
3/3/15 CS161 Spring 2015 1 1 

More VM: Paging 

•  Topics 
•  TLBs and the kernel 
•  Page faults 
•  Loading programs 
•  Page replacement 
•  Working sets 

•  Learning Objectives: 
•  Identify strategies for efficiently sharing physical memory. 
•  Define a page fault and explain how they occur and are 

handled. 
•  Explain the MIN, LRU, Clock, and Working set paging 

algorithms. 
•  Tackle Assignment 3. 



Address Translation and the Kernel 

•  Exercises: 
•  If everything gets translated via the TLB, how does the 

operating system manage physical memory? 
•  How do we make sure that a user process does not mess 

with the kernel’s memory? 

2 3/3/15 CS161 Spring 2015 



Address Translation and the Kernel 

•  Exercises 
•  If everything gets translated via the TLB, how does the 

operating system manage physical memory? 
•  How do we make sure that a user process does not mess 

with the kernel’s memory? 
1.  Run the OS unmapped (with VM turned off)  
2.  Divide the address space into parts, some of which get 

mapped for the kernel and some of which get mapped for 
user processes. 

•  In either case, the kernel needs to be able to read a user 
process’s page tables and translate (to access data in a user 
process’s address space). 

•  One other problem … 

3 3/3/15 CS161 Spring 2015 



Alternatives to an unmapped kernel 

•  Hardware reserves a portion of 
the virtual address space for the 
kernel. 

!  Kernel effectively mapped into 
every process. 

!  Kernel uses process’s page 
tables to access process 
mappings. 

!  User process not able to access 
kernel TLB entries and 
mappings, but kernel can use 
process ones. 

4 

VAS 

Kernel Memory 
8000000-FFFFFFFF 

User Memory 
0000000-7FFFFFFF 

3/3/15 CS161 Spring 2015 



When User Memory Spans Pages 

5 

User VAS Physical memory 

Translate start address 

Copy N bytes … 

Oops! 

3/3/15 CS161 Spring 2015 



Copyin/Copyout 

•  Recall that we mentioned that the kernel had two 
functions, copyin and copyout that it used to move 
things from a user address space into the kernel’s 
address space? 

•  You do not want to have to translate every address, 
but you need to make sure that you don’t fall off a 
page boundary and end up somewhere you 
shouldn’t. 

•  You can make this work, but it’s tedious. 

6 3/3/15 CS161 Spring 2015 



Paging Overview 

•  The MMU separates the programmer’s view of memory 
from the system’s view, providing: 
•  Flexibility in placing processes in memory. 
•  Multiple mechanisms by which processes may share memory. 

•  While we have discussed the possibility of virtual pages 
not being resident in memory, we have not discussed why 
this might happen, and precisely how to deal with it. 

•  EXERCISE: Why might we want to run processes when 
some of their pages aren’t in memory? 

3/3/15 CS161 Spring 2015 7 



Paging Overview 
•  The MMU separates the programmer’s view of memory 

from the system’s view, providing: 
•  Flexibility in placing processes in memory. 
•  Multiple mechanisms by which processes may share memory. 

•  While we have discussed the possibility of virtual pages 
not being resident in memory, we have not discussed why 
this might happen, and precisely how to deal with it. 

•  EXERCISE: Why might we want to run processes when 
some of their pages aren’t in memory? 
•  Processes can be very large. 
•  Programs exhibit locality, so some pages may be unnecessary. 
•  You only use a subset of a process’s pages at any one time. 
•  You can start processes more quickly if you don’t need to 

preload everything. 

3/3/15 CS161 Spring 2015 8 



What is Paging 
•  The mechanism by which we allow processes to run with 

only some of their pages resident in memory. 
•  In a demand paging system, virtual pages can be in one of 

three states: 
•  Unmapped: there is nothing present at a virtual address. 
•  Memory resident 
•  Disk resident 

•  Pages in main memory are frequently called page frames. 
•  Pages on disk are frequently called backing frames. 
•  Our goal is to provide the illusion that main memory is as 

large as disk and as fast as memory. 
•  When things go wrong, you get the feeling that memory is as 

small as memory and as slow as disk! 
•  Fortunately, locality saves us (in most cases). 

3/3/15 CS161 Spring 2015 9 



Our New View of Memory 

3/3/15 CS161 Spring 2015 10 

Our old view Our new view 
VAS PAS 

DISK 

PAS VAS 

•  Two challenges: 
•  How to run processes with some pages are missing 
•  How to schedule which page are in main memory? 



Page Faults 

•  Extend page table entry (PTE) to include a present bit. 
•  If virtual to physical translation yields a page table entry in 

which present is not set, the reference results in a trap, 
called a page fault. 

•  Any page not in main memory has a present bit of 0. 
•  When a page fault occurs: 

•  Operating system brings page into memory. 
•  Page table is updated; present bit is set. 
•  TLB is updated. 
•  The process that faulted continues execution. 

•  Continuing a process is extremely tricky. 
•  Page fault may have occurred in the middle of an instruction. 
•  Need to make the fault invisible to the user process. 

3/3/15 CS161 Spring 2015 11 



Page Fault Handling (1) 
•  Typically, the PC is incremented at the beginning of the 

instruction cycle. Therefore, if you do not do anything 
special, you will continue running the process at the 
instruction after the faulting one and it will appear as if the 
faulting instruction got skipped. 
•  Users probably will not like this behavior. 
•  “Hi, we’re giving you virtual memory. Oh by the way, sometimes 

we skip instructions.” 
•  You have three options: 

•  Restart the instruction: undo whatever the instruction may have 
already done and then reissue the instruction. 

•  Used by PDP-11, MIPS R3000, and most modern architectures. 
•  Complete the instruction: continue where you left off. 

•  Used in the Intel x86. 
•  Test for faults before issuing the instruction. 

•  Used in the IBM 370. 

3/3/15 CS161 Spring 2015 12 



Page Fault Handling (2) 
•  Without hardware support, you should either forget about 

paging or use complex (and disgusting) solutions. 
•  MC68000, Intel 8086 and 80286: could not restart instructions. 
•  Apollo systems (used Motorola CPUs) had two CPUs. 

•  One executed user code. 
•  If it took a fault, the user CPU stalled while the OS CPU fetched the page. 
•  Once it got the page, the user CPU was un-stalled. 

•  Even with hardware support, the page fault handler must 
be able to recover the cause of the fault and enough of the 
machine state to continue the program. 

•  EXERCISE: Food for thought: 
•  Where to you find missing pages that you need? 

•    
•    
•    

3/3/15 CS161 Spring 2015 13 



Page Fault Handling (2) 
•  Without hardware support, you should either forget about 

paging or use complex (and disgusting) solutions. 
•  MC68000, Intel 8086 and 80286: could not restart instructions. 
•  Apollo systems (used Motorola CPUs) had two CPUs. 

•  One executed user code. 
•  If it took a fault, the user CPU stalled while the OS CPU fetched the page. 
•  Once it got the page, the user CPU was un-stalled. 

•  Even with hardware support, the page fault handler must 
be able to recover the cause of the fault and enough of the 
machine state to continue the program. 

•  Food for thought: 
•  Where to you find missing pages that you need? 

•  In the executable file?  
•  Create them?  
•  In swap space? 

3/3/15 CS161 Spring 2015 14 



Scheduling Decisions 

•  Page Selection: When do you bring pages into 
memory? 

•  Page Replacement: When you need to evict a page 
from memory, how do you select the page to evict?  

3/3/15 CS161 Spring 2015 15 



Page Selection 
•  Preloading 

•  Before execution begins, load in a few pages to get started: e.g., full 
program text, statically allocated data, a stack page. 

•  Prepaging 
•  Bring a page into memory just before it is referenced 
•  Typically best guess is sequential. 
•  Unfortunately, programs aren’t necessarily sequential on a page-wide basis. 
•  May read a lot of pages you didn’t really need. 
•  When might it work OK? 

•    
•    

•  Request paging 
•  Make users request pages that they need to run. 
•  This is the “Oh please, Operating System, I really, really, really, need the 

following pages. 
•  Demand paging 

•  Start execution with no valid mappings. 
•  On each page fault, load in a page. 

3/3/15 CS161 Spring 2015 16 



Page Selection 
•  Preloading 

•  Before execution begins, load in a few pages to get started: full program 
text, statically allocated data, a stack page. 

•  Prepaging 
•  Bring a page into memory just before it is referenced 
•  Typically best guess is sequential. 
•  Unfortunately, programs aren’t necessarily sequential on a page-wide basis. 
•  May read a lot of pages you didn’t really need. 
•  When might it work OK? 

•  Preloading: see above. 
•  Boot time. 

•  Request paging 
•  Make users request pages that they need to run. 
•  This is the “Oh please, Operating System, I really, really, really, need the 

following pages. 
•  Demand paging 

•  Start execution with no valid mappings. 
•  On each page fault, load in a page. 

3/3/15 CS161 Spring 2015 17 



Page Replacement 
•  Random 

•  Pick any page to evict. 
•  Works surprisingly well! 

•  FIFO 
•  Throw out page that has been in memory the longest. 
•  The basic idea is that you give all pages equal residency. 

•  MIN 
•  Predict the future. 
•  Evict the page that will not be referenced for the longest time. 
•  Tough to implement. 
•  Good for comparison. 
•  Defined by Laszlo Belady (known as Belady’s algorithm). 

•  LRU 
•  As usual, use past to predict future. 
•  Evict page that has been unreferenced the longest. 
•  With locality, this is a good approximation to MIN. 

•  What makes implementing some of these difficult? What other metrics/
statistics might you want to keep about your pages? 

3/3/15 CS161 Spring 2015 18 



Page Replacement 
•  Random 

•  Pick any page to evict. 
•  Works surprisingly well! 

•  FIFO 
•  Throw out page that has been in memory the longest. 
•  The basic idea is that you give all pages equal residency. 

•  MIN 
•  Predict the future. 
•  Evict the page that will not be referenced for the longest time. 
•  Tough to implement. 
•  Good for comparison. 
•  Defined by Laszlo Belady (known as Belady’s algorithm). 

•  LRU 
•  As usual, use past to predict future. 
•  Evict page that has been unreferenced the longest. 
•  With locality, this is a good approximation to MIN. 

•  What makes implementing some of these difficult? What other metrics/statistics might 
you want to keep about your pages? 
•  LRU is recency; requires a single queue 
•  Frequency is easier (sorting is hard). 

3/3/15 CS161 Spring 2015 19 



Playing pager (3 memory frames) 
Reference 
stream 

A B C A B D A D B C B 

FIFO A 
B 

C 
MIN A 

B 
C 

LRU A 
B 

C 

3/3/15 CS161 Spring 2015 20 



Playing pager (3 memory frames) 
Reference 
stream 

A B C A B D A D B C B 

FIFO A 
B 

C 
MIN A 

B 
C 

LRU A 
B 

C 

3/3/15 CS161 Spring 2015 21 

D 
A 

B 

C 

D 

C 

D 

C 

•  Just like STCF, MIN is optimal, but  not implementable. 
•  Just like priority queues or fair-share scheduling, use the past to predict the future. For page 

replacement, LRU (least recently- used) works remarkably well. 



Implementing LRU 
•  Need hardware to keep track of recently used pages. 
•  Perfect LRU?  

•  Register for every physical page. 
•  Store clock on every access. 
•  To replace, scan through all the registers. 
•  Assessment? 

•    
•    

•  Approximate LRU 
•  Find any old page. 
•  May not be oldest, but if it’s old, it’s probably good enough. 
•  After all, LRU is an approximation of MIN; what’s another level of 

approximation? 
•  Clock 

•  Maintain a use bit for each frame. 
•  Set bit on every reference. 
•  Operating system sweeps through memory clearing use bits. 

3/3/15 CS161 Spring 2015 22 



Implementing LRU 
•  Need hardware to keep track of recently used pages. 
•  Perfect LRU?  

•  Register for every physical page. 
•  Store clock on every access. 
•  To replace, scan through all the registers. 
•  Assessment? 

•  Expensive! 
•  Not very practical. 

•  Approximate LRU 
•  Find any old page. 
•  May not be oldest, but if it’s old, it’s probably good enough. 
•  After all, LRU is an approximation of MIN; what’s another level of 

approximation? 
•  Clock 

•  Maintain a use bit for each frame. 
•  Set bit on every reference. 
•  Operating system sweeps through memory clearing use bits. 

3/3/15 CS161 Spring 2015 23 



Implementing Clock 
•  When time to replace, replace a page frame with a 0 use bit. 
•  On page fault — circle around clock. 

•  If bit is set, clear it. 
•  If bit is not set, replace it. 
•  Can this loop infinitely?  
•  Can also incorporate dirty bit since dirty pages are more expensive to 

evict than clean ones. 
•  In clock, what does it mean if the clock hand is sweeping very 

slowly? 
•    
•    
•    

•  What if the hand is sweeping very quickly? 
•    
•    

3/3/15 CS161 Spring 2015 24 



Implementing Clock 
•  When time to replace, replace a page frame with a 0 use bit. 
•  On page fault — circle around clock. 

•  If bit is set, clear it. 
•  If bit is not set, replace it. 
•  Can this loop infinitely? NO 
•  Can also incorporate dirty bit since dirty pages are more expensive to 

evict than clean ones. 
•  In clock, what does it mean if the clock hand is sweeping very 

slowly? 
•  Plenty of memory. 
•  Not many page faults. 
•  This is good (desirable). 

•  What if the hand is sweeping very quickly? 
•  Not enough memory. 
•  Thrashing. 

3/3/15 CS161 Spring 2015 25 


