
CS161 Spring 2015 1 1 

Virtual Memory Introduction 

•  Topics 
•  An historical perspective on Virtual Memory – figure out what 

we want out of a virtual memory system. 
•  What are the various approaches to implementing VM? 

•  Learning Objectives: 
•  Explain what VM provides and why it is (usually) necessary. 
•  Identify places where you may not need VM. 
•  Explain different models of virtual memory and be able to 

compare and contrast them. 

With thanks to Geoffrey Challen for the slides on which this is based. 

2/24/15 



Batch Processing (1) 

CS161 Spring 2015 2 

The Computer 

Program 1 
3.1415926535897
932384626433832
795028841971693
993751058209749
445923078164062 

Program 2 
2.7182818284590
452353602874713
526624977572470
9369995 

2/24/15 



Batch Processing (2) 

CS161 Spring 2015 3 

The Computer 

Program 1 
3.1415926535897
932384626433832
795028841971693
993751058209749
445923078164062 

Program 2 
2.7182818284590
452353602874713
526624977572470
9369995 

2/24/15 



Batch Processing (3) 

CS161 Spring 2015 4 

The Computer 

Program 1 
3 

Program 2 
2.7182818284590
452353602874713
526624977572470
9369995 

2/24/15 



Batch Processing (4) 

CS161 Spring 2015 5 

The Computer 

Program 1 
3 

Program 2 
2.7182818284590
452353602874713
526624977572470
9369995 

2/24/15 



Batch Processing (4) 

CS161 Spring 2015 6 

The Computer 

Program 1 
3 

Program 2 
2.7182818284590
452353602874713
526624977572470
9369995 

2/24/15 



Exercise 1: List the advantages and 
disadvantages of this scheme 

•  What advantages does this scheme provide? 

•  What are its disadvantages? 

2/24/15 CS161 Spring 2015 7 



Exercise 2: List some goals you might 
want to achieve when sharing a computer 

among multiple processes. 

2/24/15 CS161 Spring 2015 8 



Our Goals 

•  Isolation 
•  Processes should be unaware of other processes. 

•  Protection 
•  Processes should not be able to interfere with each other. 
•  I.e., Process A should not scribble on Process B’s data. 

•  Performance 
•  We want to use the processor efficiently. 
•  No long waits while we change from one process to another. 

2/24/15 CS161 Spring 2015 9 

We can get a good start if each process thinks it is 
the only process running on the machine! 



Simple Solution 1: Fixed Size Partitions 

•  Divide memory into fixed size 
areas and load one process 
into each area. 

2/24/15 CS161 Spring 2015 10 

Program 1 

Text 

Heap 

Stack 

0x0 

0xFFFF 

Program 2 

Text 

Heap 

Stack 

0x0 

0xFFFF 

Memory 

0x0 

0x10000 

0x1FFFF 



Simple Solution 1: Fixed Size Partitions 

•  Divide memory into fixed size 
areas and load one process 
into each area. 

•  As you load the program, 
translate addresses. 

•  Any problems? 

2/24/15 CS161 Spring 2015 11 

Text 

Heap 

Stack 

Text 

Heap 

Stack 

Memory 

0x0 

0x10000 

0x1FFFF 



Exercise 3: Critique Fixed partitioning 

•  List as many problems with this approach as you can: 

•  Propose at least three different ways to cope with the 
problems: 

2/24/15 CS161 Spring 2015 12 



The fundamental problem 

•  We can think of the previous approach as static 
relocation. 

•  Static relocation is limited: 
•  Processes had to be fixed size. 
•  We were limited to the number of processes available. 
•  Each time a process moves, there is a lot of work to be 

done. 

•  Isn’t there a better way? 
•  Could we make the relocation dynamic? 
•  How? 

2/24/15 CS161 Spring 2015 13 



Indirection: The Answer to Any Question 

•  Let’s introduce make-believe 
addresses (virtual addresses). 
•  Processes can use whatever make-

believe addresses they want. 
•  “We” (the OS, the hardware, the 

Wizard of Oz, someone) will 
translate those make-believe 
addresses into physical addresses. 

2/24/15 CS161 Spring 2015 14 

Text 

Heap 

Stack 

Text 

Heap 

Stack 

Memory 

0x0 

0x10000 

0x1FFFF 0xFFFF 

0xFFFF 

0x0 

0x0 

VA PA 



The MMU: A Translation Unit 

2/24/15 CS161 Spring 2015 15 

Memory 

CPU 
MMU 

Virtual 
Address 

Physical 
Address 



Isolation 

2/24/15 CS161 Spring 2015 16 

Program 1 

Text 

Heap 

Stack 

0x0 

0xFFFF 

Program 2 

Text 

Heap 

Stack 

0x0 

0xFFFF 

Program 3 

Text 

Heap 

Stack 

0x0 

0xFFFF 

I have the entire 
address space to 
myself! 

You’re both 
wrong – I have 
the whole 
address space 



It’s all a big lie 

•  In effect, virtual memory is all a big lie, an illusion. 
•  Just because your code is loaded at Virtual Address 

(VA) 0 and your stack starts at VA 0x80000000 does 
NOT mean that: 
•  a) the machine has 2GB of memory or 
•  b) you can use all of it (or even a lot of it) at once. 

•  Just because your virtual addresses are contiguous 
doesn't mean the physical ones are. 

But it is a very useful lie! 
2/24/15 CS161 Spring 2015 17 



Protection 

2/24/15 CS161 Spring 2015 18 

Program 1 

Text 

Heap 

Stack 

0x0 

0xFFFF 

Program 2 

Text 

Heap 

Stack 

0x0 

0xFFFF 
Memory 

MMU 

VA 0x0010, please 



Protection 

2/24/15 CS161 Spring 2015 19 

Program 1 

Text 

Heap 

Stack 

0x0 

0xFFFF 

Program 2 

Text 

Heap 

Stack 

0x0 

0xFFFF 
Memory 

MMU 

VA 0x0010, please 

Sure! 



Protection 

2/24/15 CS161 Spring 2015 20 

Program 1 

Text 

Heap 

Stack 

0x0 

0xFFFF 

Program 2 

Text 

Heap 

Stack 

0x0 

0xFFFF 
Memory 

MMU 

VA 0x0010, please 

Sure! 

Heh, heh, yeah, 
I’d like his data 
too! 

VA 0x0010, please 



Protection 

2/24/15 CS161 Spring 2015 21 

Program 1 

Text 

Heap 

Stack 

0x0 

0xFFFF 

Program 2 

Text 

Heap 

Stack 

0x0 

0xFFFF 
Memory 

MMU 

VA 0x0010, please 

Sure! 

Heh, heh, yeah, 
I’d like his data 
too! 

VA 0x0010, please 



Isolation, Protection, Performance 

•  We said that we wanted a solution that provides isolation, 
protection, and performance. 

•  Adding a level of indirection so that processes can use 
virtual addresses provide isolation and protection, but 
what about performance? 
•  OS can allocate memory to processes in a manner that 

provides best performance. 
•  Goal is to let processes run as if they had as much memory as 

we have disk, but with performance of memory. 
•  When things go bad, the system can appear to have only as 

much memory as we have physical memory, but it runs at the 
speed of disk.  That’s pretty awful! 

•  But, to make this work, we have to figure out how to make 
the translation efficient! 

2/24/15 CS161 Spring 2015 22 



Two Dimensions to Performance 

1.  How we perform mapping. 
•  Actual hardware that does the mapping. 
•  Kernel data structure that manage the hardware. 

2.  How we manage memory and allocate it to 
processes. 
•  Allocate memory to processes that will use it well. 
•  Avoid: 

•  Internal fragmentation: memory that we allocate to processes, but is 
unused. 

•  External fragmentation: Chunks of memory that the hardware makes 
us allocate to processes, even if the process cannot use it. 

2/24/15 CS161 Spring 2015 23 



Dynamic Relocation 

2/24/15 CS161 Spring 2015 24 

Text 

Heap 

Stack 

0x0 

0xFFFF 

Text 

Heap 

Stack 

0x0 

0xFFFF 
Memory 

 
MMU 

0x0000 
VA 

PA = VA + reg 



Dynamic Relocation 

2/24/15 CS161 Spring 2015 25 

Text 

Heap 

Stack 

0x0 

0xFFFF 

Text 

Heap 

Stack 

0x0 

0xFFFF 
Memory 

 
MMU 

0x10000 VA 

PA = VA + reg 



Exercise 4: Critique Dynamic Relocation 

•  Advantages: 

 
•  Disadvantages: 

•  Any other functionality you want? 

2/24/15 CS161 Spring 2015 26 



Extension 1: Base and Bounds 

•  One of the simplest address translation strategies! 
•  For each process we maintain a base and bounds. 
•  Translating a VA: 
 

2/24/15 CS161 Spring 2015 27 

Process ID Base Bounds 
1 0 1000 
2 INVALID 2000 
3 4000   500 
4 3000   500 
5 5000 1000 

if VA > bounds:!
!return error!

else:!
!return base + VA!

Translate:!
A: PID = 1 VA = 40!
B: PID = 4 VA = 750!
C: PID = 5 VA = 900!
D: PID = 2 VA = 3000!
E: PID = 3 VA = 0 !



Exercise 5: Critique Base and Bounds 

•  Advantages: 
 

•  Disadvantages: 

•  Extensions: 

2/24/15 CS161 Spring 2015 28 



Extension 2: Segmentation 

•  Notice that processes contain different kinds of data 
that can be treated differently: 

!   Code: (usually) Read Only, doesn't change size 
!   Static data: RW, doesn't change size 
!   Heap: RW, size increased on request 
!   Stack: RW, size increased implicitly 
•  Add multiple base & bound registers: 
•  Use one for each segment. 
•  Add protection on each segment. 

 

2/24/15 CS161 Spring 2015 29 



Segmentation: Translation 

segment = find_segment(VA)!
if get_offset(VA) > segment.bounds:!
  return error!
else:!
  return segment.base + get_offset(VA)!

•  Different ways of getting segment and offset: 

2/24/15 CS161 Spring 2015 30 

find_segment get_offset 
Implicit data comes from data 

segment, code from 
code segment 

Use address in 
instruction. 

Explicit Segment identified in 
instruction 

Use address in 
instruction 

Partitioned VA High bits of VA Low bits of VA 



Segmentation: Example 

2/24/15 CS161 Spring 2015 31 

Read 
VA=1040 
PA= 

Write 
VA=2000 
PA= 

Read 
VA=8010 
PA= 

Segment ID Base Bounds Protection 
1 150 50 RO 
2 500 100 RO 
3 450 50 RW 
4 600 200 RW 
5 800 200 RW 

Process 1 Segment Table 

Code 
Code (Library) 

Static Data 
Heap 
Stack 

Segment 
Number Offset 

3 2 1 0 

Write 
VA=5180 
PA= 



Segmentation: Operations 

•  Grow a segment:  
•  Move a segment:  
•  Free memory:  
•  What do I do if I need a bunch of contiguous space 

and I have enough free space, but it’s chopped up? 

2/24/15 CS161 Spring 2015 32 

Increase bounds (assuming space) 
Change base 
Put allocated space on free list 

Move segments around 
To coalesce free space 



Exercise 6: Segmentation Pros and Cons 

•  Advantages: 

 
•  Disadvantages: 

•  Extensions: 

2/24/15 CS161 Spring 2015 33 



Extension 3: Paging 

•  Let’s tackle two problems at once: 
•  Make allocation problem trivial: fixed sized units (pages) 

•  No more bounds; it is implied with the fixed size 

•  Use space efficiently: make that fixed size small 
•  The things we used to call segments are now collections of pages. 

2/24/15 CS161 Spring 2015 34 

page # offset 
Virtual Address Format 

MMU 

page # offset 
Physical Address Format 



Exercise 7: Paging: Pros and Cons 

•  Pros 

•  Cons 

 

2/24/15 CS161 Spring 2015 35 



Single Level Page Table 

•  What happens if we don’t do anything clever? 
•  4KB pages => 12 bits of offset 
•  That leaves 20 bits for page numbers (even worse in a 64-bit 

address space!) 

2/24/15 CS161 Spring 2015 36 

page # (20 bits) Offset (12 bits) 
Virtual Address Format Phys page # 

Phys page # 
Phys page # 
Phys page # . . . 

Phys page # 

20 bits => 1M entries 
Let’s say my program only needs 1000 pages 
Utilization is < 0.01 % 
 
What do we do????? 



Two-Layer Page Table 

•  Let’s cut our 20-bit page number into 2 parts, each of 
10 bits. 

•  The top 10-bits select a page table; the bottom10 bits 
select a page within that page table. 

2/24/15 CS161 Spring 2015 37 

. . . 

offset (12 bits) top(10 bits) Btm (10 bits) Phys page # 
Phys page # 
Phys page # 
Phys page # . . . 

Phys page # 

Page Table 0 
Page Table 1 
Page Table 2 
Page Table 3 

. . . 

Page Table 1023 

Let’s say that I use 1000 pages 
scattered among 4 page tables. 
 
How efficient am I? 



Page Table Translations 

•  To make this tractable, let’s assume I have 12 bit addressing: 
•  4 bits to select a page table 
•  4 bits for which page within the table 
•  4 bits of offset 

2/24/15 CS161 Spring 2015 38 

offset (4 bits) L2 (4 bits) L1 (4 bits) 

NULL 

NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 

NULL 

NULL 
NULL 
NULL 
NULL 
0x03 
0x04 
NULL 
0xA0 
NULL 
NULL 
0x0A 
NULL 
NULL 
NULL 
0x0F 
NULL 

0x00 
0x01 
NULL 
0x02 
NULL 
NULL 
0x11 
0x12 
0x13 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 

VA 0x133 = ??? 
VA 0x234 = ??? 
VA 0xE23 = ??? 
VA 0xE45 = ??? 
VA 0xEEE = ??? 
VA 0xFEE = ??? 
What is the largest 
range of contiguous 
VAs that are 
contiguous physically? 



Exercise 8: Practice Questions 

•  Using the tables on the previous page: 
1.  What is the maximum size of physical memory? 
2.  What is the size of the virtual address space? 
3.  How many pages are in use? 
4.  What is the size of an entry in the L1 pages tables? 
5.  Starting at physical address 0x0 – how many contiguous 

pages are in use?  What are their virtual addresses? 
6.  Let’s say that we wanted to leave the virtual address the 

same size, but support twice the amount of physical 
memory. How could we do that? 

2/24/15 CS161 Spring 2015 39 


