Before we start

What is RAM fragmentation?
Why does it happen?

What is the cure?

What is file-store defragmentation?
Why is it needed?

What (& why) is each of these:

- disk partition

- mounting e.g. a storage device

- hard & soft (symbolic) links in a file-store

COMP25111 | ecture 16 1/392



MANCHESTER
1824

ity

The Universit
of Manchester

COMP25111: Operating Systems
Lecture 16: The File Manager

John Gurd

School of Computer Science, University of Manchester

Autumn 2014

COMP25111 | ecture 16 2/39



Overview & Learning Outcomes

Files & File Systems
Naming Service

Storage Service
Data Structures
Allocation

File Manager & Virtual Memory

COMP25111 | ecture 16 /39



What is a file?

Collection of related information on secondary storage:
e.g. data, programs (.java, .c, .h, .class, .o, binary, ...)

Structure: none (sequence of bytes); or lines; or ... ?

Attributes: (name?) size, last update, owner, ...
(try 1s -1a)

Operations: create, open, read, write, close, delete, ...

Types: should OS recognise/support?
—in the name: .com .exe etc. (MSDOS)
— “magic number” at the beginning of some files (Unix)

Access:
— Sequential: processed in order, from start to end
— Direct (Random): logical records, processed in any order

COMP25111 Lecture 16 Files & File Systems 5/32



File system

File IDentifiers:
SFID — System — lifetime of file
UFID — User — lifetime of process
(Unix: “file descriptor”, Windows: “file handle”)

Requirements — system calls:

open: file-name — UFID
read: UFID & count — data
write: UFID & data —

Multiple OS Layers:

— naming service: e.g. open
— storage service: e.g. read & write (vector of bytes)
— disk driver: access disk sectors

COMP25111 Lecture 16 Files & File Systems 6/32



File system organisation: Directories

Directory: file-name — SFID
(SFID gives access to contents & attributes)

Originally:
1 directory per partition (1-level), or
1 per user (2-level)

Nowadays: Tree (or Forest ) of directories

Stored on disk just like files but treated differently

COMP25111 Lecture 16 Naming Service 8/32



Example Directory Tree-Structure

root _,
directory

working
directory

TAX |

/B/bl or../B/bl
[al |

/A/AX/al or AX/al

Directories contain files & directories

A normal file is a leaf in the tree

COMP25111 Lecture 16 Naming Service 9/32



Decoding a path name

Split path at separators (e.g. / or'\)

Absolute: left-most component = root directory
Relative: implicitly starts with current working directory

Each component from left must:
— identify a directory

— contain the next component

Final component = file or directory

COMP25111 Lecture 16 Naming Service 10/32



Data Structures

Each process has:
— working directory (inherited on creation)
— UFIDs

File attributes (metadata, File Control Block FCB):
— file size, permissions, owner, group, dates, ...
— where to find data on disk

Open file table in memory:

— entry = attributes, number of readers & writers.
— indexed by UFID

open: create entry in the file table

(last) close: write attributes to disk

Implementations vary e.g. maybe also a table per process

COMP25111 Lecture 16 Storage Service 13/32



Data Structures

(file pointers)

O - S o System open Active file
file table information table

COMP25111 Lecture 16 Storage Service 14/32




Disks (MOS2 fig 6.11)

Entire disk

Partition table Disk partition \
[men ] I | ]

| Boot block | Super blockl Free space mgmt | |-nodes | Root dir | Files and directories

Physical structure: platters, tracks, sectors, etc.
Logical structure: blocks

COMP25111 Lecture 16 Storage Service 16/32



Free Space

e.g. bit-map, or list of block-no? (no = number)
e.g. 100GB partition = 25M * 4kB blocks
Q: bitmap size (blocks)?

Q: block-no size (bytes)?

Q: list size (blocks)?
list can use free blocks, bitmap needs extra disk space

Q: search O(?)

COMP25111 Lecture 16 Storage Service 17/32



File structure — contiguous blocks

(e.g. CD/DVD — ROM/WORM)
file = start-block-no & block-count

e.g. file starts at 3, uses 4 blocks:

1 2 3 4 5 6 7 8 9 :blocknumbers
F|I|L|E : disk blocks
+ simple, fast
— interleaved user requests — seeks
— fragmentation

COMP25111 Lecture 16 Storage Service 18/32



File structure — list of blocks (1)

“next” within block
e.g. file starts at 3 (next=0 indicates EOF)

1 2 3 4 5 6 7 8 9 :blocknumbers
F4)17 L9 E 0|: disk blocks

— random/direct access very slow

COMP25111 Lecture 16 Storage Service 19/32



File structure — list of blocks (2)

“next” in separate monolithic table
(e.g. MSDOS FAT - File Allocation Table)

+ table can also hold free-block info.
e.g. file starts at 3; abc starts at 2 (-1 indicates free)

1 2 3 4 5 6 7 8 9 :blocknumbers
Il | ¢ L [ b | E |:disk blocks

-118|4|7|0(-1]9]|5]|0|:FAT

— need to cache table (e.g. T00MB) in memory

COMP25111 Lecture 16 Storage Service 20/32



File structure — list of blocks (3)

“next” in separate partitioned data-structure
+ one table in RAM (proportional to file size) per open file
e.g. file table in block 1; abc table in block 6

1 2 3 4 5 6 7 8

9
B479 a F I c |285| L b E

e.g. UNIX i-node/inode = file-attributes + 11 to 15 block-nos
— first 8 to 12 = first blocks of file

— last 3 = block of block-nos, block of blocks of block-nos, ...

inodes in separate disk area (earlier slide)

COMP25111 Lecture 16 Storage Service

21/32



Disks (again)

Entire disk

Partition table Disk partition \
[ver ] I | [ ]

| Boot block | Super blockl Free space mgmt | I-nodes | Root dir | Files and directories|

inodes blocks

inodes in separate area from file/directory blocks

COMP25111 Lecture 16 Storage Service 22/32



Directory structure

File Name — directory-entry sizes
— max length — fixed-size
(e.g. MSDOS = 8+3, early UNIX = 14)
— unlimited — variable-size (including strlen)
— unlimited — fixed-size (+ “heap” for strings)

File Attributes:
—in directory entry (e.g. FAT)
— pointed at by directory entry (e.g. in inode)

Disk Address:
e.g. FAT: block-number of start of file

e.g. inode: via inode-number

Q: efficiency? — what are the commonest directory operations?

COMP25111 Lecture 16 Storage Service 23/32



Other Issues

Concurrency: how should multiple accesses be coordinated?
— allow either 1 writer; or many readers (inflexible?)
— applications (e.g. database) define specific protocols

Performance:

—cache

— efficiency dependent on algorithms/types of data

— RAID (Redundant Array of Independent Disks): striping

Access Protection:
— R/W/X permissions (man chmod)
— access control lists (e.g. man acl)

Recovery: backups!
— consistency checking (MSDOS:chkdsk, Linux:fsck)
— partitions

— journalling

IQ: mirroring

COMP251 11_L§Lﬁe Storage Service 24/32



Virtual Memory and Storage

Virtual Memory & File managers both copy info RAM < disk

Unified VM/File Manager: memory-mapped files

File Operation

Equivalent VM Operation

open map file into Virtual Address Space
read access virtual address:
page fault causes disk read
write access virtual address:
(eventual) page rejection causes disk write
[n.b. zero fill on write to unallocated page?]
close unmap pages

Pros: programs & libraries; sharing
Cons: different access patterns?

COMP25111 Lecture 16

File Manager & Virtual Memory 26/32



Summary of key points

Files & File Systems
Naming Service

Storage Service
Data Structures
Allocation

File Manager & Virtual Memory

COMP25111 Lecture 16 File Manager & Virtual Memory 27/32



Your Questions

COMP25111 Lecture 16 File Manager & Virtual Memory 28/32



For next time

A file system uses inodes which contain 8 block-numbers.
These are for the first 7 blocks of the file and an indirect block,
which just contains block-numbers for the remaining blocks in
the file.

A block-number occupies 2 bytes. Each block is 4k bytes.

What is the maximum size of a file in bytes?

What is the maximum total size of directories and files in a
single disk partition?

COMP25111 Lecture 16 File Manager & Virtual Memory 29/32



Exam Questions

Explain the algorithm used to locate the file referred to by a full
path name in a hierarchical file system. (5 marks)

Using a FAT16 file system (i.e. each FAT entry occupies 16
bits) how much space would be available on a 160MB disk for
directories and files, for block sizes of 2KB and of 4KB?
Explain your reasoning. (5 marks)

A disk storing a hierarchical file system will hold three forms of
data: directories, file contents, and metadata. lllustrate this for
a system using a File Allocation Table (FAT). Explain how this
information is used and modified by a process making a new
copy of an existing file on the disk. (9 marks)

COMP25111 Lecture 16 File Manager & Virtual Memory 30/32



Glossary

file

file attributes

sequential access

direct/random access

magic number

naming service

storage service

directory

hierarchical (tree-structured) directories
SFID, UFID, file descriptor/handle
pathname

relative v. absolute pathnames
metadata, FCB

File Allocation Table, FAT

free space

memory-mapped file

COMP25111 Lecture 16 File Manager & Virtual Memory 31/32



Reading

MOS2: 6.1-6.3
MOS3: 4.1-4.3

0OSC/J:10,11.1-11.5

COMP25111 Lecture 16 File Manager & Virtual Memory 32/32



	Files & File Systems
	Naming Service
	Storage Service
	Data Structures
	Allocation

	File Manager & Virtual Memory

