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UNIX History & Motivation

(weak pun on “MULTICS”)

Initially (1969) single-user, soon (1973) multi-user timesharing
system

Written in C (developed at Bell Labs to support Unix)
Fundamental Architectural Design finished in 1978

POSIX standards 1988, 1992,3,5, 2001,4,8

by programmers, for programmers
small, modular, clean design

Ul consistency, brevity

source distribution
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Unifying Themes

Everything is a file

Composition & re-usability:
— shell, I/O redirection, pipes, filters

Simplicity & minimality:
— 1 reusable best tool for each purpose
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Development (wikimedia: Unix_history-simple.png
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Shell

user-level process, executes programs
(command interpreter, CLI)

— reads next user command

— searches path for program

— forks child process & execs program
— waits for termination of child
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fork & exec (MOS figs 10-4, 10-7)

pid = fork();

if (pid < 0) { /% error x/ }
else if (pid > 0) { /* parent=*/ }
else /* pid==0 x/ { /» child */ }

while (1) {
type_prompt () ;
read_command (&command, &params);
pid = fork();
if (pid < 0) { /* error =/ }
else if (pid > 0) waitpid(-1, &status, 0);
else /* pid==0 %/ execve (command, params, 0);
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I/O redirection

processes start with 3 open files: standard input, output, error

Can redirect to/from files:
€.g. compile <input >output 2>errors

or another process in a pipeline:

€.g.1ls -la | grep Nov | grep 23
pipe () system call
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Interfaces (MOS fig. 10-1)
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Architecture — Overview

User level (non-privileged):
user processes = application, library etc.

Programmer Interface:
— System programs (e.g., mkdir, rm, cp, ...)
— System calls (file manipulation; process control; information)

Kernel level (privileged):
managers (file, process, memory, ...) & device drivers
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Kernel layers (MOS fig. 10-3)
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Process

“process descriptor” (see handout 5 — PCB)
— unique PID

— address space

— UFIDs (handout 16)

— signal handling vector

— UID & GIDs (User/Group ID)

— scheduling priorities

— thread(s)

Properties inherited from parent
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Process Management

user-level (library) v. native/kernel (OS) threads

2-level scheduling:
— move complete process to/from disk
— select process/thread to run (handout 7 final e.g.)

Delayed jobs:

at 0630 myjob for one-off deferral
cron for regular jobs (hourly, daily, weekly, monthly, etc)
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Virtual Memory

Paged (e.g. 4kB) 1GB Kernel, 3GB user
“segments”: Text (code), Data (& heap), Stack
can be shared

copy-on-write

memory-mapped files

Page
Page
Global middle Page = Word selected
directory directory table
| T
Directory | Middle | Page | Offset Virtual address

Page Tables (MOS fig 10-17)
— 3-level: DEC Alpha (43-bit virtual addresses)
— 2-level: Intel x86
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Paging

Demand-driven
Pages pre-cleaned

# Inactive

LRU approximation with Aetive - Dirty
second-chance

Reference bit (set when page S,
accessed) *

Round-robin check pages (& e YO
clear ref) e e

(www.redhat.com/magazine/
001nov04/features/vm)
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mount (MOS fig 10-26)

Hard disk Diskette Hard disk
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inode

(see handout 16)

Owner, last time info, permissions, size, links to the file
15 content pointers to disk blocks:

— 12 pointers to direct blocks

— 1 single-indirect; 1 double-indirect; 1 triple-indirect

ext2: groups inodes, which point to nearby blocks

ext3: + journaling
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Protection Model

Process Concepts: UID GID

File Attributes: RWXRWXRWX
Owner, Group, Other — Read, Write, Execute

Primarily files, directories
Same mechanisms used by devices, network connections, ...
Security:

user particulars in /etc/passwd
Holes: read about the Morris Internet Worm (1988)
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I/O and Device Drivers

Drivers are privileged code (not user-supplied)

user-access to devices via special files:
e.g. /dev/fd /dev/tty

Can be character or block devices

COMP25111 Lecture 18 Components: layers & managers 27/32



Summary of key points
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Your Questions
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Exam Questions

In Unix, what is the use of the shell variable PATH? (2 marks)

Briefly explain how a shell implements a pipe between two
commands (2 marks)

Briefly explain how Unix implements input redirection in a shell
command. (2 marks)

Briefly explain that a Unix shell does to execute the following
command /bin/who > myfile (2 marks)
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Glossary

I/0O redirection

shell

pipe

filter

fork

exec (execve)

waitpid

2-level (high & low) scheduling
character & block devices
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Reading

newer OSC/J: Ch. 21

older OSC/J: Ch. 20

MQOS: Ch. 10

David A Rusling, The Linux Kernel
http://tldp.org/LDP/tlk/tIk-toc.html
(Linux 2.0.33, 1999)

http://www.cs.manchester.ac.uk/ugt/year1/linux-intro/notes/
COMP10120: lab 3 (shell scripts) & 5 (window manager)
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