
2/5/15 CS161 Spring 2015 1 1

Implementing Synchronization

•  Topics
•  Implementing synchronization primitives
•  Hardware support for synchronization

•  Learning Objectives:
•  Select appropriate hardware primitives to implement

synchronization primitives.
•  Implement several different synchronization primitives

Spinlocks

•  States of a spinlock:
•  Zero when unlocked
•  Non-zero when locked

•  Proposed implementation:
1. while (lock_var != 0);!
2. lock_var = 1;!

2/5/15 CS161 Spring 2015 2

Spinlocks: Race Condition!

•  Proposed implementation:
1. while (lock_var != 0);!
2. lock_var = 1;!

2/5/15 CS161 Spring 2015 3

Thread 1 Thread 2
Line1: lock_var == 0

… descheduled … Line 1: lock_var == 0

Line 2: Sets lock_var = 1
(Thinks it has the lock.)

Line 2: Sets lock_var = 1
(Thinks it has the lock)

… descheduled …

Hardware to the Rescue
•  Brute force: turn off interrupts

•  If a thread cannot be interrupted, then its operations are
atomic, right?

•  What if you have multiple thread contexts, cores, or
processors?

•  Would need to disable interrupts on ALL of them – BAD!!!

•  Not quite so brute force: change interrupt priority
levels (IPL)
•  Assign different interrupts different priority levels.
•  The faster a device, the higher its priority. (Why?)

2/5/15 CS161 Spring 2015 4

Set Priority Level (SPL)
•  Real operating systems define many priority levels

•  NetBSD: approximately 12:
•  lock, serial, sched, clock, statclock, vm, tty, softserial,net, bio, softnet, softclock

•  Linux: approximately 8:
•  bio, clock, imp, net, softclock, softtty, statclock, tty

•  OS/161 has only two: low and high. The APIs you have are:
•  spl0: sets the IPL to 0 (interrupts on)
•  splhigh: sets the IPL to its highest value (interrupts off)
•  splx(s): sets IPL to whatever state S represents.

•  Canonical use
s = splhigh();!
Do stuff!
splx(s);!

2/5/15 CS161 Spring 2015 5

Hardware Primitive: TAS
•  Interrupts are a big hammer; we can do better with an atomic

instruction.
•  Test-and-set (TAS)

•  Provides an atomic instruction equivalent to:
1.  return_value = lock_var;
2.  lock_var = 1;

•  If return value is 0, then you succeeded in acquiring the test-and-set.
•  If return value is non-0, then you did not succeed.
•  How do you "unlock" a test-and-set?

•  Test-and-set on Intel:
!xchg dest, src!

•  Exchanges destination and source.
•  How do you use it?

2/5/15 CS161 Spring 2015 6

Hardware Primitive: TAS
•  Interrupts are a big hammer; we can do better with an atomic

instruction.
•  Test-and-set (TAS)

•  Provides an atomic instruction equivalent to:
1.  return_value = lock_var;
2.  lock_var = 1;

•  If return value is 0, then you succeeded in acquiring the test-and-set.
•  If return value is non-0, then you did not succeed.
•  How do you "unlock" a test-and-set?

•  Test-and-set on Intel:
!xchg dest, src!

•  Exchanges destination and source.
•  How do you use it?

2/5/15 CS161 Spring 2015 7

src = 1
xchg lock_var, src!
If src == 0, you got the lock.

Hardware Primitive: LL/SC
•  LL: load link (sticky load) returns the value in a memory

location.
•  SC: store conditional: stores a value to the memory

location ONLY if that location hasn’t changed since the
last load-link.

•  If update has occurred, store-conditional will fail.
•  Example: LL/SC on the MIPS (register 1 contains address

of the spinlock)
LL r2,(r1) # Load value ref’d by r1 into r2!
if r2 is 0 (i.e., unlocked)!
! !SC r3,(r1) # Store "locked" into loc ref’d by r1!
! !# r3 contains 0 on failure!
if (r2 is non-zero OR r3 is 0)!
! !goto retry!

2/5/15 CS161 Spring 2015 8

Hardware Primitive: CAS
•  Compare and Swap
•  Compares the contents of a memory location with a

value and if they are the same, then modifies the
memory location to a new value.

•  CAS on Intel:
!cmpxchg loc, val!

•  Compare value stored at memory location loc to
contents of the Compare Value Application Register.
•  If they are the same, then set loc to val.
•  ZF flag is set if the compare was true, else ZF is 0

2/5/15 CS161 Spring 2015 9

Using CAS
•  Set Compare Value Application Register to 0
•  Let “loc” be the address of the memory location of

your spinlock.
!cmpxchg loc, 1!

•  Check ZF flag:
•  If ZF is 1, then the compare was true and you have the lock
•  If ZF is 0, then you failed and should retry.

2/5/15 CS161 Spring 2015 10

Fancier Hardware Support:
Transactional memory

•  Introduced by Herlihy and Moss in 1993.
•  Finally starting to get some traction in the past few years.
•  Idea:

•  Implement an entire critical section exploiting hardware to make it atomic.
•  Code up the set of operations you want and then "try" to apply them all at once

atomically -- that will either succeed or fail.
•  Specify a set of "transactional operations”

•  load-transactional (LT): read memory into a register
•  load-transactional-exclusive (LTX): read memory into a register and hint that you’ll be

updating it (optimization)
•  store-transactional (ST): write value into a memory location

•  Specify a set of transaction control instructions
•  begin: start a sequence of atomic instructions
•  commit: try to apply all the updates from the transaction. If possible, apply them and

the transaction succeeds. If not possible, apply none and transaction fails.
•  abort: throw away all the current transactional changes.
•  validate: check if this transaction has aborted.

2/5/15 CS161 Spring 2015 11

Implementing Transactional Memory

•  Maintain a read-set: set of all memory locations read
during a transaction (all locations accessed by LT).

•  Maintain a write-set: set of all memory locations written
during a transaction (all locations accessed by LTX and
ST).

•  Data-set is the union of read-set and write-set.
•  Commit check that:

•  no other transaction has modified any item in this transaction’s
data set.

•  no other transaction has read anything in this transaction’s write
set.

•  If commit check fails, restore everything to its initial state.

2/5/15 CS161 Spring 2015 12

Uniprocessor Semaphores using SPL (1)

!
struct semaphore {!

char *name;!

volatile int count;!
}!

2/5/15 CS161 Spring 2015 13

Uniprocessor Semaphores using SPL (2)

2/5/15 CS161 Spring 2015 14

P (struct semaphore *sem)!
{!

!int spl;!

!
!while (1) {!
! !spl = splhigh();!
! !if (sem->count > 0)!
! ! !break;!
! !thread_sleep(sem);!

! !splx(spl);!
!}!

!
!sem->count--;!
!splx(spl);!
!return;!

}!

Uniprocessor Semaphore using SPL (3)

V(struct semaphore *sem)!
{!

int spl;!

!
spl = splhigh();!
sem->count++;!
thread_wakeup(sem);!
splx(spl);!

}!

2/5/15 CS161 Spring 2015 15

Multiprocessor: Attempt (1)
!

•  Let’s start with a uniprocessor solution and add a
TAS to protect the count.!

!
struct semaphore {!

char *name;!
volatile int count;!
volatile int tas;!

}!

2/5/15 CS161 Spring 2015 16

Multiprocessor Attempt (2)
V(struct semaphore *sem)!
{!

int spl;!

!
spl = splhigh();!
while (TAS(sem->tas != 0)); /* spin */!
sem->count++;!
sem->tas = 0;!
thread_wakeup(sem);!

splx(spl);!
}!

2/5/15 CS161 Spring 2015 17

Multiprocessor Attempt: (3)

2/5/15 CS161 Spring 2015 18

P (struct semaphore *sem)!
{!

!int spl;!
!spl = splhigh();!

!while (1) {!
! !spl = splhigh();!
! !while (TAS(sem->tas) != 0);!

! !if (sem->count > 0)!
! ! !break;!
! !sem->tas = 0;!
! !thread_sleep(sem);!

! !splx(s);!
!}!
!sem->count--;!

!sem->tas = 0;!
!splx(spl);!
!return;!

}!

Multiprocessor Attempt: (4)

2/5/15 CS161 Spring 2015 19

If another processor sets the
semaphore here and does the
Wakeup right away, this
thread will never be woken up.

P (struct semaphore *sem)!
{!

!int spl;!
!spl = splhigh();!

!while (1) {!
! !spl = splhigh();!
! !while (TAS(sem->tas) != 0);!

! !if (sem->count > 0)!
! ! !break;!
! !sem->tas = 0;!
! !thread_sleep(sem);!

! !splx(s);!
!}!
!sem->count--;!

!sem->tas = 0;!
!splx(spl);!
!return;!

}!

Multiprocessor Semaphore (1)
•  This is the OS/161 implementation (formatted

differently to fit on slides)
struct semaphore {!
 char *sem_name;!
 struct wchan *sem_wchan;!
 struct spinlock sem_lock;!
 volatile int sem_count;!
};!

2/5/15 CS161 Spring 2015 20

Multiprocessor Semaphore (2)
struct semaphore *sem_create(const char *name, int initial_count)!
{!

!struct semaphore *sem;!

!if ((sem = kmalloc(sizeof(struct semaphore))) == NULL)!
! !return (NULL);!
!if ((sem->sem_name = kstrdup(name)) == NULL) {!
! !kfree(sem);!
! !return (NULL);!
!}!

!if ((sem->sem_wchan = wchan_create(sem->sem_name)) == NULL) {!
! !kfree(sem->sem_name);!
! !kfree(sem);!
! !return(NULL);!
!}!
!spinlock_init(&sem->sem_lock);!

!sem->sem_count = initial_count;!
!return (sem);!

}!

2/5/15 CS161 Spring 2015 21

Multiprocessor Semaphore (3)
void V(struct semaphore *sem)!
{!

!KASSERT(sem != NULL);!

!
!spinlock_acquire(&sem->sem_lock);!

!
!sem->sem_count++;!
!KASSERT(sem->sem_count > 0);!
!wchan_wakeone(sem->sem_wchan);!

!
!spinlock_release(&sem->sem_lock);!

}!

2/5/15 CS161 Spring 2015 22

Multiprocessor Semaphore (4)
void P(struct semaphore *sem)!
{!

!KASSERT(sem != NULL);!

!KASSERT(curthread->t_in_interrupt == false);!
!spinlock_acquire(&sem->sem_lock);!
!while (sem->sem_count == 0) {!
! !wchan_lock(sem->sem_wchan);!
! !spinlock_release(&sem->sem_lock);!
! !wchan_sleep(sem->sem_wchan);!

!
! !spinlock_acquire(&sem->sem_lock);!
!}!
!KASSERT(sem->sem_count > 0);!
!sem->sem_count—;!
!spinlock_release(&sem->sem_lock);!

}!

2/5/15 CS161 Spring 2015 23

Multiprocessor Semaphore (5)
void P(struct semaphore *sem)!
{!

!KASSERT(sem != NULL);!

!KASSERT(curthread->t_in_interrupt == false);!
!spinlock_acquire(&sem->sem_lock);!
!while (sem->sem_count == 0) {!
! !wchan_lock(sem->sem_wchan);!
! !spinlock_release(&sem->sem_lock);!
! !wchan_sleep(sem->sem_wchan);!

!
! !spinlock_acquire(&sem->sem_lock);!
!}!
!KASSERT(sem->sem_count > 0);!
!sem->sem_count—;!
!spinlock_release(&sem->sem_lock);!

}!

2/5/15 CS161 Spring 2015 24

Make sure we
never block in a
signal handler

Multiprocessor Semaphore (6)
void P(struct semaphore *sem)!
{!

!KASSERT(sem != NULL);!

!KASSERT(curthread->t_in_interrupt == false);!
!spinlock_acquire(&sem->sem_lock);!
!while (sem->sem_count == 0) {!
! !wchan_lock(sem->sem_wchan);!
! !spinlock_release(&sem->sem_lock);!
! !wchan_sleep(sem->sem_wchan);!

!
! !spinlock_acquire(&sem->sem_lock);!
!}!
!KASSERT(sem->sem_count > 0);!
!sem->sem_count—;!
!spinlock_release(&sem->sem_lock);!

}!

2/5/15 CS161 Spring 2015 25

Note that we do not
maintain strict FIFO
ordering of threads
going through the
semaphore; that is,
we might "get" it on
the first try even if
other threads are
waiting

Make sure we
never block in a
signal handler

Wait Channels
•  An abstraction that lets a thread wait on a certain

event.
•  Includes a lock and a queue.
•  Does this sound like a familiar abstraction to you?
•  Homework: Figure out how a wait channel differs

from a CV.

2/5/15 CS161 Spring 2015 26

