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Recall: What is an operating system? 
•  Special layer of software that provides 

application software access to hardware 
resources 

–  Convenient abstraction of complex hardware devices 
–  Protected access to shared resources 
–  Security and authentication 
–  Communication amongst logical entities 
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What is an Operating System? 
•  Referee 

–  Manage sharing of resources, Protection, Isolation 
»  Resource allocation, isolation, communication 

•  Illusionist 
–  Provide clean, easy to use abstractions of physical 

resources 
»  Infinite memory, dedicated machine 
»  Higher level objects: files, users, messages 
»  Masking limitations, virtualization 

•  Glue 
–  Common services 

»  Storage, Window system, Networking 
»  Sharing, Authorization 
»  Look and feel 
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Recall 
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OS Basics: Loading 
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Today: four fundamental OS concepts 

•  Privileged/User Mode 
–  The hardware can operate in two modes, with only the “system” 

mode having the ability to access certain resources. 

•  Address Space 
–  Programs execute in an address space that is distinct from the 

memory space of the physical machine 

•  Process 
–  An instance of an executing program is a process consisting of 

an address space and one or more threads of control 

•  Protection 
–  The OS and the hardware are protected from user programs and 

user programs are isolated from one another by controlling the 
translation from program virtual addresses to machine physical 
addresses 
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OS Bottom Line: Run Programs 

•  Load instruction and data segments 
of executable file into memory 

•  Create stack and heap 
•  “Transfer control to it” 
•  Provide services to it 
•  While protecting OS and it 
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Why no stack or heap in executable? 

•  What about data segment? 
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Today we need one key 61B concept 
The instruction cycle 
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Key OS Concept: the Process 
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Address Space 

•  What’s in the code segment? Data? 
•  What’s in the stack segment? 

–  How is it allocated? How big is it? 

•  What’s in the heap segment? 
–  How is it allocated?  How big? 
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Thread of Control 
•  A thread is executing on a processor when it is 

resident in the processor registers. 
•  PC register holds the address of executing 

instruction in the thread. 
•  Certain registers hold the context of thread 

–  Stack pointer holds the address of the top of stack 
»  Other conventions: Frame Pointer, Heap Pointer, Data 

–  May be defined by the instruction set architecture or by 
compiler conventions 

•  Registers hold the root state of the thread. 
–  The rest is “in memory” 
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In a Picture 

9/3/14 UCB CS162 Fa14 L2! 12 

Processor 
registers 

PC: 

0x000… 

0xFFF… 

Code Segment 

Static Data 

heap 

stack 

instruction 

SP: 



User/Kernal(Priviledged) Mode 
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Multiprogramming - Multiple Processes 
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Dual Mode Operation 
•  What is needed in the hardware to support “dual 

mode” operation? 
•  a bit of state (user/system mode bit) 
•  Certain operations / actions only permitted in 

system/kernel mode 
–  In user mode they fail or trap 

•  User->Kernel transition sets system mode AND 
saves the user PC 

–  Operating system code carefully puts aside user state then 
performs the necessary operations 

•  Kernel->User transition clears system mode AND 
restores appropriate user PC 

–  return-from-interrupt 
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Key OS Concept: Address Space 
•  Program operates in an address space that is 

distinct from the physical memory space of the 
machine 
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A simple address translation: B&B 

•  Can the pgm touch OS? 
•  Can it touch other pgms? 
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A different base and bound 
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Key OS Concept: Protection 
•  Operating System must protect itself from user 

programs 
–  Reliability: compromising the operating system generally 

causes it to crash 
–  Security: limit the scope of what processes can do 
–  Privacy: limit each process to the data it is permitted to access 
–  Fairness: each should be limited to its appropriate share 

•  It must protect User programs from one another 
•  Primary Mechanism: limit the translation from 

program address space to physical memory space 
–  Can only touch what is mapped in 

•  Additional Mechanisms: 
–  Privileged instructions, in/out instructions, special registers 
–  syscall processing, subsystem implementation  

»  (e.g., file access right)  
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Simple B&B: OS loads process 
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Simple B&B: OS gets ready to switch 

•  Priv Inst: set 
special 
registers 

•  RTU 
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Simple B&B: “Return” to User 
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Logistics Break 
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Recall: Getting started 
•  Start homework 0 immediately 

–  Gets cs162-xx@cory.eecs.berkeley.edu (and other inst m/c) 
–  Github account 
–  Registration survey 
–  Vagrant virtualbox – VM environment for the course 

»  Consistent, managed environment on your machine 
–  icluster24.eecs.berkeley.edu is same 
–  Get familiar with all the cs162 tools 
–  Submit to autograder via git 

•  Go to section  
•  Waitlist ??? 

–  Pull hw0, can get inst acct 
–  Will process at least weekly (thru early drop deadline) 
–  Only registered students will form project groups 
–  If cs162 is not for you now, please allow others to take it 
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Personal Integrity 

•  UCB Academic Honor Code: "As a member of 
the UC Berkeley community, I act with honesty, 
integrity, and respect for others." 
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http://asuc.org/honorcode/resources/HC%20Guide%20for%20Syllabi.pdf 



CS 162 Collaboration Policy!
"

Explaining a concept to someone in another group"
Discussing algorithms/testing strategies with other groups"
Helping debug someone else’s code (in another group)"
Searching online for generic algorithms (e.g., hash table) "
"

Sharing code or test cases with another group"
Copying OR reading another group’s code or test cases"
Copying OR reading online code or test cases from from 
prior years "
"

We compare all project submissions against prior year 
submissions and online solutions and will take actions 
(described on the course overview page) against offenders "
"

"
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3 types of Mode Transfer 
•  Syscall 

–  Process requests a system service, e.g., exit 
–  Like a function call, but “outside” the process 
–  Does not have the address of the system function to call 
–  Like a Remote Procedure Call (RPC) – for later 
–  Marshall the syscall id and args in registers and exec syscall 

•  Interrupt 
–  External asynchronous event triggers context switch 
–  eg. Timer, I/O device 
–  Independent of user process 

•  Trap or Exception 
–  Internal synchronous event in process triggers context switch 
–  e.g., Protection violation (segmentation fault), Divide by zero, … 

•  All 3 are an UNPROGRAMMED CONTROL TRANSFER 
–  Where does it go? 
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How do we get the system target 
address of the “unprogrammed 
control transfer?” 
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Interrupt Vector 

•  Where else do you see this dispatch pattern? 
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Simple B&B: User => Kernel 
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Simple B&B: Interrupt 
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Simple B&B: Switch User Process 
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Simple B&B: “resume” 
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What’s wrong with this simplistic 
address translation mechanism? 
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x86 – segments and stacks 
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Virtual Address Translation 
•  Simpler, more useful schemes too! 
•  Give every process the illusion of its own BIG 

FLAT ADDRESS SPACE 
–  Break it into pages 
–  More on this later 
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Running Many Programs ??? 
•  We have the basic mechanism to  

–  switch between user processes and the kernel,  
–  the kernel can switch among user processes, 
–  Protect OS from user processes and processes from each other 

•  Questions ??? 
•  How do we decide which user process to run? 
•  How do we represent user processes in the OS? 
•  How do we pack up the process and set it aside? 
•  How do we get a stack and heap for the kernel? 
•  Aren’t we wasting are lot of memory? 
•  … 
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Process Control Block 
•  Kernel represents each process as a process 

control block (PCB) 
–  Status (running, ready, blocked, …) 
–  Register state (when not ready) 
–  Process ID (PID), User, Executable, Priority, … 
–  Execution time, … 
–  Memory space, translation, … 

•  Kernel Scheduler maintains a data structure 
containing the PCBs 

•  Scheduling algorithm selects the next one to run 
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Scheduler 
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if ( readyProcesses(PCBs) ) { 
 nextPCB = selectProcess(PCBs); 
 run( nextPCB ); 

} else { 
 run_idle_process(); 

} 



Putting it together: web server 
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Digging Deeper: Discussion & 
Questions 
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Implementing Safe Mode Transfers 
•  Carefully constructed kernel code packs up the 

user process state an sets it aside. 
–  Details depend on the machine architecture 

•  Should be impossible for buggy or malicious user 
program to cause the kernel to corrupt itself. 

•  Interrupt processing must not be visible to the 
user process (why?) 

–  Occurs between instructions, restarted transparently 
–  No change to process state 
–  What can be observed even with perfect interrupt processing? 
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Kernel Stack Challenge 
•  Kernel needs space to work 
•  Cannot put anything on the user stack (Why?) 
•  Two-stack model 

–  OS thread has interrupt stack (located in kernel memory) plus 
User stack (located in user memory) 

–  Syscall handler copies user args to kernel space before 
invoking specific function (e.g., open) 

–  Interrupts (???) 
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Hardware support: Interrupt Control 
•  Interrupt Handler invoked with interrupts 

‘disabled’ 
–  Re-enabled upon completion 
–  Non-blocking (run to completion, no waits) 
–  Pack it up in a queue and pass off to an OS thread to do the 

hard work 
»  wake up an existing OS thread  

•  OS kernel may enable/disable interrupts 
–  On x86: CLI (disable interrupts), STI (enable) 
–  Atomic section when select next process/thread to run 
–  Atomic return from interrupt or syscall 

•  HW may have multiple levels of interrupt 
–  Mask off (disable) certain interrupts, eg., lower priority 
–  Certain non-maskable-interrupts (nmi) 

»  e.g., kernel segmentation fault 
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How do we take interrupts safely? 
•  Interrupt vector 

–  Limited number of entry points into kernel 

•  Kernel interrupt stack 
–  Handler works regardless of state of user code 

•  Interrupt masking 
–  Handler is non-blocking 

•  Atomic transfer of control 
–  “Single instruction”-like to change:  

»  Program counter 
»  Stack pointer 
»  Memory protection 
»  Kernel/user mode 

•  Transparent restartable execution 
–  User program does not know interrupt occurred 
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Kernel System Call Handler 
•  Locate arguments 

–  In registers or on user(!) stack 

•  Copy arguments 
–  From user memory into kernel memory 
–  Protect kernel from malicious code evading checks 

•  Validate arguments 
–  Protect kernel from errors in user code 

•  Copy results back  
–  into user memory 



Multiprocessors - Multicores – 
Multiple Threads 
•  What do we need to support Multiple Threads 

–  Multiple kernel threads? 
–  Multiple user threads in a process? 

•  What if we have multiple Processors / Cores 
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Idle Loop & Power 
•  Measly do-nothing unappreciated trivial piece of 

code that is central to low-power 
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Performance 
•  Performance = Operations / Time 

•  How can the OS ruin application performance? 
•  What can the OS do to increase application 

performance? 
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4 OS concepts working together 

•  Privilege/User Mode 
–  The hardware can operate in two modes, with only the 

“system” mode having the ability to access certain 
resources. 

•  Address Space 
–  Programs execute in an address space that is distinct from 

the memory space of the physical machine 

•  Process 
–  An instance of an executing program is a process consisting 

of an address space and one or more threads of control 

•  Protection 
–  The OS and the hardware are protected from user programs 

and user programs are isolated from one another by 
controlling the translation from program virtual addresses to 
machine physical addresses 
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