Intro to Threads
- after tying up loose ends -

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 6
Sept 12, 2014

Reading: A&D Ch4.1-5
HW 1 due Mon 9/15
Proj 1 out next week

Threads Motivation

* Operating systems need to be able to handle multiple
things at once (MTAO)

— processes, interrupts, background system maintenance
* Servers need to handle MTAO
— Multiple connections handled simultaneously

e Parallel programs need to handle MTAO
— To achieve better performance

* Programs with user interfaces often need to handle MTAO
— To achieve user responsiveness while doing computation

* Network and disk bound programs need to handle MTAO
— To hide network/disk latency

Definitions

* Athread is a single execution sequence that
represents a separately schedulable task

* Protection is an orthogonal concept
— Can have one or many threads per protection domain

— Single threaded user program: one thread, one
protection domain

— Multi-threaded user program: multiple threads,
sharing same data structures, isolated from other user
programs

— Multi-threaded kernel: multiple threads, sharing
kernel data structures, capable of using privileged
instructions

First some Loose ends

9/12/14 cs162 fal4 L5 4

Namespaces for communication

* Hostname
— www.eecs.berkeley.edu

e |P address
— 128.32.244.172 (ipv6?)

* Port Number
— 0-1023 are “well known” or “system” ports
e Superuser privileges to bind to one

— 1024 — 49151 are “registered” ports (registry)
* Assigned by IANA for specific services
— 49152-65535 (24214 to 21°-1) are “dynamic” or
“private”
e Automatically allocated as “ephemeral Ports”

9/10/14 cs162 fal4 L5 5

Recall: UNIX Process Management

* UNIX fork — system call to create a copy of the
current process, and start it running

— No arguments!

* UNIX exec — system call to change the
program being run by the current process

* UNIX wait — system call to wait for a process
to finish

* UNIX signal — system call to send a notification
to another process

9/10/14 cs162 fal4 L5 6

Signhals — infloop.c

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>

#include <unistd.h>
#include <signal.h>

void signal callback handler(int signum)

{
printf("Caught signal %d - phew!\n",signum);
exit(1l);

}

int main() {
signal (SIGINT, signal callback handler);

while (1) {}
}

9/10/14 cs162 fal4 L5 7

Process races: fork.c

if (cpid > 0) {
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
for (i=0; i<100; i++) {
printf("[%d] parent: %d\n", mypid, 1i);
// sleep(1l);
}
} else if (cpid == 0) {
mypid = getpid();
printf("[%d] child\n", mypid);
for (i=0; i>-100; i--) {
printf("[%d] child: %d\n", mypid, i);
// sleep(1l);

9/10/14 cs162 fal4 L5

UNIX Process Management

 UNIX fork — system call to create a copy of the
current process, and start it running

— No arguments!

* UNIX exec — system call to change the
program being run by the current process

* UNIX wait — system call to wait for a process
to finish

* UNIX signal — system call to send a notification
to another process

9/12/14 cs162 fal4 L4 9

Signhals — infloop.c

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>

#include <unistd.h>
#include <signal.h>

void signal callback handler(int signum)

{
printf("Caught signal %d - phew!\n",signum);
exit(1l);

}

int main() {
signal (SIGINT, signal callback handler);

while (1) {}
}

9/12/14 cs162 fal4 L4 10

Process races: fork.c

if (cpid > 0) {
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
for (i=0; i<100; i++) {
printf("[%d] parent: %d\n", mypid, 1i);
// sleep(1l);
}
} else if (cpid == 0) {
mypid = getpid();
printf("[%d] child\n", mypid);
for (i=0; i>-100; i--) {
printf("[%d] child: %d\n", mypid, i);
// sleep(1l);

9/12/14 cs162 fal4 L4

11

BIG OS Concepts so far

9/10/14

Processes

Address Space

Protection

Dual Mode

Interrupt handlers (including syscall and trap)

File System
— Integrates processes, users, cwd, protection

Key Layers: OS Lib, Syscall, Subsystem, Driver
— User handler on OS descriptors

Process control

— fork, wait, signal, exec

Communication through sockets
Client-Server Protocol

cs162 fald L5

12

Course Structure: Spiral

9/10/14 cs162 fal4 L5 13

Traditional UNIX Process

* Process: Operating system abstraction to
represent what is needed to run a single
program
— Often called a “HeavyWeight Process”

* Two parts:

— Sequential program execution stream

« Code executed as a sequential stream of execution
(i.e., thread)

* Includes State of CPU registers

— Protected resources:

« Main memory state (contents of Address Space)
* |/O state (i.e. file descriptors)

How do we Multiplex Processes?

* The current state of process held in a
process control block (PCB):

— This is a “snapshot” of the execution and
protection environment

— Only one PCB active at a time

Give out CPU time to different
processes (Scheduling):

— Only one process “running” at a time
— Give more time to important processes

Give pieces of resources to different
processes (Protection):
— Controlled access to non-CPU resources

— Example mechanisms:

« Memory Mapping: Give each process their own
address space

« Kernel/User duality: Arbitrary multiplexing of I/O
through system calls

process state

process number

program counter

reqgisters

memory limits

list of open files

Process
Control
Block

Lifecycle of a Process

admitted interrupt ' terminate

I/O or event completion schedulﬁlerd‘spatch I/O or event wait

* ASs a process executes, it changes state:
— new: The process is being created
— ready: The process is waiting to run
— running: Instructions are being executed
— waiting: Process waiting for some event to occur
— terminated: The process has finished execution

Process Control Block

* The current state of process held in a
process control block (PCB): (for a single-
threaded process)

process state
process number

program counter

reqgisters

memory limits

list of open files

Process Control Block

Modern Process with Threads

« Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)

— Process still contains a single Address Space
— No protection between threads

» Multithreading: a single program made up of a number
of different concurrent activities

— Sometimes called multitasking, as in Ada ...

* Why separate the concept of a thread from that of a
process?

— Discuss the “thread” part of a process (concurrency)
— Separate from the “address space” (protection)
— Heavyweight Process = Process with one thread

Single and Multithreaded Processes

code

data

files

code

data

files

registers

stack

registers

registers

registers

stack

stack

stack

thread — ; ;

single-threaded process

; §<—— thread

multithreaded process

* Threads encapsulate concurrency: “Active” component

« Address spaces encapsulate protection: “Passive” part
— Keeps buggy program from trashing the system

 Why have multiple threads per address space?

Examples multithreaded programs

 Embedded systems
— Elevators, Planes, Medical systems, Wristwatches
— Single Program, concurrent operations

« Most modern OS kernels

— Internally concurrent because have to deal with
concurrent requests by multiple users

— But no protection needed within kernel

« Database Servers
— Access to shared data by many concurrent users
— Also background utility processing must be done

Example multithreaded programs (con’t) &

* Network Servers
— Concurrent requests from network
— Again, single program, multiple concurrent operations
— File server, Web server, and airline reservation systems

« Parallel Programming (More than one physical
CPU)

— Split program into multiple threads for parallelism
— This is called Multiprocessing

« Some multiprocessors are actually uniprogrammed:

— Multiple threads in one address space but one program
at a time

Putting it together: Process

(Unix) Process
/A(int tmp) {)

if (tmp<2)
B(); Memory
printf(tmp); Stack
- J Resources
/O State
Sequential (e.g., file,
stream of socket

contexts)

instructions

CPU state

(PC, SP, Stored in OS
registers..)

Putting it together: Processes

Process 1 Process 2 Process N

Switch overhead: high
— CPU state:

— Memory/I0 state: high
* Process creation: high

* Protection
— CPU:
— Memory/I0:
* Sharing overhead: high

(involves at least a
context switch)

1 process
at a time

CPU
(1 core)

Putting it together: Threads

Process 1 Process N
threads threads
| &3 y =N M y e Switch overhead:
em. em.
(only CPU state)
Te) Te) ,
state state | |* Thread creation:
CPU CPU CPU CPU * Protection
state state state state
— CPU:
— Memory/IO: No
CPU oS * Sharing overhead:
g (thread switch
1 thread overhead low)
at atime
CPU

(1 core)

Technology Trends: Moore’s Law

1975 1980 1985 1990 1995
4
oM Micro 500
(transistors) 2000 (mips)
E
™ Pentium 25
:g sS04806 FTooessol
§§ ig 100K F) ‘1 186 1.0
552 10K ¢ o8k 0.1
8:§ 6 AP AWTE S
s i; ? ‘w:.::_:.
25 2 4004 0.01
0

2X transistors/Chip Every 1.5 years
Called “Moore’ s Law”

Gordon Moore (co-founder of Intel)
predicted in 1965 that the transistor _
density of semiconductor chips would Microprocessors have

double roughly every 18 months. become smaller, denser,

and more powerful.

9/12/14 UCB CS162 Fal4 L1 25

New Challenge: Slowdown in Joy’s lay@#
of Performance ,

10000 3X

From Hennessy and Patterson, Computer Architecture: A -1
Quantitative Approach, 4th edition, Sept. 15, 2006
??%lyear
1000 Joy’s Law: Perf = 2(Year-1984) M|PS
s
£ 100
£
E => Sea change in chip
design: multiple “cores” or
processors per chip
1 ¢ T T T T T T T T T T T T T
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
* VAX : 25%/year 1978 to 1986

* RISC + x86: 52%/year 1986 to 2002
* RISC + x86: ??%/year 2002 to present

9/12/14 UCB CS162 Fal4 L1 26

ManyCore Chips: The future is here

* Intel 80-core multicore chip (Feb 2007)
— 80 simple cores

— Two FP-engines / core
— Mesh-like network

— 100 million transistors

Dual-core SCC Tile

* Intel Single-Chip Cloud
Computer (August 2010)
— 24 “tiles” with two coresttile
— 24-router mesh network
— 4 DDR3 memory controllers
— Hardware support for message-passing
« “ManyCore” refers to many processors/chip

— 647 1287 Hard to say exact boundary

« How to program these?
— Use 2 CPUs for video/audio
— Use 1 for word processor, 1 for browser
— 76 for virus checking???

« Parallelism must be exploited at all levels

9/12/14 UCB CS162 Fal4 L1 27

Memory Controller

’ : 1 Router

Putting it together: Multi-Cores

Process 1 Process N
threads threads
| &3 y =N M y e Switch overhead:
em. em.
(only CPU state)
Te) Te) ,
state state | |* Thread creation:
CPU CPU CPU CPU * Protection
state state state state
— CPU:
— Memory/IO: No
CPU oS * Sharing overhead:
20nEg — (thread switch
f-\- 4threadsat | Gyerhead low)
a time
=

core 1 || Core 2 || Core 3 || Core 4 | |CPU

Putting it together: Hyper-Threading

Process 1
threads
—a e
Mem.
10

CPU

CPU

state

state

hardware-threads
(hyperthreading)

state

Process N
threads

T S

CPU CPU
state state

CPU
sched. 0S

Mem.

state

1O

N

N

core

core

——— 8 threads at

a time

core core

CPU

Switch overhead
between
hardware-threads:
(done in
hardware)

Contention for
ALUs/FPUs may
hurt performance

Memory Footprint: Two-Threads

* |f we stopped this program and examined it
with a debugger, we would see

— Two sets of CPU registers SIEE

— Two sets of Stacks v
* Questions: Stack e &
— How do we position stacks relative to \ @
each other? N 3
— What maximum size should we choose ' 2

for the stacks? Heap

— What happens if threads violate this? Global Data
— How might you catch violations?

Code

Thread Operations

thread_fork(func, args)
— Create a new thread to run func(args)
— Pintos: thread create

thread_yield()

— Relinquish processor voluntarily
— Pintos: thread_yield
thread_join(thread)

— In parent, wait for forked thread to exit, then return

thread exit
— Quit thread and clean up, wake up joiner if any

— Pintos: thread_exit
http://cs162.eecs.berkeley.edu/static/lectures/code06/pthread.c

Thread Abstraction

* Infinite number of processors

* Threads execute with variable speed
— Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality
r- TSI o T il bl
Threads) § | S | S S § |S.S|SSS
gt 13 tgts by by g g
| | | I | | | I |
Processors')m;")mi')”ﬁ')”ﬁ')mi: :)mn‘:)ﬂm'l

T T S R

L — 1L - 1 _"_lI_ _lI_ = 4 L — 1" 1
Running Ready
Threads Threads

Programmer vs. Processor View

Programmer’s Possible Possible Possible
View Execution Execution Execution
#1 #2 #3
X=X+1; X=x+1; X=X+ 1 X=X+ 1
y=Yy+X; V=Y+X e y=Yy+X

z=X+5y; z=x+5y; threadissuspended ...
other thread(s) run thread is suspended
thread is resumed other thread(s) run
............... thread is resumed

Possible Executions

Thread 1 1 Thread 1 | l
Thread 2 [1] Thread 2 | |
Thread 3 [1 Thread3 | |
a) One execution b) Another execution
Thread 1 [
Thread2 [1 O 0O
Thread 3 [] []

¢) Another execution

Thread State

« State shared by all threads in process/addr space
— Content of memory (global variables, heap)
— 1/O state (file system, network connections, etc)

« State “private” to each thread
— Kept in TCB = Thread Control Block
— CPU registers (including, program counter)
— Execution stack — what is this?

« Execution Stack
— Parameters, temporary variables

— Return PCs are kept while called procedures are
executing

Thread Lifecycle

Scheduler
Thread Creation Resumes Thread Thread Exit
— >/ _. .
e.g., e.qg., FlﬂlSkNEd

v
Thread Yields/

Scheduler

Suspends Thread
e.g., sthread yield()

sthread create() sthread exit()

Thread Waits for Event

e.g.,
sthread join()

Event Occurs

e.g., other thread
calls

sthread join()

Shared vs. Per-Thread State

Shared
State

Heap

Global
Variables

Code

Per-Thread
State

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Per-Thread
State

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Per Thread State

« Each Thread has a Thread Control Block (TCB)

— Execution State: CPU registers, program counter
(PC), pointer to stack (SP)

— Scheduling info: state, priority, CPU time

— Various Pointers (for implementing scheduling
queues)

— Pointer to enclosing process (PCB)
— Etc (add stuff as you find a need)

» OS Keeps track of TCBs in protected memory
— In Array, or Linked List, or ...

Multithreaded Processes
« PCB points to multiple TCBs:

PCB PCB PCB
\‘\’ TCB > TCB

TCB
TCB > TCB » TCB

« Switching threads within a block is a simple
thread switch

» Switching threads across blocks requires
changes to memory and I/O address tables.

The Numbers

Context switch in Linux: 3-4 usecs (Current Intel i7
& E5).

*Thread switching faster than process switching (100
ns).

*But switching across cores about 2x more expensive
than within-core switching.

*Context switch time increases sharply with the size of
the working set*, and can increase 100x or more.

* The working set is the subset of memory used by the
process in a time window.

Moral: Context switching depends mostly on cache
limits and the process or thread’ s hunger for memory.

The Numbers

« Many process are multi-threaded, so thread context
switches may be either within-process or across-
processes.

File Options View Help
Processes | Services | Performance | Networking | Users |
Image Name PID User Name CPU Memory (Pri\;ate Workin... Threads Description =
| thunderbird.exe *32 5544 jfc 00 422,212K 28 Thunderbird
firefox.exe *32 6064 jfc 00 362,043K 43 Firefox
BCU.exe *32 4752 jfc 00 108,012K 6 Browser Configuration Utility
dwm.exe 4036 jfc 00 105,676 K 5 Desktop Window Manager
POWERPNT.EXE 140 jfc 00 102,204K 12 Microsoft PowerPoint
] explorer.exe 1780 jfc 00 73,244K 36 Windows Explorer
' Dropbox.exe *32 3380 jfc 00 56,792 K 34 Dropbox |
‘ CameraHelperShell.exe... 48392 jfc 00 15,068 K 9 Webcam Controller r
. emacs.exe *32 4356 jfc 00 12,996 K 3 GNU Emacs: The extensible self-doc
| FlashPlayerPlugin_11_8... 4260 jfc 00 10,820K 12 Adobe Flash Player 11.8 r800
nvxdsync.exe 3420 00 10,192K 10 |
emacs.exe *32 2736 jfc 00 10,000 K 3 GNU Emacs: The extensible self-doc
BtvStack.exe 2708 ifc 00 9.444K 43 Bluetooth Stack Server i

Threads in a Process

e Threads are useful at user-level
— Parallelism, hide 1/0 latency, interactivity

 Option A (early Java): user-level library, within a single-threaded
process

— Library does thread context switch

— Kernel time slices between processes, e.g., on system call I/O
e Option B (Linux, MacOS, Windows): use kernel threads

— System calls for thread fork, join, exit (and lock, unlock,...)

— Kernel does context switching

— Simple, but a lot of transitions between user and kernel mode
 Option C (Windows): scheduler activations

— Kernel allocates processors to user-level library

— Thread library implements context switch

— System call /0 that blocks triggers upcall
e QOption D: Asynchronous I/O

|

spaces:

One Many

of addr

threads
Per AS:

MS/DOS, early

Macintosh Traditional UNIX

One

Embedded systems _
(Geoworks, VXWOrkS, Mach, 08/2, HP'UX, Win

Many JavaOS,etc) NT toASn,d?cc))ilc?riie(;5 SC)S X,
JavaOS, Pilot(PC) ’

» Real operating systems have either
— One or many address spaces
— One or many threads per address space

OS Archaeology

Because of the cost of developing an OS from
scratch, most modern OSes have a long lineage:

Multics 2 AT&T Unix = BSD Unix = Ultrix, SunQOS,
NetBSD,...

Mach (micro-kernel) + BSD - NextStep > XNU -
Apple OSX, iphone iOS

Linux = Android OS

CP/M - QDOS - MS-DOS - Windows 3.1 &> NT
2 95->98 > 2000 > XP—>Vista—>7->8->
phone - ...

Linux =2 RedHat, Ubuntu, Fedora, Debian, Suse,...

Dramatic change

Computers
Per Person N m Number
crunching, Data
1:10° Storage,
— Massive
Services,
__ Mining
1:103
Productivity,
[Interactive
1:1
Streaming
; — from/to the
10°:1 physical world
years

Bell’s Law: new computer class per 10 years

of Things!

9/12/14 UCB CS162 Fal4 L1 45

L The Internet

R“ -
1950 1960 1970 1980 1990 2000
| MULTICS
mainframes \
no compilers time distributed
software shared multiuser systems
batch multiprocessor
res@ent networked . ™.
monitors
-~ UNIX
minicomputers -
no compilers
software . : ,
time multiuser multiprocessor
resident shared nt;worked fault tolerant
monitors
clustered
UNIX
desktop computers -
 — no compilers
- — software interactive multiprocessor
(e .
e =)
‘ SR i Y multiugey networked
e A [UNIX
B ——— : . handheld computers |
I compilers no
software
interactive
networked

