
2/3/15 CS161 Spring 2015 1 1 

Synchronization Overview!

•  Topics 
•  Assumptions 
•  Common synchronization challenges 

•  Learning Objectives: 
•  Discuss why synchronization is necessary. 
•  Outline the common problems one encounters in designing 

and implementing properly synchronized code. 



Assumptions 
•  You know why we need synchronization. 
•  You are familiar with the following concepts: 

•  Mutual exclusion 
•  Critical section 

•  You may not be familiar with: 
•  Race condition 
•  Deadlock 
•  Starvation 

•  You have been exposed to and know how to use: 
•  Locks 

•  Some of you have been exposed to and used: 
•  Spinlocks 
•  Semaphores 
•  Condition variables 

•  You’ve never heard of this 
•  Monitors 

2/3/15 CS161 Spring 2015 2 



Review: Why Synchronize 
•  You have some shared state. 
•  You need to be able to read/modify it and take action 

based on that resource, knowing that someone else 
isn’t doing the same thing. 

•  Examples: 
•  Two people who share a bank account using the ATM at the 

same time. 
•  Two processes trying to create files with the same name in 

the same directory at the same time. 
•  A device and a user process trying to access data in the 

same memory locations at the same time. 

2/3/15 CS161 Spring 2015 3 



Review: Mutual Exclusion 
•  Preventing concurrent access to something 

•  A piece of code 
•  A variable 

•  Synchronization often provides mutual exclusion 
between threads. 

2/3/15 CS161 Spring 2015 4 



Review: Critical Section 
•  The piece of code to which we need to provide 

mutual exclusion. 
•  Typically the code that manipulates or examines 

shared state. 
•  Goal is to keep critical sections as short as possible. 
•  Clearly identifying critical sections is a good first step! 

2/3/15 CS161 Spring 2015 5 



Race Condition 
•  When correctness depends on precisely how threads 

of control are interleaved (i.e., you get the 
synchronization wrong). 

•  Produces unpredictable results. 
•  VERY difficult to debug 

•  Typically you do not know there is a race condition until long 
after the fact. 

•  Non-deterministic, so you cannot easily reproduce it 
•  You should design carefully to avoid debugging race 

conditions; they can turn an hour of work into a 
lifetime of work. 

2/3/15 CS161 Spring 2015 6 



Avoiding Race Conditions 
•  Here are some coding techniques to help you avoid 

race conditions: 
•  Make sure you always use the same synchronization 

primitive to access the same state. 
•  Whenever possible encapsulate synchronization with 

manipulation (design synchronized APIs). Violate them at 
your own peril. 

•  Document what primitives protect what resources. 
•  Document assumptions about synchronization. 
•  Review each other’s designs and code. 

2/3/15 CS161 Spring 2015 7 



Deadlock 
•  The inverse of a race condition. 
•  When two or more threads block each other so that 

no thread can make forward progress. 
•  Requirements: 

1.  Resource is not preemptible (i.e., you can’t make someone 
give it up). 

2.  Resource requires mutual exclusion. 
3.  Threads holding resources can block waiting for other 

resources. 
4.  There exists a cycle in the graph with a directed edge 

between each a thread and the thread for which it is 
waiting. 

2/3/15 CS161 Spring 2015 8 



Visualizing Deadlock (1) 
•  Let’s assume we have two threads and two objects. 

2/3/15 CS161 Spring 2015 9 

A 

B 

P 

Q 



Visualizing Deadlock (2) 
•  Let’s assume we have two threads and two objects. 

2/3/15 CS161 Spring 2015 10 

A 

B 

P 

Q 

Lock 



Visualizing Deadlock (3) 
•  Let’s assume we have two threads and two objects. 

2/3/15 CS161 Spring 2015 11 

A 

B 

P 

Q 

Lock 

Lock 



Visualizing Deadlock (4) 
•  Let’s assume we have two threads and two objects. 

2/3/15 CS161 Spring 2015 12 

A 

B 

P 

Q 

Lock 

Lock 



Visualizing Deadlock (5) 
•  Let’s assume we have two threads and two objects. 

2/3/15 CS161 Spring 2015 13 

A 

B 

P 

Q 

Lock 

Lock 

P 

Q 
w

ai
ts

-fo
r 



Visualizing Deadlock (6) 
•  Let’s assume we have two threads and two objects. 

2/3/15 CS161 Spring 2015 14 

A 

B 

P 

Q 

Lock 

Lock 

P 

Q 
w

ai
ts

-fo
r 



Visualizing Deadlock (7) 
•  Let’s assume we have two threads and two objects. 

2/3/15 CS161 Spring 2015 15 

A 

B 

P 

Q 

Lock 

Lock 

P 

Q 
w

ai
ts

-fo
r w

aits-for 



Avoiding Deadlock 
•  Never acquire more than one resource at a time 

(somewhat inflexible). 
•  Always acquire resources in the same order (not 

always feasible, e.g., you don’t know all the 
resources you need). 

•  Before waiting, check for deadlock and fail the 
operation if it would lead to a deadlock (might cause 
you to lose a lot of work). 

2/3/15 CS161 Spring 2015 16 



Starvation 
•  When one (or more threads) is waiting for a resource 

but never gets it. 
•  How can this happen? 

•  Scheduling is non-deterministic. 
•  Scheduling gives preference to some threads in a way that 

could lead to starvation of others. 

•  Also difficult to debug 
•  Sometimes handy to always have a simple backup FIFO 

scheduling discipline so you can determine if failure to run is 
a starvation problem or something else. 

2/3/15 CS161 Spring 2015 17 


