
Thread Coordination
Concurrent objects & Lock

Implementation	

David E. Culler
 CS162 – Operating Systems and Systems

Programming
Lecture 9

Sept 19, 2014
	

Reading:	 A&D	 5.7-‐5.9	 	
HW	 2	 out	
Proj	 1	 out:	 CP1	

Objec@ves	

•  Demonstrate	 a	 structured	 way	 to	 approach	
concurrent	 programming	 (of	 threads)	
– Synchronized	 shared	 objects	 (in	 C!)	

•  Introduce	 the	 challenge	 of	 concurrent	
programming	

•  Develop	 understanding	 of	 a	 family	 of	
mechanisms	
– Flags,	 Locks,	 Condi@on	 Variables	 &	 semaphores	

•  Understand	 how	 these	 mechanisms	 can	 be	
implemented	
	

9/19/14	 cs162	 fa14	 L#	 2	

Concurrency	 Coordina@on	 Landscape	
Concurrent	 Applica/ons	

Shared	 Coordinated	 Objects	

Synchroniza/on	 Variables	

Atomic	 Opera/ons	

Hardware	

Bounded	 Queue	
Ordered	 List	 Dic@onary	 Barrier	

Locks	 Semaphore	 Condi@on	 Variables	
Monitors	

Interrupt	 Disable/Enable	 Test-‐and-‐Set	

Interrupts	 Controllers	 Mul@ple	 Processors	
cmp&swap	

xchng	

fetch&inc	 LL	 +	 SC	

Flag	

lecture	 8	

Recall	

•  Two	 key	 aspects	 of	 coordina@on	
– Mutually	 exclusive	 access	 to	 shared	 objects	 so	
that	 they	 can	 be	 manipulated	 correctly	

– Conveying	 precedence	 from	 one	 computa@onal	
en@ty	 to	 another	

•  Atomic:	 sequence	 of	 ac@ons	 that	 is	 indivisible	
(from	 a	 certain	 perspec@ve)	

•  Cri@cal	 sec@on:	 segment	 of	 computa@on	 that	
is	 performed	 under	 exclusive	 control	
– While	 locking	 others	 out	

9/19/14	 cs162	 fa14	 L#	 4	

Illustration: “Too much milk”"

Arrive home, put milk away …"3:30"
Buy milk"3:25"
Arrive at store"Arrive home, put milk away"3:20"
Leave for store"Buy milk"3:15"

Leave for store"3:05"
Look in Fridge. Out of milk"3:00"

Look in Fridge. Out of milk"Arrive at store"3:10"

Person B"Person A"Time"

Went	 to	 buy	 milk	

Definitions"
•  Synchronization: using atomic operations to

ensure cooperation between threads"
– For now, only loads and stores are atomic"
– We’ll show that is hard to build anything useful with

only reads and writes"
"
•  Critical Section: piece of code that only one

thread can execute at once"

•  Mutual Exclusion: ensuring that only one
thread executes critical section"
– One thread excludes the other while doing its task"
– Critical section and mutual exclusion are two ways

of describing the same thing"

Too Much Milk: non-Solution"
•  Still too much milk but only occasionally!"
 Thread A Thread B
 if (noMilk)
 if (noNote) {
 if (noMilk)
 if (noNote) {
 leave Note;

 buy milk;
 remove note;
 }
 }"
 leave Note;

 buy milk;
 …

•  Thread can get context switched after checking milk and note
but before leaving note!"

•  Solution makes problem worse since fails intermittently"
–  Makes it really hard to debug…"
–  Must work despite what the thread dispatcher does!"

Recall:	 Simplest	 synchroniza@on	

•  Alterna@ng	 protocol	 of	 a	 single	 producer	 and	 a	 single	
consumer	 can	 be	 coordinated	 by	 a	 simple	 flag	

•  Integrated	 with	 the	 shared	 object	

9/19/14	 cs162	 fa14	 L#	 8	

Producer	

Input	 file	
Line	 of	 text	

Line	 of	 text	

Consumer	

typedef struct sharedobject {!
 FILE *rfile;!
 int flag;!
 int linenum;!
 char *line;!
} so_t;!

int markfull(so_t *so) { !
 so->flag = 1;!
 while (so->flag) {}!
 return 1;!
}!

int markempty(so_t *so) {!
 so->flag = 0;!
 while (!so->flag) {}!
 return 1;!
}!

More Definitions"
•  Lock: prevents someone from doing something"

–  Lock before entering critical section and  
before accessing shared data"

–  Unlock when leaving, after accessing shared data"
–  Wait if locked"

•  Important idea: all synchronization involves waiting"
•  Example: fix the milk problem by putting a lock on

refrigerator"
–  Lock it and take key if you are going to go buy milk"
–  Fixes too much (coarse granularity): roommate angry if only

wants orange juice"

"
–  Of Course – We don’t know how to make a lock yet"

#$@%@#$@	

Too Much Milk: Solution"
•  Suppose we have some sort of implementation of a lock

(more in a moment)"
–  Lock.Acquire() – wait until lock is free, then grab"
–  Lock.Release() – unlock, waking up anyone waiting"
–  These must be atomic operations – if two threads are waiting for the

lock, only one succeeds to grab the lock"

•  Then, our milk problem is easy:"
" milklock.Acquire();
 if (nomilk)
 buy milk;
 milklock.Release();

•  Once again, section of code between Acquire() and
Release() called a “Critical Section”"

How to Implement Lock?"
•  Lock: prevents someone from accessing something"

–  Lock before entering critical section (e.g., before
accessing shared data)"

–  Unlock when leaving, after accessing shared data"
–  Wait if locked"

•  Important idea: all synchronization involves waiting"
•  Should sleep if waiting for long time"

•  Hardware lock instructions ?"
–  Is this a good idea?"

•  We will see various atomic read-modify-write instructions"
–  What about putting a task to sleep?"

•  How do handle interface between hardware and scheduler?"
–  Complexity?"

•  Each feature makes hardware more complex and slower"

•  How can we build multi-instruction atomic
operations?"
– Recall: dispatcher gets control in two ways. "

•  Internal: Thread does something to relinquish the CPU"
•  External: Interrupts cause dispatcher to take CPU"

– On a uniprocessor, can avoid context-switching by:"
•  Avoiding internal events (although virtual memory tricky)"
•  Preventing external events by disabling interrupts"

•  Consequently, naïve Implementation of locks:"
""LockAcquire { disable Ints; }
 LockRelease { enable Ints; }"

Naïve use of Interrupt Enable/Disable"

Lock	 vs	 Disable	

9/19/14	 cs162	 fa14	 L#	 13	

LockAcquire { disable Ints; }

LockRelease { enable Ints; }	

While(TRUE) {;}	

Only	 disable	 for	 the	 implementa@on	 of	 the	 lock	 itself	
Not	 what	 you	 are	 going	 to	 do	 under	 it!	

An OS Implementation of Locks"
•  Key idea: maintain a lock variable and impose mutual

exclusion only during operations on that variable"

int value = FREE;

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Put at front of ready queue
 } else {
 value = FREE;
 }
 enable interrupts;

}

Checking	 and	 Seing	 are	 indivisible	
	 	 -‐	 otherwise	 two	 thread	 could	 see	 !BUSY	

Critical
Section

Locks"
int value = 0;
Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Acquire() {
 disable interrupts;
}

Release() {
 enable interrupts;
}

If one thread in critical
section, no other activity
(including OS) can run! "

Interrupt re-enable in going to sleep"
•  What about re-enabling ints when going to sleep?"

•  Before putting thread on the wait queue?"
–  Release can check the queue and not wake up thread"

•  After putting the thread on the wait queue"
–  Release puts the thread on the ready queue, but the thread

still thinks it needs to go to sleep"
–  Misses wakeup and still holds lock (deadlock!)"

•  Want to put it after sleep(). But, how?"

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 go to sleep();
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Enable Position!
Enable Position!
Enable Position!

How to Re-enable After Sleep()?"
•  Since ints are disabled when you call sleep:"

–  Responsibility of the next thread to re-enable ints"
–  When the sleeping thread wakes up, returns to acquire

and re-enables interrupts"
 Thread A "Thread B"
 .

 .
 disable ints

 sleep
 sleep return

 enable ints
 .

 .
 .

 disable int
 sleep

 sleep return
 enable ints

 .
 .

context switch!

context 
switch!

yield return
enable ints

disable int
yield

Administra@ve	 Break	

9/19/14	 cs162	 fa14	 L#	 18	

Semaphores"
•  Semaphores are a kind of generalized locks"

–  First defined by Dijkstra in late 60s"
–  Main synchronization primitive used in original UNIX"

•  Definition: a Semaphore has a non-negative integer value
and supports the following two operations:"
–  P(): an atomic operation that waits for semaphore to become

positive, then decrements it by 1 "
•  Think of this as the wait() operation"

–  V(): an atomic operation that increments the semaphore by 1,
waking up a waiting P, if any"

•  This of this as the signal() operation"
–  Note that P() stands for “proberen” (to test) and V() stands for

“verhogen” (to increment) in Dutch"

down	

up	

Value=2 Value=1 Value=0

Semaphores Like Integers Except"
•  Semaphores are like integers, except"

–  No negative values"
–  Only operations allowed are P and V – can’t read or write value,

except to set it initially"
–  Operations must be atomic"

•  Two P’s together can’t decrement value below zero"
•  Similarly, thread going to sleep in P won’t miss wakeup from V – even if

they both happen at same time"

•  Semaphore from railway analogy"
–  Here is a semaphore initialized to 2 for resource control:"

Value=1 Value=0 Value=2

Two Uses of Semaphores"
•  Mutual Exclusion (initial value = 1)"

–  Also called “Binary Semaphore”."
–  Can be used for mutual exclusion:"

 semaphore.P();
 // Critical section goes here
 semaphore.V();

•  Scheduling Constraints (initial value = 0)"
–  Allow thread 1 to wait for a signal from thread 2, i.e., thread 2

schedules thread 1 when a given constrained is satisfied"
–  Example: suppose you had to implement ThreadJoin which must

wait for thread to terminiate:"
" "Initial value of semaphore = 0
 ThreadJoin {
 semaphore.P();
 }

 ThreadFinish {
 semaphore.V();
 }

Structured	 concurrent	 programming	

•  Use	 locks	 for	 mutual	 exclusion	
–  Including	 manipula@on	 of	 data	 structures	
– Locks	 more	 structured	 than	 semaphores	

•  Ownership:	 acquirer	 must	 release	

•  Use	 Condi@on	 Variables	 (more	 soon)	 for	
Scheduling	 constraints	
– A	 =>	 B.	 “stateless”	

•  Integrate	 these	 into	 concurrent	 objects	
– Synchronized	 methods	 effect	 the	 protocol	

•  But	 …	

9/19/14	 cs162	 fa14	 L#	 22	

Thread	 Safe	

•  A	 thread-‐safe	 func@on	 is	 one	 that	 can	 be	 safely	 (i.e.,	 it	 will	 deliver	 the	
same	 results	 regardless	 of	 whether	 it	 is)	 called	 from	 mul@ple	 threads	 at	
the	 same	 @me.	
–  hqp://man7.org/linux/man-‐pages/man7/pthreads.7.html	

9/19/14	 cs162	 fa14	 L#	 23	

Exis@ng	 Libraries	

Exis@ng	 Data	
structures	

malloc(…)	 ???	
	
fgets(…)	 ???	
	
getdate	 ()	
	
list.h	 ???	

Legacy	 locks	

9/19/14	 cs162	 fa14	 L#	 24	

pthread_mutex_t mymalloclock;!
!
void *my_malloc(size_t size) {!

!void *res;!
!pthread_mutex_lock(&mymalloclock);!
!res = malloc(size);!
!pthread_mutex_unlock(&mymalloclock);!
!return res;!

}!
!
void my_free(void *ptr) {!
 …!
}!
…!

Thread	 <>	 Interrupt	 Handler	

•  Interrupt	 handlers	 are	 not	 threads	
•  Only	 threads	 can	 share	 locks	

– Ownership	
•  Yet	 in	 the	 kernel	 interrupt	 handlers	 and	
threads	 need	 to	 coordinate	 access	 to	 shared	
data	 structures	

•  The	 statefull	 aspect	 of	 semaphores	 makes	 the	
pending	 waiters	 work	

9/19/14	 cs162	 fa14	 L#	 25	

eg.	 Pintos	 Locks	 (synch.c)	
•  Implements	

semaphores	 for	
synchroniza@on	
and	 builds	 locks	
and	 CVs	 on	 top.	

9/19/14	 cs162	 fa14	 L#	 26	

void lock_init (struct lock *lock) {!
 ASSERT (lock != NULL);!
 lock->holder = NULL;!
 sema_init (&lock->semaphore, 1);!
}!
!
void lock_acquire (struct lock *lock) {!
 ASSERT (lock != NULL); ASSERT (!intr_context ());!
 ASSERT (!lock_held_by_current_thread (lock));!
!
 sema_down (&lock->semaphore);!
 lock->holder = thread_current ();!
}!
void!
lock_release (struct lock *lock)!
{!
 ASSERT (lock != NULL);!
 ASSERT (lock_held_by_current_thread (lock));!
!
 lock->holder = NULL;!
 sema_up (&lock->semaphore);!
}!
!

see	 list.h	 	

pintos	 semaphore	 (synch.{h,c})	

9/19/14	 cs162	 fa14	 L#	 27	

void sema_down (struct semaphore *sema) {!
 enum intr_level old_level;!
!
 ASSERT (sema != NULL);!
 ASSERT (!intr_context ());!
!
 old_level = intr_disable ();!
 while (sema->value == 0)!
 {!
 list_push_back (&sema->waiters, !

! ! ! ! ! &thread_current ()->elem);!
 thread_block ();!
 }!
 sema->value--;!
 intr_set_level (old_level);!
}!

struct semaphore!
 { unsigned value; /* Current value. */!
 struct list waiters; /* List of waiting threads.*/!
 };!

atomic	 RMW	 on	 success	

Cri@cal	 sec@on	

Exclusive	 access	
while	 manipula@ng	
list	
enter	 thread	
block	 with	 intrs	
disabled	

pintos	 semaphore	 -‐>	 thread	

9/19/14	 cs162	 fa14	 L#	 28	

void sema_down (struct semaphore *sema) {!
 enum intr_level old_level;!
!
 ASSERT (sema != NULL);!
 ASSERT (!intr_context ());!
!
 old_level = intr_disable ();!
 while (sema->value == 0)!
 {!
 list_push_back (&sema->waiters, !

! ! ! ! ! &thread_current ()->elem);!
 thread_block ();!
 }!
 sema->value--;!
 intr_set_level (old_level);!
}!

void thread_block (void) {!
 ASSERT (!intr_context ());!
 ASSERT (intr_get_level () == INTR_OFF);!
!
 thread_current()->status = THREAD_BLOCKED;!
 schedule ();!
}!

static void schedule (void) {!
 struct thread *cur = running_thread ();!
 struct thread *next = next_thread_to_run ();!
 struct thread *prev = NULL;!
!
 ASSERT (intr_get_level () == INTR_OFF);!
 ASSERT (cur->status != THREAD_RUNNING);!
 ASSERT (is_thread (next));!
!
 if (cur != next)!
 prev = switch_threads (cur, next);!
 thread_schedule_tail (prev);!
}!

static void schedule (void) {!
 struct thread *cur = running_thread ();!
 struct thread *next = next_thread_to_run ();!
 struct thread *prev = NULL;!
!
 ASSERT (intr_get_level () == INTR_OFF);!
 ASSERT (cur->status != THREAD_RUNNING);!
 ASSERT (is_thread (next));!
!
 if (cur != next)!
 prev = switch_threads (cur, next);!
 thread_schedule_tail (prev);!
}!

pintos	 semaphore	 -‐>	 thread	

9/19/14	 cs162	 fa14	 L#	 29	

void sema_down (struct semaphore *sema) {!
 enum intr_level old_level;!
!
 ASSERT (sema != NULL);!
 ASSERT (!intr_context ());!
!
 old_level = intr_disable ();!
 while (sema->value == 0)!
 {!
 list_push_back (&sema->waiters, !

! ! ! ! ! &thread_current ()->elem);!
 thread_block ();!
 }!
 sema->value--;!
 intr_set_level (old_level);!
}!

void thread_block (void) {!
 ASSERT (!intr_context ());!
 ASSERT (intr_get_level () == INTR_OFF);!
!
 thread_current()->status = THREAD_BLOCKED;!
 schedule ();!
}!

static void schedule (void) {!
 struct thread *cur = running_thread ();!
 struct thread *next = next_thread_to_run ();!
 struct thread *prev = NULL;!
!
 ASSERT (intr_get_level () == INTR_OFF);!
 ASSERT (cur->status != THREAD_RUNNING);!
 ASSERT (is_thread (next));!
!
 if (cur != next)!
 prev = switch_threads (cur, next);!
 thread_schedule_tail (prev);!
}!

static void schedule (void) {!
 struct thread *cur = running_thread ();!
 struct thread *next = next_thread_to_run ();!
 struct thread *prev = NULL;!
!
 ASSERT (intr_get_level () == INTR_OFF);!
 ASSERT (cur->status != THREAD_RUNNING);!
 ASSERT (is_thread (next));!
!
 if (cur != next)!
 prev = switch_threads (cur, next);!
 thread_schedule_tail (prev);!
}!

switch_threads:!
!# Save caller's register state.!
! pushl %ebx!

 pushl %ebp!
 pushl %esi!
 pushl %edi!
 # Get offsetof (struct thread, stack).!
.globl thread_stack_ofs!
 mov thread_stack_ofs, %edx!
!
 # Save current stack pointer to old thread's stack, if any.!

! movl SWITCH_CUR(%esp), %eax!
 movl %esp, (%eax,%edx,1)!
!
 # Restore stack pointer from new thread's stack.!
 movl SWITCH_NEXT(%esp), %ecx!

!movl (%ecx,%edx,1), %esp!
!
 # Restore caller's register state.!
 popl %edi!
 popl %esi!
 popl %ebp!
 popl %ebx!

!ret!
.endfunc!

pintos	 semaphores	

9/19/14	 cs162	 fa14	 L#	 30	

void sema_up (struct semaphore *sema) {!
 enum intr_level old_level;!
!
 ASSERT (sema != NULL);!
!
 old_level = intr_disable ();!
 if (!list_empty (&sema->waiters))!
 thread_unblock (list_entry (list_pop_front (&sema->waiters),!
 struct thread, elem));!
 sema->value++;!
 intr_set_level (old_level);!
}!

Concurrency	 Coordina@on	 Landscape	
Concurrent	 Applica/ons	

Shared	 Coordinated	 Objects	

Synchroniza/on	 Variables	

Atomic	 Opera/ons	

Hardware	

Bounded	 Queue	
Ordered	 List	 Dic@onary	 Barrier	

Locks	 Semaphore	 Condi@on	 Variables	
Monitors	

Interrupt	 Disable/Enable	 Test-‐and-‐Set	

Interrupts	 Controllers	 Mul@ple	 Processors	
cmp&swap	

xchng	

fetch&inc	 LL	 +	 SC	

Flag	

lecture	 8	

