instructions means fewer instruction bytes to be fetched
 In a paging environment smaller programs occupy fewer pages,

reducing page faults
 More instructions fit in cache(s)

17

Table 17.6
Code Size Relative to RISC I

[PATT82a] 11 C
Programs

[KATE83] 12 C
Programs

[HEAT84] 5 C
Programs

RISC I 1.0 1.0 1.0

VAX-11/780 0.8 0.67

M68000 0.9 0.9

Z8002 1.2 1.12

PDP-11/70 0.9 0.71

(Table can be found on page 601 in the textbook.)

18

Characteristics of Reduced Instruction Set
Architectures (1 of 2)

• Machin
e cycle
--- the
time it
takes
to
fetch
two
operan
ds
from
registe
rs,
perfor
m an
ALU
operati
on,
and
store
the
result
in a
registe
r

One machine
instruction per
machine cycle

• Only
simple
LOAD
and
STORE
operati
ons
accessi
ng
memor
y

• This
simplifi
es the
instruc
tion
set and
therefo
re the
control
unit

Register-to-register
operations

• Simplifi
es the
instruc
tion
set and
the
control
unit

Simple addressing
modes

• Genera
lly only
one or
a few
format
s are
used

• Instruc
tion
length
is fixed
and
aligned
on
word
bound
aries

• Opcod
e
decodi
ng and
registe
r
operan
d
accessi
ng can
occur
simulta
neousl
y

Simple instruction
formats

19

Characteristics of Reduced Instruction Set
Architectures (2 of 2)

“Circumstantial Evidence”
• More effective optimizing compilers can be developed

– With more primitive instructions, there are more opportunities for moving functions
out of loops, reorganizing code for efficiency and maximizing register utilization

– It is even possible to compute parts of complex instructions at compile time

• Most instructions generated by a compiler are relatively simple anyway
– It would seem reasonable that a control unit built specifically for those instructions

and using little or no microcode could execute them faster than a comparable CISC

• RISC researchers feel that the instruction pipelining technique can be applied
much more effectively with a reduced instruction set

• RISC processors are more responsive to interrupts because interrupts are
checked between rather elementary operations
– Architectures with complex instructions either restrict interrupts to instruction

boundaries or must refine specific interruptible points and implement mechanisms
for restarting an instruction

20

Figure 17.5
Two Comparisons of Register-to-Register
and Memory-to-Memory Approaches

21

Table 17.7
Characteristics of Some Processors

Processor

Number of
instruction

sizes

Max
instruction

size
in bytes

Number of
addressing

Modes
Indirect

addressing

Load/store
combined

with
arithmetic

Max
number

of
memory

operands

Unaligned
addressing

Allowed

Max
number
of MMU

uses

Number of
bits for
integer
register
specifier

Number
of bits for

FP register
specifier

AMD29000 1 4 1 no no 1 no 1 8 3a

MIPS
R2000

1 4 1 no no 1 no 1 5 4

SPARC 1 4 2 no no 1 no 1 5 4

MC88000 1 4 3 no no 1 no 1 5 4

HP PA 1 4 10a no no 1 no 1 5 4

IBM RT/PC 2a 4 1 no no 1 no 1 4a 3a

IBM
RS/6000

1 4 4 no no 1 yes 1 5 5

Intel i860 1 4 4 no no 1 no 1 5 4

IBM 3090 4 8 2b nob yes 2 yes 4 4 2

Intel 80486 12 12 15 nob yes 2 yes 4 3 3

NSC 32016 21 21 23 yes yes 2 yes 4 3 3

MC68040 11 22 44 yes yes 2 yes 8 4 3

VAX 56 56 22 yes yes 6 yes 24 4 0

Clipper 4a 8a 9a no no 1 0 2 4a 3a

Intel 80960 2a 8a 9a no no 1 yesa – 5 3a

(Table can be found on page 605
in the textbook.)

a RISC hat does not conform to this characteristic
b CISC that does not conform to this characteristic

22

Figure 17.6
The Effects of Pipelining

23

Optimization of Pipelining

• Delayed branch
– Does not take effect until after execution of following instruction
– This following instruction is the delay slot

• Delayed Load
– Register to be target is locked by processor
– Continue execution of instruction stream until register required
– Idle until load is complete
– Re-arranging instructions can allow useful work while loading

• Loop Unrolling
– Replicate body of loop a number of times
– Iterate loop fewer times
– Reduces loop overhead
– Increases instruction parallelism
– Improved register, data cache, or TLB locality

24

Table 17.8
Normal And Delayed Branch

Address Normal Branch Delayed Branch Optimized
Delayed Branch

100 LOAD X, rA LOAD X, rA LOAD X, rA

101 ADD 1, rA ADD 1, rA JUMP 105

102 JUMP 105 JUMP 106 ADD 1, rA

103 ADD rA, rB NOOP ADD rA, rB

104 SUB rC, rB ADD rA, rB SUB rC, rB

105 STORE rA, Z SUB rC, rB STORE rA, Z

106 STORE rA, Z

(Table can be found on page 608 in the textbook.)

25

Figure 17.7
Use of the Delayed Branch

26

Figure 17.8
Loop Unrolling

27

MIPS R4000

One of the first
commercially available

RISC chip sets was
developed by MIPS

Technology Inc.

Inspired by an
experimental system
developed at Stanford

Has substantially the
same architecture and
instruction set of the
earlier MIPS designs
(R2000 and R3000)

Uses 64 bits for all
internal and external
data paths and for

addresses, registers,
and the ALU

Is partitioned into two
sections, one

containing the CPU
and the other
containing a

coprocessor for
memory management

Supports thirty-two
64-bit registers

Provides for up to 128
Kbytes of high-speed
cache, half each for

instructions and data

28

Figure 17.9
MIPS Instruction Formats

29

Instruction Pipeline

• With its simplified instruction architecture, the MIPS can achieve very efficient
pipelining

• The initial experimental RISC systems and the first generation of commercial
RISC processors achieve execution speeds that approach one instruction per
system clock cycle

• To improve on this performance, two classes of processors have evolved to
offer execution of multiple instructions per clock cycle
– Superscalar architecture

• Replicates each of the pipeline stages so that two or more instruction at the same stage of the
pipeline can be processed simultaneously

• Limitations are: dependencies between instructions in different pipelines can slow down the
system, and, overhead logic is required to coordinate these dependencies

– Super-pipelined architecture
• Makes use of more, and more fine-grained, pipeline stages
• With more stages, more instruction can be in the pipeline at the same time, increasing

parallelism
• Limitation: there is overhead associated with transferring instructions from one stage to the next

30

Figure 17.10
Enhancing the R3000 Pipeline

31

Table 17.9
R3000 Pipeline Stages

Pipeline
Stage Phase Function

IF 1 Using the TLB, translate an instruction virtual address to a physical address (after a
branching decision).

IF 2 Send the physical address to the instruction address.

RD 1
Return instruction from instruction cache.
Compare tags and validity of fetched instruction.

RD 2
Decode instruction.
Read register file.
If branch, calculate branch target address.

ALU 1 + 2 If register-to-register operation, the arithmetic or logical operation is performed.

ALU 1 If a branch, decide whether the branch is to be taken or not.
If a memory reference (load or store), calculate data virtual address.

ALU 2 If a memory reference, translate data virtual address to physical using TLB.

MEM 1 If a memory reference, send physical address to data cache.

MEM 2 If a memory reference, return data from data cache, and check tags.

WB 1 Write to register file.

(Table can be found on page 614 in the textbook.)

32

Figure 17.11
Theoretical R3000 and Actual R4000
Superpipelines

33

R4000 Pipeline Stages
• Instruction fetch first half

– Virtual address is presented to the
instruction cache and the translation
lookaside buffer

• Instruction fetch second half
– Instruction cache outputs the

instruction and the TLB generates
the physical address

• Register file
– One of three activities can occur:

▪ Instruction is decoded and check
made for interlock conditions

▪ Instruction cache tag check is made

▪ Operands are fetched from the register
file

• Tag check
– Cache tag checks are performed for

loads and stores

• Instruction execute
– One of three activities can occur:

▪ If register-to-register operation the
ALU performs the operation

▪ If a load or store the data virtual
address is calculated

▪ If branch the branch target virtual
address is calculated and branch
operations checked

• Data cache first
– Virtual address is presented to the

data cache and TLB

• Data cache second
– The TLB generates the physical

address and the data cache outputs
the data

• Write back
– Instruction result is written back to

register file

34

SPARC
Scalable Processor Architecture

• Architecture defined by Sun Microsystems

• Sun licenses the architecture to other vendors to produce
SPARC-compatible machines

• Inspired by the Berkeley RISC 1 machine, and its instruction
set and register organization is based closely on the Berkeley
RISC model

35

Figure 17.12
SPARC Register Window Layout with
Three Procedures

36

Figure 17.13
Eight Register Windows Forming a
Circular Stack in SPARC

37

Table 17.10
Synthesizing Other Addressing Modes
with SPARC Addressing Modes

Instruction Type Addressing Mode Algorithm SPARC Equivalent

Register-to-register Immediate operand = A S2

Load, store Direct EA = A R0 + S2

Register-to-register Register EA = R RS1, SS2

Load, store Register Indirect EA = (R) RS1 + 0

Load, store Displacement EA = (R) + A RS1 + S2

Note: S2 = either a register operand or a 13-bit immediate operand.

(Table can be found on page 619 in the textbook.)

38

Figure 17.14
SPARC Instruction Formats

39

Figure 17.15
Pipeline Organization with Buffers and
Pre-Decoding

40

Processor Organization for Pipelining

• Three more features to enhance performance are:
– Multiple reservation stations

– Forwarding

– Reorder buffer

• The process or dispatching an instruction to a functional unit proceeds in two parts:
– Issue from ID to reservation station

– Dispatch from reservation station to FU

• The reservation station is also referred to as an instruction window

• Data forwarding addresses the problem of read-after-write (RAW) delays due to WB delays
– As with the store buffer, data forwarding makes data available as soon as it is created

– The forwarded data becomes input to the reservation stations, going to an operand field

• The reorder buffer supports out-of-order execution (OoOE)
– OoOE is an approach to processing that allows instructions for high-performance microprocessors to begin

execution as soon as their operands are ready

– The goal of OoO processing is to allow the processor to avoid a class of stalls that occur when the data
needed to perform an operation are unavailable

41

Figure 17.16
Pipeline Organization with Forwarding, Reorder
Buffer, and Multiple Reservation Stations

42

Summary

Chapter 17
• Instruction execution characteristics

– Operations
– Operands
– Procedure calls
– Implications

• The use of a large register file
– Register windows
– Global variables
– Large register file versus cache

• Reduced instruction set architecture
– Characteristics of RISC
– CISC versus RISC characteristics

•Reduced Instruction
Set Computers

•(RISC)
• RISC pipelining

– Pipelining with regular instructions
– Optimization of pipelining

• MIPS R4000
– Instruction set
– Instruction pipeline

• SPARC
– SPARC register set
– Instruction set
– Instruction format

• Processor Organization for Pipelining
• CISC, RISC, and contemporary

systems

	Computer Organization and Architecture Designing for Performanc
	Table 17.1 Characteristics of Some CISCs, RISCs, and Supersca
	Table 17.1 Characteristics of Some CISCs, RISCs, and Supersca (2)
	Instruction Execution Characteristics
	Table 17.2 Weighted Relative Dynamic Frequency of HLL Operati
	Table 17.3 Dynamic Percentage of Operands
	Table 17.4 Procedure Arguments and Local Scalar Variables
	Implications
	The Use of a Large Register File
	Figure 17.1 Overlapping Register Windows
	Figure 17.2 Circular-Buffer Organization of Overlapped Windows
	Global Variables
	Table 17.5 Characteristics of Large-Register-File and Cache
	Figure 17.3 Referencing a Scalar
	Figure 17.4 Graph Coloring Approach
	Why CISC ?
	Table 17.6 Code Size Relative to RISC I
	Characteristics of Reduced Instruction Set Architectures (1 of
	Characteristics of Reduced Instruction Set Architectures (2 of
	Figure 17.5 Two Comparisons of Register-to-Register and Memory
	Table 17.7 Characteristics of Some Processors
	Figure 17.6 The Effects of Pipelining
	Optimization of Pipelining
	Table 17.8 Normal And Delayed Branch
	Figure 17.7 Use of the Delayed Branch
	Figure 17.8 Loop Unrolling
	MIPS R4000
	Figure 17.9 MIPS Instruction Formats
	Instruction Pipeline
	Figure 17.10 Enhancing the R3000 Pipeline
	Table 17.9 R3000 Pipeline Stages
	Figure 17.11 Theoretical R3000 and Actual R4000 Superpipelines
	R4000 Pipeline Stages
	SPARC
	Figure 17.12 SPARC Register Window Layout with Three Procedure
	Figure 17.13 Eight Register Windows Forming a Circular Stack i
	Table 17.10 Synthesizing Other Addressing Modes with SPARC
	Figure 17.14 SPARC Instruction Formats
	Figure 17.15 Pipeline Organization with Buffers and Pre-Decodi
	Processor Organization for Pipelining
	Figure 17.16 Pipeline Organization with Forwarding, Reorder Bu
	Summary

