
Schedulers

•  Topics:
•  Unix fair share scheduler
•  Solaris multi-level feedback queue scheduler
•  Linux completely fair scheduler
•  Lottery scheduling

•  Learning objectives:
•  Describe different scheduling policies
•  Match different policies to different scenarios/

workloads/environments
2/19/15 CS161 Spring 2015 1

4.4 BSD Fair-Share Scheduling

!  Policy:
!  Every job gets a “fair share” of the processor

!  If there are N jobs, each gets a 1/N share.
!  If a job uses more than its share, decrease its

priority; if it uses less, increase its priority (there is
only one queue).

!  The highest priority process is the one that has
used the least CPU time recently.

2/19/15 CS161 Spring 2015 2

Fair Share Mechanisms

•  Maintain per-process usage statistics.
•  Apply priorities by discounting actual usage.

•  A high priority process scales its usage so it looks
like it’s used less of the processor than it has.

•  A low priority does the opposite (makes it look like
it’s used a lot more).

2/19/15 CS161 Spring 2015 3

The Solaris Scheduler

!  Policy:
!  One run queue/scheduler per CPU.
!  Multi-level feedback queues on each CPU.
!  How to allocate threads to each CPU?

-  Place on the processor with the shortest queue, but...
-  If memory is NUMA (non-uniform), place thread “close” to

where its memory is allocated.
-  If architecture is hype-rthreaded and multicore, do not

place threads on the same core if others are idle.

2/19/15 CS161 Spring 2015 4

Multi-Level Feedback Queues

!  Combines time slices, priority, and prediction.
!  Goal

!  I/O jobs should be responsive.
!  Use processor efficiently (avoid extraneous

scheduling switches).

!  Mechanism:
!  Multiple run queues.
!  Each queue corresponds to a priority.
!  Lower priority queues have longer time slices.

2/19/15 CS161 Spring 2015 5

MLFQ Policy

!  Jobs start at a high priority with a 1 unit time
slice.

!  If a job uses its entire time slice:
!  We decrease its priority by 1 and
!  double its time slice

!  If a job blocks before it finishes its time slice:
!  We increase its priority by 1 and
!  Halve its time slice

2/19/15 CS161 Spring 2015 6

Solaris Multiprocessing

!  Move threads only when descheduled:
!  If another processor is idle, why not move the

thread instead of making it wait?
!  Considerations:

!  Load balancing.
!  Better memory utilization (separate memory hogs).
!  Sometimes lets a CPU go idle:

-  If you move two memory-hog processes together, it can actually
decrease performance. A schedule that lets the CPU go idle is called
“non-workconserving”. These are relatively rare; most schedulers are
“work-preserving”.

2/19/15 CS161 Spring 2015 7

The Completely Fair Scheduler (CFS)

•  Based on the Linux 2.6.23 scheduler.
•  With much credit given to the O(1) scheduler.
•  Guiding principles from O(1) scheduler:

•  Processor efficiency: no idle processors if there is work to be
done.

•  Processor affinity: leave tasks on processors as much as possible.
•  Fairness: no task should go “too long” without being scheduled.
•  Interactive performance: even under high load, the system must

be responsive.
•  Priorities: honor relative importance of tasks.

•  Updated for CFS
•  Tasks should get equal share of processor.

2/19/15 CS161 Spring 2015 8

High Level Structure
•  Each processor does its own scheduling.
•  Main idea: maintain balance (fairness) among tasks. If some task is not

being given enough time, give it some (and vica versa).
•  Each processor maintains:

•  Red/Black tree: contains a “timeline” of future task execution.
•  Keyed by how much time it has used the processor (virtual time = vruntime).
•  Picking a task to run is O(1)
•  Inserting a task when it’s done is O(log N) where N is the length of the (per-processor) run

queue.
•  Accounts for processor time in nanoseconds (not timeslices).

•  Basic algorithm
•  Execute task with lowest virtual time (leftmost node).
•  Run it
•  Update its virtual time
•  Reinsert it

2/19/15 CS161 Spring 2015 9

Similar but different
•  No traditional priorities

•  Instead, use decay factors.
•  Decay factors determine how quickly the time a task is permitted

to execute diminishes.
•  High priority tasks have low decay factors; low priority tasks have

high decay factors.
•  Group scheduling

•  A collection of tasks can share a virtual time.
•  Example:

•  Allocate 50% of the time to each of two users.
•  Allocate time within that allotment to individual tasks of each user.

•  Scheduling classes
•  Allows for multiple scheduling policies.

2/19/15 CS161 Spring 2015 10

Multiprocessor Scheduling

•  Every CPU runs a migration thread
•  void load_balance()!

•  Attempts to move tasks from one CPU to another.

•  When called:
•  Explicitly if runqueues are imbalanced
•  Periodically by timer tick.

2/19/15 CS161 Spring 2015 11

Lottery Scheduling

!  Allocates the CPU randomly, but proportionally.
!  Mechanism:

!  Each job has some number of lottery tickets.
!  At each scheduling interval, pick a random ticket and

run that process.
!  On average, a job P with twice as many tickets as job Q

will run twice as often.
!  Policy: How do you allocate tickets?

2/19/15 CS161 Spring 2015 12

Lottery Scheduling

!  Allocates the CPU randomly, but proportionally.
!  Policy:

!  Each job has some number of lottery tickets.
!  At each scheduling interval, pick a random ticket

and run that process.
!  On average, a job P with twice as many tickets as

job Q will run twice as often.
!  Policy: How do you allocate tickets?

!  The same way you assign priorities!
!  Can augment any priority-based policy.

2/19/15 CS161 Spring 2015 13

Possible Ticket Policies

•  Give every user the same number of tickets.
•  Give every task the same number of tickets.
•  Allocate tickets to a group of processes.
•  Map a priority level to a number of tickets.
•  Give Prof. Seltzer all the tickets.

2/19/15 CS161 Spring 2015 14

Behavior of Lottery Scheduling

!  Pros: What are the virtues of a lottery?
!  Fair: Every job has a chance to run.
!  Has some of randomness's robustness against

change, strange workloads
!  You can do cool stuff with tickets! For example, you

can let processes decise how to allocate their
tickets among threads (user-level scheduling).

!  Cons: What is the cost of a lottery?
!  On optimal workloads (which are hopefully “normal”

workloads), you pay a performance tax.
2/19/15 CS161 Spring 2015 15

Useful Features

•  Currencies provide insulation between users.
•  Different users can use different currencies.
•  OS makes sure each user gets fair allocation.
•  User’s tickets get distributed among his/her tasks.

•  Ticket exchanges: permit tasks to work together.
•  Applications can give servers tickets to do work on their

behalf.
•  Avoid priority inversion by giving your tickets to a

process blocking you.
•  Compensation tickets: allow applications that

voluntarily relinquish the processor to hold tickets
in reserve.

2/19/15 CS161 Spring 2015 16

