
3/12/15 CS161 Spring 2015 1 1

VM Case Study: MIPS R2000

•  Topics
•  MIPS (software managed VM)

•  Learning Objectives:
•  Describe the MIPS MMU support.
•  Be prepared to undertake assignment 3.

The MIPS R2000
•  Introduced in 1987.
•  One of the first commercial Reduced Instruction Set Computers (RISC),

preceded by the Cray-1 and other supercomputers.
•  It has a simple, elegant architecture that has made it a popular target for

homework assignments in computer architecture and operating systems.
•  Virtual Address Format:

•  Memory addressed in bytes.
•  Bits 31-29 are used to partition the virtual address space into four segments:

•  KUSEG: 0??: user-mapped cached
•  KSEG0: 100: kernel unmapped cached
•  KSEG1: 101: kernel unmapped uncached
•  KSEG2: 11?: kernel mapped cached

•  Each page is 212 = 4096 bytes
•  A virtual address is translated into a physical address by translating the 20-bit virtual

page number into a physical page number.

3/12/15 CS161 Spring 2015 2

31-29
11-0

Segment

Page Number: 31-12 Page Offset

MIPS R2000 TLB Structure
•  Associativity: Fully Associative
•  Replacement policy: Random
•  Size: 64 entries (56 random, 8 "wired")
•  Each TLB entry is 64 bits.
•  The TLB_EntryHi and TLB_EntryLow registers are used to read

and write TLB entries, defining the contents of TLB entries.

3/12/15 CS161 Spring 2015 3

Virtual Page Number
63…44

ASID
43…38

reserved
37…32

Physical Page Number
31 … 12

Mode
11 … 8

Reserved
7 … 0

The TLB_EntryHI register
Virtual Page number (20 bits)
Address Space ID (6 bits)
reserved (6 bits)

The TLB_EntryLo register
Page Frame Number (20 bits)
Mode: (4 bits):

Non-cacheable, Dirty/write-protect,
Valid, and Global

reserved (8 bits)

TLB Instructions

•  TLBR: Read the TLB entry specified by the index
register into TLB_EntryHi and TLB_EntryLo.

•  TLBWI: Write the TLB entry specified by the index
register with the contents of TLB EntryHi and
TLB_EntryLo.

•  TLBWR: Write the TLB entry specified by the random
register with the contents of TLB_EntryHi and
TLB_EntryLo.

•  TLBP: Probe the TLB for an entry matching the virtual
page number, PID, and Context bits that are in
TLB_EntryHi, observing the Global mode bit.
•  Sets the P bit if there are no matching entries. Undefined if

there are multiple matching entries.

3/12/15 CS161 Spring 2015 4

TLB Registers (1)
•  The TLB Index register: indicates which TLB entry is

being manipulated.
•  Index field (6 bits)
•  The P bit indicates the failure of a TLB Probe operation.

3/12/15 CS161 Spring 2015 5

unused
30 … 14

index
13 … 8

Unused
7 … 0

P
31

•  The TLB Context register: gives you faulting
address and user-page table address.
•  PTEBase: (11 bits) upper bits of the user page table base address. Set

by the OS.
•  Bad VPN: (19 bits) Set by the hardware on a TLB miss to the page

number (bits 30..12) of the failing virtual address

PTEBase
31 … 21

Bad VPN
20 .. 2

0 0
1-0

TLB Registers (2)

3/12/15 CS161 Spring 2015 6

•  The Random register provides a random numb [8…13] that is
used by the TLBWR (TLB Write Random) instruction.
•  This is how random replacement can be implemented.
•  The register is readable, although reading the register is not necessary for

TLB management.

unused
31 … 14

random
13 … 8

Unused
7 … 0

Mach 3.0 TLB Miss handler
NESTED(TRAP_tlbn_umiss, 0, k1)!

!mfc0 !k0, cO_tlbcxt !(loads context reg into k0)!
!mfc0 !k1, cp_epc !(load exception PC into k1)!
!lw !k0, 0(k0) !(k0 is address of PTE; read it)!
!nop ! ! !(load delay)!
!mtc0 !k0, c0_tlblo !(load entry from PT into TLBlo)!
!tlbwr ! ! !(write new entry into the TLB)!
!j !k1 ! !(jump to the faulting inst)!
!rfe ! ! !(branch slot; back to user mode)!

!

•  Because page tables are large, they are kept in
system virtual memory (k2seg).

•  Most of the time, this miss handler won’t generate
any exceptions, but it can …

!

3/12/15 CS161 Spring 2015 7

Virtual Memory Map

3/12/15 CS161 Spring 2015 8

0x7FFFFFFF

0x0

Kernel: mapped cacheable 0xFFFFFFFF

Kuseg
User mode
Address space

2 GB

0xC0000000
K2 seg

0x9FFFFFFF

0x80000000
k0seg

0xBFFFFFFF

0xA0000000
k1seg

1 GB

512 MB

512 MB

Kernel: unmapped uncacheable

Kernel: unmapped cacheable

User: mapped cacheable

Both regions map to physical addresses
between 0 and 0x1FFFFFFF

Typical user Address Space Layout

3/12/15 CS161 Spring 2015 9

Reserved

unused

0x7FFFFFFF

0x00400000

0x003FFFFF

0x00000000

0x7FFFE000

0X7FFFDFFF User stack

Red Zone

heap

Static data

Read only data

Start of program text

MIPS R2000 Example

3/12/15 CS161 Spring 2015 10

Address Translation KUSeg Page Table K2Seg Page Table
Virtual Addr Physical Addr VPN Translation VPN Translation
0x00400000 0 Invalid C0000 00598
0x00402ADC … C0001 006C8
0x004010B0 003FF Invalid …
0x07FFFFF0 00400 0093F C00FE Invalid
0x00000128 00401 00940 C00FF 00123
0x80030284 00402 00941 C0100 00987
0xC0001A2F 00403 008F3
0xB00FF00D …
0xDEADBEEF 00500 00CDA

00501 00EF9
…
07FFE 00BC2
07FFF 00731

MIPS R2000 Example

3/12/15 CS161 Spring 2015 11

Address Translation KUSeg Page Table K2Seg Page Table
Virtual Addr Physical Addr VPN Translation VPN Translation
0x00400000 0 Invalid C0000 00598
0x00402ADC … C0001 006C8
0x004010B0 003FF Invalid …
0x07FFFFF0 00400 0093F C00FE Invalid
0x00000128 00401 00940 C00FF 00123
0x80030284 00402 00941 C0100 00987
0xC0001A2F 00403 008F3
0xB00FF00D …
0xDEADBEEF 00500 00CDA

00501 00EF9
…
07FFE 00BC2
07FFF 00731

0x0093F000

0x00941ADC
0x009400B0
0x00731FF0
FAULT
0x0030284

0x006C8A2F

FAULT
0x100FF00D

MIPS R2000 Recap
•  The user segment occupies half of the virtual address space.
•  System memory is organized into three segments.
•  Each segment defines how memory in the segment is accessed.
•  System memory can only be accessed when the processor is

executing in system mode.
•  The virtual page size is 4 KB.
•  Q1: How can you implement shared memory between two user

processes?

•  Q2: How can you implement shared memory between the user
and kernel?

•  Q3: What kind of fragmentation might you get?

•  Q4: What problems do the page tables pose?

3/12/15 CS161 Spring 2015 12

MIPS R2000 Recap
•  The user segment occupies half of the virtual address space and

defines user and system memory.
•  System memory is organized into three segments.
•  Each segment defines how memory in the segment is accessed.
•  System memory can only be accessed when the processor is

executing in system mode.
•  The virtual page size is 4 KB.
•  Q1: How can you implement shared memory between two user

processes?
•  Copy PTEs (two page tables contain identical PTEs)

•  Q2: How can you implement shared memory between the user and
kernel?
•  Kernel can access user memory (in lower portion of address space)

•  Q3: What kind of fragmentation might you get?
•  No external (fixed size page); some internal.

•  Q4: What problems do the page tables pose?
•  Too big! Requires too many memory references!

3/12/15 CS161 Spring 2015 13

