MANCHESTER
1824

Y
er

The Universit
of Manchest

COMP25111: Operating Systems
Lecture 18: Linux Case Study

John Gurd

School of Computer Science, University of Manchester

Autumn 2014

COMP25111 | ecture 18 1/392

Overview & Learning Outcomes

Background
Shell

Components: layers & managers
Scheduling
Memory
Files
Input/Output

COMP25111 | ecture 18 2/39

UNIX History & Motivation

(weak pun on “MULTICS”)

Initially (1969) single-user, soon (1973) multi-user timesharing
system

Written in C (developed at Bell Labs to support Unix)
Fundamental Architectural Design finished in 1978

POSIX standards 1988, 1992,3,5, 2001,4,8

by programmers, for programmers
small, modular, clean design

Ul consistency, brevity

source distribution

COMP25111 Lecture 18 Background 4/32

Unifying Themes

Everything is a file

Composition & re-usability:
— shell, I/O redirection, pipes, filters

Simplicity & minimality:
— 1 reusable best tool for each purpose

COMP25111 Lecture 18 Background 5/32

Development (wikimedia: Unix_history-simple.png

1869 1o60
I open source

197110 1978 [wixeasars Souco | 197101973

187410 1975 [closed Source 1674101975
1678 1978
1879 1979
1880 1880
1981 1981
1982 1o82
1983 1683
1884 1684
1985 1985
1986 1686
1967 1687
1968 1588
1980 1680
1990 1990
1891 1891
1802 1992

ot BSD
1903 Linux 08101.0 1999
o 095101.2x 1ose
1995 ok 22 Netban OpenBSD 1995
1996 T 1996
1897 — 1997
Troo 55D 14
1998 e 1698
1999 s 1999
20026x OpengsD

Froe BSD Not BSD 230U 2000

2001 02004 330070 13t04x 2001 102004
2005 ‘Open Soirs 2005

2006 to 2008 A 2008.05 200610 2008

COMP25111 Lecture 18 Background 6/32

Shell

user-level process, executes programs
(command interpreter, CLI)

— reads next user command

— searches path for program

— forks child process & execs program
— waits for termination of child

COMP25111 | ecture 18 Shell /392

fork & exec (MOS figs 10-4, 10-7)

pid = fork();

if (pid < 0) { /% error x/ }
else if (pid > 0) { /* parent=*/ }
else /* pid==0 x/ { /» child */ }

while (1) {
type_prompt () ;
read_command (&command, ¶ms);
pid = fork();
if (pid < 0) { /* error =/ }
else if (pid > 0) waitpid(-1, &status, 0);
else /* pid==0 %/ execve (command, params, 0);

COMP25111 | ecture 18 Shell 10/32

I/O redirection

processes start with 3 open files: standard input, output, error

Can redirect to/from files:
€.g. compile <input >output 2>errors

or another process in a pipeline:

€.g.1ls -la | grep Nov | grep 23
pipe () system call

COMP25111 | ecture 18 Shell 11/32

Interfaces (MOS fig. 10-1)

interface

Library
interface

System l

usel

Users

Standards utility programs
(shell, editors, compliers etc)

call
interface

4

Standard library
(open, close, read, write, fork, etc)

User
mode

|

UNIX operating system

(process management, memory management,

the file system, I/O, etc)

A

Kernel mode

¥

COMP25111 Lecture 18

Hardware
(CPU, memory, disks, terminals, etc)

Components: layers & managers

13/32

Architecture — Overview

User level (non-privileged):
user processes = application, library etc.

Programmer Interface:
— System programs (e.g., mkdir, rm, cp, ...)
— System calls (file manipulation; process control; information)

Kernel level (privileged):
managers (file, process, memory, ...) & device drivers

COMP25111 Lecture 18 Components: layers & managers 14/32

Kernel layers (MOS fig. 10-3)

System calls

Interrupts and traps

’) File Map-{ Page
Terminal handing Sockets naming |ping| faults | sional Pro_cess
9nal |creation and
Cooked tt File Virtual | handling | termination
ooked tty Network protocols systems memory
Raw
tty Line) Buffer 1 Page Process
disciplines Routing cache 1 cache scheduling
1
Character Network Disk Process
devices device drivers device drivers dispatching
Hardware
COMP25111 Lecture 18 Components: layers & managers 15/32

Process

“process descriptor” (see handout 5 — PCB)
— unique PID

— address space

— UFIDs (handout 16)

— signal handling vector

— UID & GIDs (User/Group ID)

— scheduling priorities

— thread(s)

Properties inherited from parent

COMP25111 Lecture 18 Components: layers & managers 17/32

Process Management

user-level (library) v. native/kernel (OS) threads

2-level scheduling:
— move complete process to/from disk
— select process/thread to run (handout 7 final e.g.)

Delayed jobs:

at 0630 myjob for one-off deferral
cron for regular jobs (hourly, daily, weekly, monthly, etc)

COMP25111 Lecture 18 Components: layers & managers 18/32

Virtual Memory

Paged (e.g. 4kB) 1GB Kernel, 3GB user
“segments”: Text (code), Data (& heap), Stack
can be shared

copy-on-write

memory-mapped files

Page
Page
Global middle Page = Word selected
directory directory table
| T
Directory | Middle | Page | Offset Virtual address

Page Tables (MOS fig 10-17)
— 3-level: DEC Alpha (43-bit virtual addresses)
— 2-level: Intel x86

COMP25111 Lecture 18 Components: layers & managers 20/32

Paging

Demand-driven
Pages pre-cleaned

Inactive

LRU approximation with Aetive - Dirty
second-chance

Reference bit (set when page S,
accessed) *

Round-robin check pages (& e YO
clear ref) e e

(www.redhat.com/magazine/
001nov04/features/vm)

COMP25111 Lecture 18 Components: layers & managers 21/32

mount (MOS fig 10-26)

Hard disk Diskette Hard disk

COMP25111 Lecture 18 Components: layers & managers 23/32

inode

(see handout 16)

Owner, last time info, permissions, size, links to the file
15 content pointers to disk blocks:

— 12 pointers to direct blocks

— 1 single-indirect; 1 double-indirect; 1 triple-indirect

ext2: groups inodes, which point to nearby blocks

ext3: + journaling

COMP25111 Lecture 18 Components: layers & managers 24/32

Protection Model

Process Concepts: UID GID

File Attributes: RWXRWXRWX
Owner, Group, Other — Read, Write, Execute

Primarily files, directories
Same mechanisms used by devices, network connections, ...
Security:

user particulars in /etc/passwd
Holes: read about the Morris Internet Worm (1988)

COMP25111 Lecture 18 Components: layers & managers 25/32

I/O and Device Drivers

Drivers are privileged code (not user-supplied)

user-access to devices via special files:
e.g. /dev/fd /dev/tty

Can be character or block devices

COMP25111 Lecture 18 Components: layers & managers 27/32

Summary of key points

Background
Shell

Components: layers & managers
Scheduling
Memory
Files
Input/Output

COMP25111 Lecture 18 Components: layers & managers 28/32

Your Questions

COMP25111 Lecture 18 Components: layers & managers 29/32

Exam Questions

In Unix, what is the use of the shell variable PATH? (2 marks)

Briefly explain how a shell implements a pipe between two
commands (2 marks)

Briefly explain how Unix implements input redirection in a shell
command. (2 marks)

Briefly explain that a Unix shell does to execute the following
command /bin/who > myfile (2 marks)

COMP25111 Lecture 18 Components: layers & managers 30/32

Glossary

I/0O redirection

shell

pipe

filter

fork

exec (execve)

waitpid

2-level (high & low) scheduling
character & block devices

COMP25111 Lecture 18 Components: layers & managers 31/32

Reading

newer OSC/J: Ch. 21

older OSC/J: Ch. 20

MQOS: Ch. 10

David A Rusling, The Linux Kernel
http://tldp.org/LDP/tlk/tIk-toc.html
(Linux 2.0.33, 1999)

http://www.cs.manchester.ac.uk/ugt/year1/linux-intro/notes/
COMP10120: lab 3 (shell scripts) & 5 (window manager)

COMP25111 Lecture 18 Components: layers & managers 32/32

	Background
	Shell
	Components: layers & managers
	Scheduling
	Memory
	Files
	Input/Output

