
Before we start
What is RAM fragmentation?

unusable chunks of memory

Why does it happen?

used for deleted segment, too small for new segment

What is the cure?

split segments into pages

What is file-store defragmentation?

Shuffle files, so contiguous

Why is it needed?

creating & deleting files → files split, gaps
between files, increased seek times

What (& why) is each of these:
- disk partition

logical subset; disk is too big, or
usage e.g. swap/files/tmp/boot(s), or FAT/NTFS

- mounting e.g. a storage device

attaching additional
file-system to currently accessible file-system (e.g. NFS, USB)

- hard & soft (symbolic) links in a file-store

hard – a route to a file in a partition
soft – a secondary name; file may not exist

COMP25111 Lecture 16 1/32



COMP25111: Operating Systems
Lecture 16: The File Manager

John Gurd

School of Computer Science, University of Manchester

Autumn 2014

COMP25111 Lecture 16 2/32



Overview & Learning Outcomes

Files & File Systems

Naming Service

Storage Service
Data Structures
Allocation

File Manager & Virtual Memory

COMP25111 Lecture 16 3/32



What is a file?
Collection of related information on secondary storage:
e.g. data, programs (.java, .c, .h, .class, .o, binary, ...)

Structure: none (sequence of bytes); or lines; or ... ?

Attributes: (name?) size, last update, owner, ...
(try ls -la)

Operations: create, open, read, write, close, delete, ...

Types: should OS recognise/support?
– in the name: .com .exe etc. (MSDOS)
– “magic number” at the beginning of some files (Unix)

Access:
– Sequential: processed in order, from start to end
– Direct (Random): logical records, processed in any order

COMP25111 Lecture 16 Files & File Systems 5/32



File system

File IDentifiers:
SFID – System – lifetime of file
UFID – User – lifetime of process

(Unix: “file descriptor”, Windows: “file handle”)

Requirements – system calls:

open: file-name → UFID
read: UFID & count → data
write: UFID & data →

Multiple OS Layers:

– naming service: e.g. open
– storage service: e.g. read & write (vector of bytes)
– disk driver: access disk sectors

COMP25111 Lecture 16 Files & File Systems 6/32



File system organisation: Directories

Directory: file-name → SFID
(SFID gives access to contents & attributes)

Originally:
1 directory per partition (1-level), or
1 per user (2-level)

Nowadays: Tree (or Forest ) of directories

Stored on disk just like files but treated differently

COMP25111 Lecture 16 Naming Service 8/32



Example Directory Tree-Structure

/
��	 @@R

A
��	 @@R

B
@@R

AX
��	

a2 b1

a1

root
directory

-

/B/b1

/A/AX/a1

working
directory

-

or ../B/b1

or AX/a1

Directories contain files & directories

A normal file is a leaf in the tree

COMP25111 Lecture 16 Naming Service 9/32



Decoding a path name

Split path at separators (e.g. / or \)

Absolute: left-most component = root directory
Relative: implicitly starts with current working directory

Each component from left must:
– identify a directory
– contain the next component

Final component = file or directory

COMP25111 Lecture 16 Naming Service 10/32



Data Structures

Each process has:
– working directory (inherited on creation)
– UFIDs

File attributes (metadata, File Control Block FCB):
– file size, permissions, owner, group, dates, ...
– where to find data on disk

Open file table in memory:
– entry = attributes, number of readers & writers.
– indexed by UFID
open: create entry in the file table
(last) close: write attributes to disk

Implementations vary e.g. maybe also a table per process

COMP25111 Lecture 16 Storage Service 13/32



Data Structures

COMP25111 Lecture 16 Storage Service 14/32



Disks (MOS2 fig 6.11)

Physical structure: platters, tracks, sectors, etc.
Logical structure: blocks

COMP25111 Lecture 16 Storage Service 16/32



Free Space

e.g. bit-map, or list of block-no? (no = number)

e.g. 100GB partition = 25M * 4kB blocks

Q: bitmap size (blocks)?

25Mb = 3200kB = 800 * 4kB blocks

Q: block-no size (bytes)?

25M blocks so 4B (224 = 16M, 232 = 4G)

Q: list size (blocks)?

≤ 25M * 4B = 25k * 4kB blocks

list can use free blocks, bitmap needs extra disk space

Q: search O(?)

COMP25111 Lecture 16 Storage Service 17/32



File structure – contiguous blocks

(e.g. CD/DVD – ROM/WORM)

file = start-block-no & block-count

e.g. file starts at 3, uses 4 blocks:

1 2 3 4 5 6 7 8 9 : block numbers
F I L E : disk blocks

+ simple, fast
– interleaved user requests → seeks
– fragmentation

COMP25111 Lecture 16 Storage Service 18/32



File structure – list of blocks (1)

“next” within block

e.g. file starts at 3 (next=0 indicates EOF)

1 2 3 4 5 6 7 8 9 : block numbers
F 4 I 7 L 9 E 0 : disk blocks

– random/direct access very slow

COMP25111 Lecture 16 Storage Service 19/32



File structure – list of blocks (2)

“next” in separate monolithic table
(e.g. MSDOS FAT – File Allocation Table)

+ table can also hold free-block info.

e.g. file starts at 3; abc starts at 2 (–1 indicates free)

1 2 3 4 5 6 7 8 9 : block numbers
a F I c L b E : disk blocks

–1 8 4 7 0 –1 9 5 0 : FAT

– need to cache table (e.g. 100MB) in memory

COMP25111 Lecture 16 Storage Service 20/32



File structure – list of blocks (3)

“next” in separate partitioned data-structure

+ one table in RAM (proportional to file size) per open file

e.g. file table in block 1; abc table in block 6

1 2 3 4 5 6 7 8 9
3 4 7 9 a F I c 2 8 5 L b E

e.g. UNIX i-node/inode = file-attributes + 11 to 15 block-nos
– first 8 to 12 = first blocks of file
– last 3 = block of block-nos, block of blocks of block-nos, ...

inodes in separate disk area (earlier slide)

COMP25111 Lecture 16 Storage Service 21/32



Disks (again)

inodes blocks

inodes in separate area from file/directory blocks

COMP25111 Lecture 16 Storage Service 22/32



Directory structure

File Name → directory-entry sizes
– max length → fixed-size

(e.g. MSDOS = 8+3, early UNIX = 14)
– unlimited → variable-size (including strlen)
– unlimited → fixed-size (+ “heap” for strings)

File Attributes:
– in directory entry (e.g. FAT)
– pointed at by directory entry (e.g. in inode)

Disk Address:
e.g. FAT: block-number of start of file
e.g. inode: via inode-number

Q: efficiency? – what are the commonest directory operations?

COMP25111 Lecture 16 Storage Service 23/32



Other Issues
Concurrency: how should multiple accesses be coordinated?
– allow either 1 writer; or many readers (inflexible?)
– applications (e.g. database) define specific protocols

Performance:
– cache
– efficiency dependent on algorithms/types of data
– RAID (Redundant Array of Independent Disks): striping

Access Protection:
– R/W/X permissions (man chmod)
– access control lists (e.g. man acl)

Recovery: backups!
– consistency checking (MSDOS:chkdsk, Linux:fsck)
– partitions
– journalling
– RAID: mirroring

COMP25111 Lecture 16 Storage Service 24/32



Virtual Memory and Storage

Virtual Memory & File managers both copy info RAM ⇔ disk

Unified VM/File Manager: memory-mapped files

File Operation Equivalent VM Operation
open map file into Virtual Address Space
read access virtual address:

page fault causes disk read
write access virtual address:

(eventual) page rejection causes disk write
[n.b. zero fill on write to unallocated page?]

close unmap pages

Pros: programs & libraries; sharing
Cons: different access patterns?

COMP25111 Lecture 16 File Manager & Virtual Memory 26/32



Summary of key points

Files & File Systems

Naming Service

Storage Service
Data Structures
Allocation

File Manager & Virtual Memory

COMP25111 Lecture 16 File Manager & Virtual Memory 27/32



Your Questions

COMP25111 Lecture 16 File Manager & Virtual Memory 28/32



For next time

A file system uses inodes which contain 8 block-numbers.
These are for the first 7 blocks of the file and an indirect block,
which just contains block-numbers for the remaining blocks in
the file.
A block-number occupies 2 bytes. Each block is 4k bytes.

What is the maximum size of a file in bytes?

What is the maximum total size of directories and files in a
single disk partition?

COMP25111 Lecture 16 File Manager & Virtual Memory 29/32



Exam Questions

Explain the algorithm used to locate the file referred to by a full
path name in a hierarchical file system. (5 marks)

Using a FAT16 file system (i.e. each FAT entry occupies 16
bits) how much space would be available on a 160MB disk for
directories and files, for block sizes of 2KB and of 4KB?
Explain your reasoning. (5 marks)

A disk storing a hierarchical file system will hold three forms of
data: directories, file contents, and metadata. Illustrate this for
a system using a File Allocation Table (FAT). Explain how this
information is used and modified by a process making a new
copy of an existing file on the disk. (9 marks)

COMP25111 Lecture 16 File Manager & Virtual Memory 30/32



Glossary

file
file attributes
sequential access
direct/random access
magic number
naming service
storage service
directory
hierarchical (tree-structured) directories
SFID, UFID, file descriptor/handle
pathname
relative v. absolute pathnames
metadata, FCB
File Allocation Table, FAT
free space
memory-mapped file

COMP25111 Lecture 16 File Manager & Virtual Memory 31/32



Reading

MOS2: 6.1-6.3

MOS3: 4.1-4.3

OSC/J: 10, 11.1-11.5

COMP25111 Lecture 16 File Manager & Virtual Memory 32/32


	Files & File Systems
	Naming Service
	Storage Service
	Data Structures
	Allocation

	File Manager & Virtual Memory

