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Complex Instruction Set
(CISC)Computer

Reduced Instruction
Set (RISC) Computer

Characteristic IBM
370/168

VAX
11/780

Intel
80486 SPARC MIPS

R4000

Year developed 1973 1978 1989 1987 1991

Number of instructions 208 303 235 69 94

Instruction size (bytes) 2–6 2–57 1–11 4 4

Addressing modes 4 22 11 1 1

Number of general-
purpose registers 16 16 8 40–520 32

Control memory size
(kbits) 420 480 246 – –

Cache size (kB) 64 64 8 32 128

(Table can be found on page 589 in the textbook.)

Table 17.1  
Characteristics of Some CISCs, RISCs, 
and Superscalar Processors (1 of 2)
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Superscalar

Characteristic PowerPC Ultra
SPARC

MIPS
R10000

Year developed 1993 1996 1996

Number of instructions 225

Instruction size (bytes) 4 4 4

Addressing modes 2 1 1

Number of general-purpose 
registers 32 40–520 32

Control memory size
(kbits) – – –

Cache size (kB) 16–32 32 64

(Table can be found on page 589 in the textbook.)

Table 17.1  
Characteristics of Some CISCs, RISCs, 
and Superscalar Processors (2 of 2)
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High-level languages (HLLs)
•Allow the programmer to express algorithms 
more concisely

•Allow the compiler to take care of details that 
are not important in the programmer’s 
expression of algorithms

•Often support naturally the use of structured 
programming and/or object-oriented design

Semantic gap
•The difference between the 
operations provided in HLLs     
and those provided in 
computer architecture

Operations performed
•Determine the functions to be 
performed by the processor 
and its interaction with 
memory

Operands used
•The types of operands and the 
frequency of their use 
determine the memory 
organization for storing them 
and the addressing modes for 
accessing them

Execution sequencing
•Determines the control and 
pipeline organization

Instruction 
Execution 
Characteristics
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Dynamic Occurrence
Machine-Instruction

Weighted
Memory-Reference

Weighted

Pascal C Pascal C Pascal C

ASSIGN 45% 38% 13% 13% 14% 15%

LOOP 5% 3% 42% 32% 33% 26%

CALL 15% 12% 31% 33% 44% 45%

IF 29% 43% 11% 21% 7% 13%

GOTO – 3% – – – –

OTHER 6% 1% 3% 1% 2% 1%

(Table can be found on page 591 in the textbook.)

Table 17.2  
Weighted Relative Dynamic Frequency 
of HLL Operations [PATT82a]
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Table 17.3  
Dynamic Percentage of Operands 

Pascal C Average

Integer constant 16% 23% 20%

Scalar variable 58% 53% 55%

Array/Structure 26% 24% 25%
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Table 17.4 
Procedure Arguments and Local Scalar 
Variables 

Percentage of Executed
Procedure Calls With

Compiler, Interpreter,
and Typesetter

Small Nonnumeric
Programs

> 3 arguments 0–7% 0–5%

> 5 arguments 0–3% 0%

> 8 words of arguments 
and local scalars 1–20% 0–6%

> 12 words of arguments 
and local scalars 1–6% 0–3%

(Table can be found on page 592 in the textbook.)
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Implications

• HLLs can best be supported by optimizing performance of the 
most time-consuming features of typical HLL programs

• Three elements characterize RISC architectures:
– Use a large number of registers or use a compiler to optimize 

register usage

– Careful attention needs to be paid to the design of instruction 
pipelines

– Instructions should have predictable costs and be consistent with 
a high-performance implementation
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The Use of a Large Register File

Software Solution
• Requires compiler to 

allocate registers

• Allocates based on most 
used variables in a given 
time

• Requires sophisticated 
program analysis

• Hardware Solution
• More registers

• Thus more variables will be in 
registers
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Figure 17.1 
Overlapping Register Windows



11

Figure 17.2
Circular-Buffer Organization of Overlapped 
Windows
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Global Variables

• Variables declared as global in an HLL can be assigned memory 
locations by the compiler and all machine instructions that reference 
these variables will use memory reference operands
– However, for frequently accessed global variables this scheme is inefficient

• Alternative is to incorporate a set of global registers in the processor
– These registers would be fixed in number and available to all procedures
– A unified numbering scheme can be used to simplify the instruction format

• There is an increased hardware burden to accommodate the split in 
register addressing

• In addition, the linker must decide which global variables should be 
assigned to registers
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Table 17.5  
Characteristics of Large-Register-File 
and Cache Organizations 

Large Register File Cache

All local scalars Recently-used local scalars

Individual variables Blocks of memory

Compiler-assigned global variables Recently-used global variables

Save/Restore based on procedure nesting
depth

Save/Restore based on cache
replacement algorithm

Register addressing Memory addressing

Multiple operands addressed and accessed
in one cycle

One operand addressed and
accessed per cycle

(Table can be found on page 597 in the textbook.)
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Figure 17.3 
Referencing a Scalar
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Figure 17.4
Graph Coloring Approach
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Why CISC ?
(Complex Instruction Set Computer)
• There is a trend to richer instruction sets which include a 

larger and more complex number of instructions

• Two principal reasons for this trend:
– A desire to simplify compilers
– A desire to improve performance

• There are two advantages to smaller programs:
– The program takes up less memory
– Should improve performance

 Fewer instructions means fewer instruction bytes to be fetched
 In a paging environment smaller programs occupy fewer pages, 

reducing page faults
 More instructions fit in cache(s)
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Table 17.6  
Code Size Relative to RISC I 

[PATT82a] 11 C
Programs

[KATE83] 12 C
Programs

[HEAT84] 5 C
Programs

RISC I 1.0 1.0 1.0

VAX-11/780 0.8 0.67

M68000 0.9 0.9

Z8002 1.2 1.12

PDP-11/70 0.9 0.71

(Table can be found on page 601 in the textbook.)
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Characteristics of Reduced Instruction Set 
Architectures (1 of 2)

• Machin
e cycle 
--- the 
time it 
takes 
to 
fetch 
two 
operan
ds 
from 
registe
rs, 
perfor
m an 
ALU 
operati
on, 
and 
store 
the 
result 
in a 
registe
r

One machine 
instruction per 
machine cycle

• Only 
simple 
LOAD 
and 
STORE 
operati
ons 
accessi
ng 
memor
y

• This 
simplifi
es the 
instruc
tion 
set and 
therefo
re the 
control 
unit

Register-to-register 
operations

• Simplifi
es the 
instruc
tion 
set and 
the 
control 
unit

Simple addressing 
modes

• Genera
lly only 
one or 
a few 
format
s are 
used

• Instruc
tion 
length 
is fixed 
and 
aligned 
on 
word 
bound
aries

• Opcod
e 
decodi
ng and 
registe
r 
operan
d 
accessi
ng can 
occur 
simulta
neousl
y

Simple instruction 
formats
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Characteristics of Reduced Instruction Set 
Architectures (2 of 2)

“Circumstantial Evidence”
• More effective optimizing compilers can be developed

– With more primitive instructions, there are more opportunities for moving functions 
out of loops, reorganizing code for efficiency and maximizing register utilization

– It is even possible to compute parts of complex instructions at compile time

• Most instructions generated by a compiler are relatively simple anyway
– It would seem reasonable that a control unit built specifically for those instructions 

and using little or no microcode could execute them faster than a comparable CISC

• RISC researchers feel that the instruction pipelining technique can be applied 
much more effectively with a reduced instruction set

• RISC processors are more responsive to interrupts because interrupts are 
checked between rather elementary operations
– Architectures with complex instructions either restrict interrupts to instruction 

boundaries or must refine specific interruptible points and implement mechanisms 
for restarting an instruction
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Figure 17.5 
Two Comparisons of Register-to-Register 
and Memory-to-Memory Approaches
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Table 17.7 
Characteristics of Some Processors

Processor

Number of
instruction

sizes

Max
instruction

size
in bytes

Number of
addressing

Modes
Indirect

addressing

Load/store
combined

with
arithmetic

Max
number 

of
memory

operands

Unaligned
addressing

Allowed

Max
number
of MMU

uses

Number of
bits for
integer
register
specifier

Number
of bits for

FP register
specifier

AMD29000 1 4 1 no no 1 no 1 8 3a

MIPS 
R2000

1 4 1 no no 1 no 1 5 4

SPARC 1 4 2 no no 1 no 1 5 4

MC88000 1 4 3 no no 1 no 1 5 4

HP PA 1 4 10a no no 1 no 1 5 4

IBM RT/PC 2a 4 1 no no 1 no 1 4a 3a

IBM 
RS/6000

1 4 4 no no 1 yes 1 5 5

Intel i860 1 4 4 no no 1 no 1 5 4

IBM 3090 4 8 2b nob yes 2 yes 4 4 2

Intel 80486 12 12 15 nob yes 2 yes 4 3 3

NSC 32016 21 21 23 yes yes 2 yes 4 3 3

MC68040 11 22 44 yes yes 2 yes 8 4 3

VAX 56 56 22 yes yes 6 yes 24 4 0

Clipper 4a 8a 9a no no 1 0 2 4a 3a

Intel 80960 2a 8a 9a no no 1 yesa – 5 3a

(Table can be found on page 605 
in the textbook.)

a    RISC hat does not conform to this characteristic
b    CISC that does not conform to this characteristic
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Figure 17.6
The Effects of Pipelining
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Optimization of Pipelining

• Delayed branch
– Does not take effect until after execution of following instruction
– This following instruction is the delay slot

• Delayed Load
– Register to be target is locked by processor
– Continue execution of instruction stream until register required
– Idle until load is complete
– Re-arranging instructions can allow useful work while loading

• Loop Unrolling
– Replicate body of loop a number of times
– Iterate loop fewer times
– Reduces loop overhead
– Increases instruction parallelism
– Improved register, data cache, or TLB locality
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Table 17.8  
Normal And Delayed Branch 

Address Normal Branch Delayed Branch Optimized
Delayed Branch

100 LOAD X, rA LOAD X, rA LOAD X, rA

101 ADD 1, rA ADD  1, rA JUMP 105

102 JUMP 105 JUMP 106 ADD 1, rA

103 ADD  rA, rB NOOP ADD rA, rB

104 SUB  rC, rB ADD  rA, rB SUB rC, rB

105 STORE  rA, Z SUB rC, rB STORE rA, Z

106 STORE  rA, Z

(Table can be found on page 608 in the textbook.)
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Figure 17.7
Use of the Delayed Branch
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Figure 17.8 
Loop Unrolling
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MIPS R4000

One of the first 
commercially available 

RISC chip sets was 
developed by MIPS 

Technology Inc.

Inspired by an 
experimental system 
developed at Stanford

Has substantially the 
same architecture and 
instruction set of the 
earlier MIPS designs 
(R2000 and R3000)

Uses 64 bits for all 
internal and external 
data paths and for 

addresses, registers, 
and the ALU

Is partitioned into two 
sections, one 

containing the CPU 
and the other 
containing a 

coprocessor for 
memory management

Supports thirty-two      
64-bit registers

Provides for up to 128 
Kbytes of high-speed 
cache, half each for 

instructions and data
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Figure 17.9
MIPS Instruction Formats
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Instruction Pipeline

• With its simplified instruction architecture, the MIPS can achieve very efficient 
pipelining

• The initial experimental RISC systems and the first generation of commercial 
RISC processors achieve execution speeds that approach one instruction per 
system clock cycle

• To improve on this performance, two classes of processors have evolved to 
offer execution of multiple instructions per clock cycle
– Superscalar architecture

• Replicates each of the pipeline stages so that two or more instruction at the same stage of the 
pipeline can be processed simultaneously

• Limitations are:  dependencies between instructions in different pipelines can slow down the 
system, and, overhead logic is required to coordinate these dependencies

– Super-pipelined architecture
• Makes use of more, and more fine-grained, pipeline stages
• With more stages, more instruction can be in the pipeline at the same time, increasing 

parallelism
• Limitation:  there is overhead associated with transferring instructions from one stage to the next
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Figure 17.10
Enhancing the R3000 Pipeline
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Table 17.9
R3000 Pipeline Stages

Pipeline
Stage Phase Function

IF 1 Using the TLB, translate an instruction virtual address to a physical address (after a 
branching decision).

IF 2 Send the physical address to the instruction address.

RD 1
Return instruction from instruction cache. 
Compare tags and validity of fetched instruction.

RD 2
Decode instruction. 
Read register file.
If branch, calculate branch target address.

ALU 1 + 2 If register-to-register operation, the arithmetic or logical operation is performed.

ALU 1 If a branch, decide whether the branch is to be taken or not.
If a memory reference (load or store), calculate data virtual address.

ALU 2 If a memory reference, translate data virtual address to physical using TLB.

MEM 1 If a memory reference, send physical address to data cache.

MEM 2 If a memory reference, return data from data cache, and check tags.

WB 1 Write to register file.

(Table can be found on page 614 in the textbook.)
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Figure 17.11 
Theoretical R3000 and Actual R4000 
Superpipelines
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R4000 Pipeline Stages
• Instruction fetch first half

– Virtual address is presented to the 
instruction cache and the translation 
lookaside buffer

• Instruction fetch second half
– Instruction cache outputs the 

instruction and the TLB generates 
the physical address

• Register file
– One of three activities can occur:

▪ Instruction is decoded and check 
made for interlock conditions

▪ Instruction cache tag check is made

▪ Operands are fetched from the register 
file

• Tag check
– Cache tag checks are performed for 

loads and stores

• Instruction execute
– One of three activities can occur:

▪ If register-to-register operation the 
ALU performs the operation

▪ If a load or store the data virtual 
address is calculated

▪ If branch the branch target virtual 
address is calculated and branch 
operations checked

• Data cache first
– Virtual address is presented to the 

data cache and TLB 

• Data cache second
– The TLB generates the physical 

address and the data cache outputs 
the data

• Write back
– Instruction result is written back to 

register file
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SPARC
Scalable Processor Architecture

• Architecture defined by Sun Microsystems

• Sun licenses the architecture to other vendors to produce 
SPARC-compatible machines

• Inspired by the Berkeley RISC 1 machine, and its instruction 
set and register organization is based closely on the Berkeley 
RISC model
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Figure 17.12 
SPARC Register Window Layout with 
Three Procedures
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Figure 17.13 
Eight Register Windows Forming a 
Circular Stack in SPARC
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Table 17.10   
Synthesizing Other Addressing Modes 
with SPARC Addressing Modes 

Instruction Type Addressing Mode Algorithm SPARC Equivalent

Register-to-register Immediate operand = A S2

Load, store Direct EA = A R0 + S2

Register-to-register Register EA = R RS1, SS2

Load, store Register Indirect EA = (R) RS1 + 0

Load, store Displacement EA = (R) + A RS1 + S2

Note: S2 = either a register operand or a 13-bit immediate operand.

(Table can be found on page 619 in the textbook.)



38

Figure 17.14 
SPARC Instruction Formats



39

Figure 17.15 
Pipeline Organization with Buffers and 
Pre-Decoding
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Processor Organization for Pipelining

• Three more features to enhance performance are:
– Multiple reservation stations

– Forwarding 

– Reorder buffer

• The process or dispatching an instruction to a functional unit proceeds in two parts:
– Issue from ID to reservation station

– Dispatch from reservation station to FU

• The reservation station is also referred to as an instruction window

• Data forwarding addresses the problem of read-after-write (RAW) delays due to WB delays
– As with the store buffer, data forwarding makes data available as soon as it is created

– The forwarded data becomes input to the reservation stations, going to an operand field

• The reorder buffer supports out-of-order execution (OoOE)
– OoOE  is an approach to processing that allows instructions for high-performance microprocessors to begin 

execution as soon as their operands are ready

– The goal of OoO processing is to allow the processor to avoid a class of stalls that occur when the data 
needed to perform an operation are unavailable
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Figure 17.16 
Pipeline Organization with Forwarding, Reorder 
Buffer, and Multiple Reservation Stations
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Summary

Chapter 17     
• Instruction execution characteristics

– Operations
– Operands
– Procedure calls
– Implications 

• The use of a large register file
– Register windows
– Global variables
– Large register file versus cache

• Reduced instruction set architecture
– Characteristics of RISC
– CISC versus RISC characteristics

•Reduced Instruction 
Set Computers

•(RISC)
• RISC pipelining

– Pipelining with regular instructions
– Optimization of pipelining

• MIPS R4000
– Instruction set
– Instruction pipeline

• SPARC
– SPARC register set
– Instruction set
– Instruction format

• Processor Organization for Pipelining
• CISC, RISC, and contemporary 

systems
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