Kernel Threads

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 7
Sept 15, 2014

Reading: A&D Ch4.4-10
HW 1 due today
Proj. 1 Pintos Threads out

Objectives

9/15/14

Solidify your understanding of threads as a
concept.

Use of threads

— in user level programs

— in the kernel

e Support processes and OS concurrency
e Support user level threads

Develop your understanding of the
implementation of threads in the kernel

— You will develop it much further through project 1

cs162 fald L7

Threads

* Independently schedulable entity
e Sequential thread of execution that runs
concurrently with other threads

— |t can block waiting for something while others
progress

— |t can work in parallel with others (ala cs61c)

* Has local state (its stack) and shared (static
data and heap)

9/15/14 cs162 fal4 L7 3

Thread State

« State shared by all threads in process/addr space
— Content of memory (global variables, heap)
— 1/O state (file system, network connections, etc)

« Execution Stack (logically private)

— Parameters, temporary variables

— Return PCs are kept while called procedures are
executing

« State “private” to each thread
— CPU registers (including, program counter)
— Ptr to Execution stack
— Kept in TCB = Thread Control Block

* When thread is not running
« Scheduler works on TCBs

9/15/14 cs162 fal4q L7 4

Thread Lifecycle

Scheduler
Thread Creation Resumes Thread Thread Exit
— >/ _. .
e.g., e.qg., FlﬂlSkNEd

sthread create()

v

sthread exit()

Thread Yields/
Scheduler
Suspends Thread _
Event Occurs e.g., sthread yield() Thread Waits for Event
e.g., other thread - e.g.,

calls

sthread join()
sthread join()

9/15/14 cs162 fal4 L7 5

Programmer vs. Processor View

Programmer’s Possible Possible Possible
View Execution Execution Execution
#1 #2 #3
X=X+1; X=x+1; X=X+ 1 X=X+ 1
y=Yy+X; V=Y+X e y=Yy+X

z=X+5y; z=x+5y; threadissuspended ...
other thread(s) run thread is suspended
thread is resumed other thread(s) run
............... thread is resumed

9/15/14 cs162 fal4 L7 6

Possible Executions

Thread 1 1 Thread 1 | l
Thread 2 [1] Thread 2 | |
Thread 3 [1 Thread3 | |
a) One execution b) Another execution
Thread 1 [
Thread2 [1 O 0O
Thread 3 [] []

¢) Another execution

9/15/14 cs162 fal4 L7 7

Thread Abstraction

* Infinite number of processors

* Threads execute with variable speed

— Programs must be designed to work with any schedule

Programmer Abstraction
r- T o o
Threads|SI S SI S S

I
"1 12 131415 |
| I I I I I
|
I

Processors')mn':)mn':)77777':)mn': Jmrr?
'1 "2 '3 4. 5

L — 1 = "l - = 4

9/15/14 cs162 fal4 L7

Physical Reality

I_S|SIS S S
I | I
|I|2|3 4 5
= i —1
1.2,

Running Ready
Threads Threads

A typical use case

Client Browser ;
- process for each tab
- thread to render page
- GET in separate thread
- multiple outstanding GETs
- as they complete, render portion \

Web Server

- fork process for each client connection
K - thread to get request and issue response
- fork threads to read data, access DB, etc
- join and respond

9/15/14 cs162 fal4 L7 9

Kernel Use Cases

* Thread for each user process
* Thread for sequence of steps in processing |/O

* Threads for device drivers

9/15/14 cs162 fal4 L7 10

Per Thread State

« Each Thread has a Thread Control Block (TCB)

— Execution State: CPU registers, program counter
(PC), pointer to stack (SP)

— Scheduling info: state, priority, CPU time

— Various Pointers (for implementing scheduling
gqueues)

— Pointer to enclosing process (PCB) — user threads
— Etc (add stuff as you find a need)

* OS Keeps track of TCBs in “kernel memory”
— In Array, or Linked List, or ...

9/15/14 cs162 fal4q L7 11

Single and Multithreaded Processes

9/15/14

code

data

files

registers

stack

thread — ;

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack

é

%

3,_

— thread

multithreaded process

cs162 fald L7

12

Supporting 1T and MT Processes §

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

thread — ;

single-threaded process

;«—— thread

multithreaded process

User

%k %k %k

System

9/15/14 cs162 fal4 L7 13

Supporting 1T and MT Processes

Ik

s code || data || fies

code data files code data files
. . . . ek registers ||| registers ||| registers

registers stack registers ||| registers ||| registers
stack stack stack

stack stack stack

thread —> <«— thread 7 thread
-
D)
(9]
>
single-threaded process multithreaded process | multithreaded process
Q Rkt * 5k %
)
%))
>
Vp)

9/15/14 cs162 fal4 L7 14

You are here... why?

* Processes
— Thread(s) + address space

 Address Space
* Protection
 Dual Mode
* Interrupt handlers
— Interrupts, exceptions, syscall
* File System %y,
— Integrates processes, users, cwd, protection a
* Key Layers: OS Lib, Syscall, Subsystem, Driver "y
— User handler on OS descriptors
* Process control
— fork, wait, signal, exec
« Communication through sockets
— Integrates processes, protection, file ops, concurrency
e C(Client-Server Protocol
 Concurrent Execution: Threads
* Scheduling

9/15/14 cs162 fal4 L7 15

Perspective on ‘groking” 162

e Historically, OS was the most complex software
— Concurrency, synchronization, processes, devices, communication, ...
— Core systems concepts developed there

* Today, many “applications” are complex software systems too
— These concepts appear there

— But they are realized out of the capabilities provided by the operating
system

* Seek to understand how these capabilities are implemented
upon the basic hardware.
e See concepts multiple times from multiple perspectives
— Lecture provides conceptual framework, integration, examples, ...
— Book provides a reference with some additional detail
— Lots of other resources that you need to learn to use
* man pages, google, reference manuals, includes (.h)

Section, Homework and Project provides detail down to the
actual code AND direct hands-on experience

9/15/14 cs162 fal4 L7 16

Operating System as Design

Word Processing
Compilers Web Browsers

Web Servers
Application / Service

Portable OS Library

System Call

SyStem Portable OS Kernel

Software Platform support, Device Drivers

Hardware x86 PowerPC ARM

Ethernet (10/100/1000) 802.11a/b/g/n SCSI IDE Graphics

9/15/14 cs162 fald L# 17

Starting today: Pintos Projects

Process 1 Process 2

Process N

PintOS

v

CPU
(emulated)

9/15/14

cs162 fald L7

Groups almost
all formed

Work as one!
10x homework

P1: threads &
scheduler

P2: user
process

18

MT Kernel 1T Process ala Pintos/x86

Kernel

User

code

e

data

magic #
list o,

priority

stack

status
tid

magic #
list o

priority
stack =

status ~
tid

S
RN

magic #
list o

priority »
stack o=

status

S
code code
data data

Xk % k
heap heap
User User
stack stack

magic #
list =
priority
stack
status
tid

pe

o~

\ g

* Each user process/thread associated with a kernel thread, described by a
4kb Page object containing TCB and kernel stack for the kernel thread

9/15/14

19

In User thread, w/ k-thread waiting

[y} ot e
Z > i data ‘ ‘
-:—— | o 1 \\\
. : magic # magic #
e[||] } st
ki 0 S I TG priority
Kernel S ~ B Y L
N status S
3 AY
User | tid .
code code % N
data data
%k %k %k
heap heap
P
SP
User User I K SP
stack stack
Proc Regs pL:3

e x86 proc holds interrupt SP high system level

* During user thread exec, associate kernel thread is “standing by”
9/15/14 20

In Kernel thread

Kernel

User

9/15/14

/

/

| Vs \‘code

,I\\/\.

e = | =o—\ e
e] e W i K
o0 N Lo et
W tid n tid .
S
\ N\
LN
code \\Qgge
data da;;\\\
* %k 3k
heap heap
User User
stack stack

magic #
list
priority
stack \.‘
status
tid N
N
N
A
AN
S P
S | SP
| | K SP
ProcRegs p|.q

Kernel threads execute with small stack in thread struct
Scheduler selects among ready kernel and user threads

Thread Switch (switch.S)

/ /™. f code /
Z > x data i ‘

magic #] magic # k magic #\N maﬁ;ct”] maglc #

list o list o

list list = list priority\ ||St
prionity b1/ || priority | Prioriey b Stack > o (IS
status \~. status \\ tatus \\ td S o pr|0r|ty
Kernel ad N tid o | w . | stack >
~ \ SEE \
N N tid ~
User N .
code \ de S
q A
data a\\
% % % N
heap heap
\\
P
™ SP
User User | I K SP
stack stack p R
rocRegs p|.o

* switch _threads: save regs on current small stack, change SP, return from

destination threads call to switch_threads
9/15/14 22

Switch to Kernel Thread for Process

| /< | 7 | 7 code 7 \ /
Z % i data i
= I L == — i \
maliigsltc’i] malgic# malﬁltcti] ma_l‘igsit(_:t\ mag|c#
PHS Y priority { PHS Y ‘;%Eéc;kj- . pri(')'fitty
status 4| status \\ status N = LS
Kernel i w dd n [n J\" stack >
status N
4 N
User \ tid .
code code \
A
data data
k %k k
heap heap
L P
\ SP
User User I I K SP
stack stack p R
rocRegs pi.q

9/15/14 23

Kernel->User

Kernel

User

code

/ / A
% data s .
| [l'I X \\
= | | £l Y
magic # \\
S] i e K]
p;;:c;l(”:lky.: - pg{gzllgy.~ Iastackytv— - ssl[aatf;'; T %
stggus \‘stggus . status td \\\ \
e O
code code W
data data
Xk %k k
heap heap
User User
stack stack

magic #
list
priority
stack ™
status
tid

IP

| SP

| K SP

e iret restores user stack and PL

9/15/14

Proc Regs

PL: 3

24

User->Kernel

| /< | 7 | 7 code 7 \ /
Z % i data i
= I L — | e ‘o \
maliigsltcﬁ] malgic# malﬁltcti] ma_l‘igsit(_:t\ mag|c#
et) | prister b PETEY Hh T pri(')'?itt y
status 4| status \\ status N = LS
Kernel i w dd n [n J\" stack >
status N
4 N
User \ tid .
code code \
A
data data
Xk %k k
heap heap
L P
\ SP
User User I I K SP
stack stack p R
rocRegs pi.q

* Mechanism to resume k-thread goes through interrupt vector

9/15/14 25

User->Kernel via interrupt vector

/ / 7 code < . .
Z > i data , [
|| T—e_ | ev— e
el el o =]
R TR AT S St
Kernel = tasted® || Ty (LR “u L .
User
code code W . 255
N Intr vector
data data
h %k 3k k h
eap eap
\\
P
= SP
User User |
| | K SP
stack stack
Proc Regs pL:3

* Interrupt transfers control through the IV (IDT in x86)

* iretrestores user stack and PL
9/15/14 26

Pintos Interrupt Processing

stubs Wrapper for
generic handler
3k %k 3k
0 : /| intr_entry:
push 0x20 (int #) save regs as frame
ox20[o | Jmp Intr_entry set up kernel env.

push 0x20 (int #) call intr_handler
jmp intr_entry

intr_exit:
%k 3k 3k -
restore regs
255 iret
interrupt
vector

9/15/14 cs162 fal4 L7 27

Recall: cs61C THE STACK FRAME

Basic Structure of a Function

Prologue

entry label:
addi Ssp,Ssp, -framesize
sw $Sra, framesize-4($sp)

save other regs if need be

Body - - . (call other functions...) .

The Stack (review)
Epilogue memory :
restore other regs if need be = Stack frame includes:
lw $ra, framesize-4($sp) = Return “instruction” address
addi Ssp,Ssp, framesize
jr $ra o Parameters

= Space for other local variables, rceerrero

CS61C L10 Introduction to MIPS : Procedures | (18) Garcia, Spring 2014 u StaCk frames Contiguous
blocks of memory; stack pointer tells
where bottom of stack frame is

= When procedure ends, stack frame
is tossed off the stack; frees
memory for future stack frames
$sp~

)
,-(/,/

(2l

CS61C L11 Introduction to MIPS : Procedures Il & Logical Ops (3) Garcia, Spring 2014 © UCB

9/15/14 cs162 fal4 L7 28

Pintos Interrupt Processing

interrupt.c
stubs Wrapper for Intr_hz?ndler(*frame)
generic handler - classify
s ok ok - dispatch
0 _ /| intr_entry: -ack IRQ
push 0x20 (int #) save regs as frame - maybe thread yield
Loy i Jmp Intr_entry set up kernel env.
push 0x20 (int #) call intr_handler
jmp intr_entr
Jmp Y intr exit: 0 ! timer_intr(*frame)
o res_tore .re S ‘ tick++
/

- iret © 0x2017* thread_tick()
Hardware stubs.S timer.c
interrupt
vector

Pintos
intr_handlers

9/15/14 cs162 fal4 L7 29

Timer may trigger thread switch

e thread tick

— Updates thread counters

— If quanta exhausted, sets yield flag
* thread yield

— On path to rtn from interrupt

— Sets current thread back to READY
— Pushes it back on ready_list

— Calls schedule to select next thread to run upon iret

 Schedule

— Selects next thread to run

— Calls switch_threads to change regs to point to stack for thread
to resume

— Sets its status to RUNNING
— |If user thread, activates the process
— Returns back to intr_handler

9/15/14 cs162 fal4 L7 30

Pintos Return from Processing

interrupt.c
stubs Wrapper for Intr_hz?ndler(*frame)
generic handler - classify
s ok ok - dispatch
0) /| intr_entry: -ack IRQ
push 0x20 (int #) save regs as frame - thread yield
Loy i Jmp Intr_entry set up kernel env.
push 0x20 (int #) call intr_handler
jmp intr_entr
Jmp Y intr exit: 0 ! timer\intr(*frame)
o res_tore .re S ‘ tick++
/

- iret & 0x20 ‘/ thread)\ tick()
Hardware stubs.S timer.c
interrupt .
vector thread_yield()

= schedule
Resume Some Thread
) schedule()
Pintos _ switch

intr_handlers
9/15/14 cs162 fald L7 31

Multithreaded Processes
 PCB may be associated with multiple TCBs:

PCB PCB PCB
\‘\’ TCB > TCB

TCB
TCB > TCB » TCB

» Switching threads within a process is a simple
thread switch

» Switching threads across blocks requires
changes to memory and I/O address tables.

9/15/14 cs162 fal4 L7 32

The Next Big Question

* So how do threads cooperate & coordinate?

* Synchronization operations
— High level structured to low level unstructured

— Disabling interrupts is the lowest and most brute
force
* Eliminates interleaving in short sections of OS code

9/15/14 cs162 fal4 L7 33

Perspectives

9/15/14 cs162 fal4 L7 34

The Numbers

Context switch in Linux: 3-4 usecs (Current Intel i7
& E5).

*Thread switching faster than process switching (100
ns).

*But switching across cores about 2x more expensive
than within-core switching.

*Context switch time increases sharply with the size of
the working set*, and can increase 100x or more.

* The working set is the subset of memory used by the
process in a time window.

Moral: Context switching depends mostly on cache
limits and the process or thread’ s hunger for memory.

9/15/14 cs162 fal4 L7 35

The Numbers

« Many process are multi-threaded, so thread context
switches may be either within-process or across-

|~ .
"% Windows Task Manager lnlﬂlg“
File Options View Help
Applications | Processes | Services | Performance | Networking | Users |
Image Name PID User Name CPU Memory (Private Workin... = Threads Description =
| thunderbird.exe *32 5544 jfc 00 422,212K 28 Thunderbird
firefox.exe *32 6064 jfc 00 362,043K 43 Firefox
BCU.exe *32 4752 jfc 00 108,012K 6 Browser Configuration Utility
dwm.exe 4036 jfc 00 105,676 K 5 Desktop Window Manager
POWERPNT.EXE 140 jfc 00 102,204K 12 Microsoft PowerPoint
1 explorer.exe 1780 jfc 00 73,244K 36 Windows Explorer
' Dropbox.exe *32 3380 jfc 00 56,792 K 34 Dropbox |
‘ CameraHelperShell.exe... 48392 jfc 00 15,068 K 9 Webcam Controller B
I emacs.exe *32 4356 jfc 00 12,996 K 3 GNU Emacs: The extensible self-doc
| FlashPlayerPlugin_11_8... 4260 jfc 00 10,820K 12 Adobe Flash Player 11.8 r800
nvxdsync.exe 3420 00 10,192K 10 l
emacs.exe *32 2736 jfc 00 10,000 K 3 GNU Emacs: The extensible self-doc
BtvStack.exe 2708 ifc 00 9.444K 43 Bluetooth Stack Server]

9/15/14 cs162 fal4 L7 36

Threads in a Process

9/15/14

Threads are useful at user-level
— Parallelism, hide 1/0 latency, interactivity

Option A (early Java): user-level library, within a single-threaded
process

— Library does thread context switch

— Kernel time slices between processes, e.g., on system call |/O
Option B (Linux, MacOS, Windows): use kernel threads

— System calls for thread fork, join, exit (and lock, unlock,...)

— Kernel does context switching

— Simple, but a lot of transitions between user and kernel mode
Option C (Windows): scheduler activations

— Kernel allocates processors to user-level library

— Thread library implements context switch

— System call /0 that blocks triggers upcall
Option D: Asynchronous |/O

cs162 fald L7 37

|

spaces:

One Many

of addr

threads
Per AS:

MS/DOS, early

Macintosh Traditional UNIX

One

Embedded systems _
(Geoworks, VXWOrkS, Mach, 08/2, HP'UX, Win

Many JavaOS,etc) NT toASn,d?cc))ilc?riie(;5 SC)S X,
JavaOS, Pilot(PC) ’

» Real operating systems have either
— One or many address spaces
— One or many threads per address space

9/15/14 cs162 fal4q L7 38

OS Archaeology

-~ Because of the cost of developing an OS from
scratch, most modern OSes have a long lineage:

 Multics 2 AT&T Unix = BSD Unix = Ultrix, SunOS,
NetBSD,...

« Mach (micro-kernel) + BSD - NextStep > XNU -
Apple OSX, iphone iOS

* Linux = Android OS

« CP/M -> QDOS - MS-DOS - Windows 3.1 = NT
2 95->98 > 2000 > XP—>Vista—>7->8->
phone - ...

* Linux = RedHat, Ubuntu, Fedora, Debian, Suse,...

9/15/14 cs162 fal4 L7 39

Dramatic change

Computers
Per Person N m Number
crunching, Data
1:10° Storage,
— Massive
Services,
__ Mining
1:103
Productivity,
[Interactive
1:1
Streaming
; — from/to the
10°:1 physical world
years

Bell’s Law: new computer class per 10 years

of Things!

9/15/14 cs162 fal4 L7 40

L The Internet

R“ -
1950 1960 1970 1980 1990 2000
| MULTICS
mainframes \
no compilers time distributed
software shared multiuser systems
batch multiprocessor
res@ent networked . ™.
monitors
-~ UNIX
minicomputers -
no compilers
software . : ,
time multiuser multiprocessor
resident shared nt;worked fault tolerant
monitors
clustered
UNIX
desktop computers -
 — no compilers
- — software interactive multiprocessor
(e .
e =)
‘ SR i Y multiugey networked
e A [UNIX
—_— : . handheld computers |
I compilers no
software
interactive
networked
‘-—/
9/15/14 cs162 fald L7 41

Recall: (user) Thread Operations

e thread_fork(func, args)
— Create a new thread to run func(args)
— Pintos: thread create

e thread_yield()
— Relinquish processor voluntarily
— Pintos: thread_yield

e thread_join(thread)
— In parent, wait for forked thread to exit, then return

* thread exit
— Quit thread and clean up, wake up joiner if any

— Pintos: thread_exit

http://cs162.eecs.berkeley.edu/static/lectures/code06/pthread.c
9/15/14 csl62 fal4 L7 42

Example: pthreads.c

9/15/14 cs162 fal4 L7 43

