
Introduction to the Process

David E. Culler
 CS162 – Operating Systems and Systems Programming

Lecture 2
Sept 3, 2014

Reading: A&D	 CH2.1-‐7
HW: 0 out, due 9/8

Recall: What is an operating system?
•  Special layer of software that provides

application software access to hardware
resources

–  Convenient abstraction of complex hardware devices
–  Protected access to shared resources
–  Security and authentication
–  Communication amongst logical entities

9/3/14 UCB CS162 Fa14 L2! 2

Hardware

appln
appln

appln

OS

What is an Operating System?
•  Referee

–  Manage sharing of resources, Protection, Isolation
»  Resource allocation, isolation, communication

•  Illusionist
–  Provide clean, easy to use abstractions of physical

resources
»  Infinite memory, dedicated machine
»  Higher level objects: files, users, messages
»  Masking limitations, virtualization

•  Glue
–  Common services

»  Storage, Window system, Networking
»  Sharing, Authorization
»  Look and feel

9/3/14 UCB CS162 Fa14 L2! 3

Recall

9/3/14 UCB CS162 Fa14 L2! 4

OS Basics: Loading

8/31/14 UCB CS162 Fa14 L1! 18

storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Networks

Displays
Inputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

Today: four fundamental OS concepts

•  Privileged/User Mode
–  The hardware can operate in two modes, with only the “system”

mode having the ability to access certain resources.

•  Address Space
–  Programs execute in an address space that is distinct from the

memory space of the physical machine

•  Process
–  An instance of an executing program is a process consisting of

an address space and one or more threads of control

•  Protection
–  The OS and the hardware are protected from user programs and

user programs are isolated from one another by controlling the
translation from program virtual addresses to machine physical
addresses

9/3/14 UCB CS162 Fa14 L2! 5

OS Bottom Line: Run Programs

•  Load instruction and data segments
of executable file into memory

•  Create stack and heap
•  “Transfer control to it”
•  Provide services to it
•  While protecting OS and it

9/3/14 UCB CS162 Fa14 L2! 6

int main() !
{ … ;!
 }!

ed
ito

r

co
m

pi
le

r

Program Source
Executable

foo.c a.out

Lo
ad

 &

E
xe

cu
te

0x000…

0xFFF…

instructions

data

instructions

data

heap

stack

Memory

Processor

registers

PC:

OS

Why no stack or heap in executable?

•  What about data segment?

9/3/14 UCB CS162 Fa14 L2! 7

Today we need one key 61B concept
The instruction cycle

9/3/14 UCB CS162 Fa14 L2! 8

PC:

Registers

ALU

Instruction fetch

Decode

Execute

Memory

instruction

next

decode

data

Processor

Key OS Concept: the Process

9/3/14 UCB CS162 Fa14 L2! 9

“User Programs”

“Applications”

“Kernel”

“Operating System”

Process = Execution of a
Program with Restricted Rights

Process = Address Space with
one or more threads of control

Operating System Boundary

Address Space

•  What’s in the code segment? Data?
•  What’s in the stack segment?

–  How is it allocated? How big is it?

•  What’s in the heap segment?
–  How is it allocated? How big?

9/3/14 UCB CS162 Fa14 L2! 10

0x000…

0xFFF…

code

Static Data

heap

stack

Thread of Control
•  A thread is executing on a processor when it is

resident in the processor registers.
•  PC register holds the address of executing

instruction in the thread.
•  Certain registers hold the context of thread

–  Stack pointer holds the address of the top of stack
»  Other conventions: Frame Pointer, Heap Pointer, Data

–  May be defined by the instruction set architecture or by
compiler conventions

•  Registers hold the root state of the thread.
–  The rest is “in memory”

9/3/14 UCB CS162 Fa14 L2! 11

In a Picture

9/3/14 UCB CS162 Fa14 L2! 12

Processor
registers

PC:

0x000…

0xFFF…

Code Segment

Static Data

heap

stack

instruction

SP:

User/Kernal(Priviledged) Mode

9/3/14 UCB CS162 Fa14 L2! 13

User Mode

Kernel Mode

Full HW access Limited HW access

exec

syscall

exit
rtn

interrrupt

rfi

exception

Multiprogramming - Multiple Processes

9/3/14 UCB CS162 Fa14 L2! 14

OS

Proc
1

Proc
2

Proc
n …

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

Dual Mode Operation
•  What is needed in the hardware to support “dual

mode” operation?
•  a bit of state (user/system mode bit)
•  Certain operations / actions only permitted in

system/kernel mode
–  In user mode they fail or trap

•  User->Kernel transition sets system mode AND
saves the user PC

–  Operating system code carefully puts aside user state then
performs the necessary operations

•  Kernel->User transition clears system mode AND
restores appropriate user PC

–  return-from-interrupt

9/3/14 UCB CS162 Fa14 L2! 15

Key OS Concept: Address Space
•  Program operates in an address space that is

distinct from the physical memory space of the
machine

9/3/14 UCB CS162 Fa14 L2! 16

Processor Memory

0x000…

0xFFF…

translator

A simple address translation: B&B

•  Can the pgm touch OS?
•  Can it touch other pgms?

9/3/14 UCB CS162 Fa14 L2! 17

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…
0100…

A different base and bound

9/3/14 UCB CS162 Fa14 L2! 18

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base

Bound <

1000…

1100…
0100…

>=

•  Requires relocating loader
•  Still protects OS and isolates pgm
•  No addition on address path

Key OS Concept: Protection
•  Operating System must protect itself from user

programs
–  Reliability: compromising the operating system generally

causes it to crash
–  Security: limit the scope of what processes can do
–  Privacy: limit each process to the data it is permitted to access
–  Fairness: each should be limited to its appropriate share

•  It must protect User programs from one another
•  Primary Mechanism: limit the translation from

program address space to physical memory space
–  Can only touch what is mapped in

•  Additional Mechanisms:
–  Privileged instructions, in/out instructions, special registers
–  syscall processing, subsystem implementation

»  (e.g., file access right)

9/3/14 UCB CS162 Fa14 L2! 19

Simple B&B: OS loads process

9/3/14 UCB CS162 Fa14 L2! 20

OS

Proc
1

Proc
2

Proc
n …

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base xxxx …

xxxx… Bound

xxxx… uPC

regs

sysmode

…

1

PC

0000…

FFFF…

Simple B&B: OS gets ready to switch

•  Priv Inst: set
special
registers

•  RTU

9/3/14 UCB CS162 Fa14 L2! 21

OS

Proc
1

Proc
2

Proc
n …

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100… Bound

0001… uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

RTU

Simple B&B: “Return” to User

9/3/14 UCB CS162 Fa14 L2! 22

OS

Proc
1

Proc
2

Proc
n …

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100… Bound

xxxx… uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…
•  How to return to

system?

0001…

Logistics Break

9/3/14 UCB CS162 Fa14 L2! 23

Recall: Getting started
•  Start homework 0 immediately

–  Gets cs162-xx@cory.eecs.berkeley.edu (and other inst m/c)
–  Github account
–  Registration survey
–  Vagrant virtualbox – VM environment for the course

»  Consistent, managed environment on your machine
–  icluster24.eecs.berkeley.edu is same
–  Get familiar with all the cs162 tools
–  Submit to autograder via git

•  Go to section
•  Waitlist ???

–  Pull hw0, can get inst acct
–  Will process at least weekly (thru early drop deadline)
–  Only registered students will form project groups
–  If cs162 is not for you now, please allow others to take it

9/2/14 UCB CS162 Fa14 L1! 24

Personal Integrity

•  UCB Academic Honor Code: "As a member of
the UC Berkeley community, I act with honesty,
integrity, and respect for others."

9/2/14 UCB CS162 Fa14 L1! 25

http://asuc.org/honorcode/resources/HC%20Guide%20for%20Syllabi.pdf

CS 162 Collaboration Policy!
"

Explaining a concept to someone in another group"
Discussing algorithms/testing strategies with other groups"
Helping debug someone else’s code (in another group)"
Searching online for generic algorithms (e.g., hash table) "
"

Sharing code or test cases with another group"
Copying OR reading another group’s code or test cases"
Copying OR reading online code or test cases from from
prior years "
"

We compare all project submissions against prior year
submissions and online solutions and will take actions
(described on the course overview page) against offenders "
"

"
9/2/14 UCB CS162 Fa14 L1! 26

3 types of Mode Transfer
•  Syscall

–  Process requests a system service, e.g., exit
–  Like a function call, but “outside” the process
–  Does not have the address of the system function to call
–  Like a Remote Procedure Call (RPC) – for later
–  Marshall the syscall id and args in registers and exec syscall

•  Interrupt
–  External asynchronous event triggers context switch
–  eg. Timer, I/O device
–  Independent of user process

•  Trap or Exception
–  Internal synchronous event in process triggers context switch
–  e.g., Protection violation (segmentation fault), Divide by zero, …

•  All 3 are an UNPROGRAMMED CONTROL TRANSFER
–  Where does it go?

9/3/14 UCB CS162 Fa14 L2! 27

How do we get the system target
address of the “unprogrammed
control transfer?”

9/3/14 UCB CS162 Fa14 L2! 28

Interrupt Vector

•  Where else do you see this dispatch pattern?

9/3/14 UCB CS162 Fa14 L2! 29

interrupt number
(i)

intrpHandler_i () {
 ….
}

Address and properties
of each interrupt handler

Simple B&B: User => Kernel

9/3/14 UCB CS162 Fa14 L2! 30

OS

Proc
1

Proc
2

Proc
n …

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100… Bound

xxxx… uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…
•  How to return to

system?

0000 1234

Simple B&B: Interrupt

9/3/14 UCB CS162 Fa14 L2! 31

OS

Proc
1

Proc
2

Proc
n …

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 … Bound

0000 1234 uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…
•  How to save

registers and set
up system stack?

IntrpVector[i]

Simple B&B: Switch User Process

9/3/14 UCB CS162 Fa14 L2! 32

OS

Proc
1

Proc
2

Proc
n …

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 … Bound

0000 0248 uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…
•  How to save

registers and set
up system stack?

0001 0124

1000 …

1100 …

0000 1234

regs
00FF…

RTU

Simple B&B: “resume”

9/3/14 UCB CS162 Fa14 L2! 33

OS

Proc
1

Proc
2

Proc
n …

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 … Bound

xxxx xxxx uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…
•  How to save

registers and set
up system stack?

000 0248

1000 …

1100 …

0000 1234

regs
00FF…

RTU

What’s wrong with this simplistic
address translation mechanism?

9/3/14 UCB CS162 Fa14 L2! 34

x86 – segments and stacks

9/3/14 UCB CS162 Fa14 L2! 35

CS EIP

SS ESP

DS
ECX ES
EDX
ESI
EDI

EAX
EBX

code

Static Data

heap

stack

code

Static Data

heap

stack

CS:
EIP:

SS:
ESP:

Processor Registers

Start address, length and
access rights associated
with each segment

Virtual Address Translation
•  Simpler, more useful schemes too!
•  Give every process the illusion of its own BIG

FLAT ADDRESS SPACE
–  Break it into pages
–  More on this later

9/3/14 UCB CS162 Fa14 L2! 36

Running Many Programs ???
•  We have the basic mechanism to

–  switch between user processes and the kernel,
–  the kernel can switch among user processes,
–  Protect OS from user processes and processes from each other

•  Questions ???
•  How do we decide which user process to run?
•  How do we represent user processes in the OS?
•  How do we pack up the process and set it aside?
•  How do we get a stack and heap for the kernel?
•  Aren’t we wasting are lot of memory?
•  …

9/3/14 UCB CS162 Fa14 L2! 37

Process Control Block
•  Kernel represents each process as a process

control block (PCB)
–  Status (running, ready, blocked, …)
–  Register state (when not ready)
–  Process ID (PID), User, Executable, Priority, …
–  Execution time, …
–  Memory space, translation, …

•  Kernel Scheduler maintains a data structure
containing the PCBs

•  Scheduling algorithm selects the next one to run

9/3/14 UCB CS162 Fa14 L2! 38

Scheduler

9/3/14 UCB CS162 Fa14 L2! 39

if (readyProcesses(PCBs)) {
 nextPCB = selectProcess(PCBs);
 run(nextPCB);

} else {
 run_idle_process();

}

Putting it together: web server

9/3/14 UCB CS162 Fa14 L2! 40

1. network
socket
read

Hardware

Server

Kernel

Network Interface

2. copy arriving
packet (DMA)

3. kernel
copy

request
bu!er

4. parse request

5. "le
read

Disk Interface

7. disk
data (DMA)

8. kernel
copy

reply
bu!er9. format reply

6. disk
request

10. network
socket
write

11. kernel copy
from user bu!er
into network bu!er

12. format outgoing
packet and DMA

syscall

wait

interrupt

RTU

syscall

wait

interrupt

RTU

Digging Deeper: Discussion &
Questions

9/3/14 UCB CS162 Fa14 L2! 41

Implementing Safe Mode Transfers
•  Carefully constructed kernel code packs up the

user process state an sets it aside.
–  Details depend on the machine architecture

•  Should be impossible for buggy or malicious user
program to cause the kernel to corrupt itself.

•  Interrupt processing must not be visible to the
user process (why?)

–  Occurs between instructions, restarted transparently
–  No change to process state
–  What can be observed even with perfect interrupt processing?

9/3/14 UCB CS162 Fa14 L2! 42

Kernel Stack Challenge
•  Kernel needs space to work
•  Cannot put anything on the user stack (Why?)
•  Two-stack model

–  OS thread has interrupt stack (located in kernel memory) plus
User stack (located in user memory)

–  Syscall handler copies user args to kernel space before
invoking specific function (e.g., open)

–  Interrupts (???)

9/3/14 UCB CS162 Fa14 L2! 43

Kernel Stack

running

main

User Stack proc1
proc2

...

ready to run

main
proc1
proc2

...

user CPU
 state

waiting for I/O

main
proc1
proc2
syscall

user CPU
 state
 syscall
handler

I/O driver
top half

Hardware support: Interrupt Control
•  Interrupt Handler invoked with interrupts

‘disabled’
–  Re-enabled upon completion
–  Non-blocking (run to completion, no waits)
–  Pack it up in a queue and pass off to an OS thread to do the

hard work
»  wake up an existing OS thread

•  OS kernel may enable/disable interrupts
–  On x86: CLI (disable interrupts), STI (enable)
–  Atomic section when select next process/thread to run
–  Atomic return from interrupt or syscall

•  HW may have multiple levels of interrupt
–  Mask off (disable) certain interrupts, eg., lower priority
–  Certain non-maskable-interrupts (nmi)

»  e.g., kernel segmentation fault

9/3/14 UCB CS162 Fa14 L2! 44

How do we take interrupts safely?
•  Interrupt vector

–  Limited number of entry points into kernel

•  Kernel interrupt stack
–  Handler works regardless of state of user code

•  Interrupt masking
–  Handler is non-blocking

•  Atomic transfer of control
–  “Single instruction”-like to change:

»  Program counter
»  Stack pointer
»  Memory protection
»  Kernel/user mode

•  Transparent restartable execution
–  User program does not know interrupt occurred

Before

code:

foo () {
 while(...) {
 x = x+1;
 y = y-2;
 }
}

SS: ESP

User-level
 Process

CS: EIP
EFLAGS

other
registers:
EAX, EBX,
...

Registers Kernel

code:

handler() {
 pusha
 ...
}

 stack:
Exception
 Stack

During

code:

foo () {
 while(...) {
 x = x+1;
 y = y-2;
 }
}

SS: ESP

User-level
 Process

CS: EIP
EFLAGS

other
registers:
EAX, EBX,
...

Registers Kernel

code:

handler() {
 pusha
 ...
}

 stack:
Exception
 Stack

SS
ESP

 EFLAGS
CS
EIP

error

Kernel System Call Handler
•  Locate arguments

–  In registers or on user(!) stack

•  Copy arguments
–  From user memory into kernel memory
–  Protect kernel from malicious code evading checks

•  Validate arguments
–  Protect kernel from errors in user code

•  Copy results back
–  into user memory

Multiprocessors - Multicores –
Multiple Threads
•  What do we need to support Multiple Threads

–  Multiple kernel threads?
–  Multiple user threads in a process?

•  What if we have multiple Processors / Cores

9/3/14 UCB CS162 Fa14 L2! 49

Idle Loop & Power
•  Measly do-nothing unappreciated trivial piece of

code that is central to low-power

9/3/14 UCB CS162 Fa14 L2! 50

Performance
•  Performance = Operations / Time

•  How can the OS ruin application performance?
•  What can the OS do to increase application

performance?

9/3/14 UCB CS162 Fa14 L2! 51

4 OS concepts working together

•  Privilege/User Mode
–  The hardware can operate in two modes, with only the

“system” mode having the ability to access certain
resources.

•  Address Space
–  Programs execute in an address space that is distinct from

the memory space of the physical machine

•  Process
–  An instance of an executing program is a process consisting

of an address space and one or more threads of control

•  Protection
–  The OS and the hardware are protected from user programs

and user programs are isolated from one another by
controlling the translation from program virtual addresses to
machine physical addresses

9/3/14 UCB CS162 Fa14 L2! 52

