
Operating System Architectures 

•  Learning objectives: 
•  Explain how OS functionality is orthogonal to where you place 

services relative to processor modes. 
•  Describe some alternative ways to structure the operating 

system. 
•  Operating systems evolve over time, but that evolution is 

frequently in terms of their architecture: how they structure 
functionality relative to protection boundaries. 

•  We’ll review some of the basic architectures: 
•  Executives 
•  Monolithic kernels 
•  Micro kernels 
•  Exo kernels 
•  Extensible operating systems 

2/3/15 CS161 Spring 2015 1 



OS Executives 
•  Think MS-DOS: With no hardware protection, the OS 

is simply a set of services: 
•  Live in memory 
•  Applications can invoke them 
•  Requires a software trap to invoke them. 
•  Live in same address space as application 

2/3/15 CS161 Spring 2015 2 

Operating System routlines 

Applications 1-2-3 

Command 

QBasic WP 

Software 
Traps 



Monolithic Operating System 
•  Traditional architecture 

•  Applications and operating system run in different address spaces. 
•  Operating system runs in privileged mode; applications run in user 

mode. 

2/3/15 CS161 Spring 2015 3 

Operating System 

Device drivers 
file system 

virtual memory 
networking processes 

Applications 



Microkernels (late 80’s and on) 

•  Put as little of OS as possible in privileged mode (the microkernel). 
•  Implement most core OS services as user-level servers. 

•  Only microkernel really knows about hardware 
•  File system, device drivers, virtual memory all implemented in unprivileged servers. 
•  Must use IPC (interprocess communication) to communicate among different servers. 

2/3/15 CS161 Spring 2015 4 

Microkernel 

Applications 

file system networking 

Virtual 
memory 

Process 
management 



Microkernels: Past and Present 

•  Much research and debate in late 80’s early 90’s 
•  Pioneering effort in Mach (CMU). 
•  Real goal was a new OS that could run UNIX applications. 
•  Huge debates over microkernel versus monolithic kernel. 

•  Windows NT used “modified microkernel” 
•  Mostly monolithic 
•  Different APIs are user-level services (DOS, Win3.1, Win32, POSIX) 

•  Mac OS X started as a hybrid architecture, although overtime it 
has become increasingly a traditional, monolithic architecture. 

•  Secure Microkernel Project (seL4) 
•  Builds on the L4 microkernel to create a small, secure kernel. 
•  Provides mechanisms to enforce security guarantees at the OS and 

application levels. 

2/3/15 CS161 Spring 2015 5 



Exo-Kernels (1995-2000) 
•  Take microkernels to the extreme. 
•  Rather than export OS abstractions from kernel, export hardware more directly. 

•  Lots of research effort in designing interfaces for exporting hardware so it can be safely 
multiplexed. 

•  Interesting results in safe disk sharing 
•  OS functionality implemented in “OS libraries” that link directly with applications. 

2/3/15 CS161 Spring 2015 6 

Exokernel 

Applications Unix 
library 

Windows 
library 



Extensible operating systems 
•  Mid to late 90’s: Lots of research in how to add 

functionality to the operating system safely. 
•  Many fancy mechanisms 

•  Expose rich interfaces and use transactions to recover (VINO). 
•  Use a safe language (modula3) for extensions (SPIN). 
•  Use microkernels and simply write new servers (L4). 
•  Binary rewriting... 

•  In practice: 
•  People just wanted to be able to add stuff. 
•  Didn’t care too much about protection of “stuff.” 
•  Loadable kernel modules won. 

2/3/15 CS161 Spring 2015 7 


