
From last time

An OS may contain managers for Devices, Network, Filestore,
Memory, & Processes. Which would be in an OS for:
– A process control computer with a sensor for monitoring, an
actuator for control, and a network connection for reporting to
and receiving commands from a control centre?

D,N,-,-,-

– A dedicated, network-based filing machine or ”file server”?

D,N,F,M,P

– A computer dedicated to controlling the communications
passing between two networks; that is, a ”gateway”?

D,N,F?,M?,P?

– An autonomous lap-top personal computer?

D,N?,F,M,P

– A single-user workstation with services available across a
network?

D,N,F,M,P

– A machine dedicated to managing and answering queries on
a database?

D,N,F?,M,P
But maybe they all need everything?

COMP25111 Lecture 4 1/44



COMP25111: Operating Systems
Lecture 4: Operating System Concepts

John Gurd

School of Computer Science, University of Manchester

Autumn 2014

COMP25111 Lecture 4 2/44



Overview & Learning Outcomes

Overview of (multi-programming) OS
– functions & components

Processes

Protection

COMP25111 Lecture 4 3/44



Components of a simple PC

– details of devices are hidden from Apps
– several things can be happening at once

COMP25111 Lecture 4 Reminder of first lecture 6/44



What does an Operating System Do?

Manage Resources:
– multiple devices→ deal with concurrency
– sharing
– protection

Provide services:
– multiple Apps→ provide concurrency
– abstraction
e.g. filestore, not disk drive
e.g. variable size stack
e.g. reliable network connection

COMP25111 Lecture 4 Reminder of first lecture 8/44



Process = Thread + Address Space

Process: a program in execution (not a program on the disk)

Address Space: all memory locations the process can use

Thread: “of execution” – sequence of instructions obeyed

Multi-threading: multiple threads within the same process

COMP25111 Lecture 4 Processes 11/44



Many processes exist at any time

Windows XP: <CTRL><ALT><DEL>

COMP25111 Lecture 4 Processes 13/44



Many processes ctd.

Linux: ps uxa

COMP25111 Lecture 4 Processes 15/44



Address Spaces

e.g. ARM/MU0 assembler addresses start at 0

But, several programs can be in memory at the same time -
each assuming this

OS may pause a running program, swap it out of memory &
later swap it back to somewhere different

Relocation - how to make each program think it has sole use
of memory

COMP25111 Lecture 4 Processes 17/44



Relocation example: a C program

int x;
main (int argc, char *argv[]) {
x= atoi(argv[1]);
printf("%d %p\n", x, &x);

}

e.g. ./a.out 7 from two different Linux shells
both output: 7 0x8049678

Different programs seem to use the same address

COMP25111 Lecture 4 Processes 19/44



Virtual Machine

OS provides “Virtual Machine”
– more convenient abstraction than real machine
– Apps think they use the hardware on their own

Virtual Machine enforces Protection:
– System v. Program
– Program v. Program

OS needs hardware support – execution mode:
– User mode
– System (Privileged, Supervisor) mode

COMP25111 Lecture 4 Protection 22/44



Privileged Operations

OS components run in System mode

OS runs Apps in User mode

H/W prevents certain operations in User mode:

– memory operations?

– CPU allocation?

– I/O operations?

– file operations?

– network operations?

COMP25111 Lecture 4 Protection 24/44



System call

How do Apps use protected resources?

System call: interface between Apps & OS

like method/function call – parameters, caller waits for result

via “gatekeeper” mechanism (H/W + OS)
– turns on System mode
– calls OS routine from list
– parameters etc. checked
– action performed
– returns to User mode

Details vary between OSs, underlying concepts similar

COMP25111 Lecture 4 Protection 26/44



System Call example

Unix “read” has 3 parameters: the file, where to put the data,
how many bytes to read
read(int fd, char *buf, int num bytes);

Not the C library function:
fread(void *ptr, size t size, size t n, FILE

*stream);
– library functions can do more
– not all library functions correspond to system calls

Many languages do not allow system calls to be made directly

COMP25111 Lecture 4 Protection 28/44



OS Components

A system so large and complex can be created by partitioning
into smaller pieces

Most OSs have different structures

COMP25111 Lecture 4 OS Structure 31/44



OS Components provide services

Process Management: creation, deletion, CPU allocation, ...

Memory Management: Allocate and deallocate memory space;
Keep track of what parts of the memory are being used, ...

Device (I/O) Management: read & write bytes

File (and Secondary Storage) Management: ...

Network Management: ...

User interface: GUI, command line interpreter (shell)

COMP25111 Lecture 4 OS Structure 33/44



User/App use services

e.g. User types run myprog (just myprog in Unix)

– read command (command interpreter/shell)
– find program file (how big?)
– allocate memory
– read file into memory
– find libraries
– start myprog running
– finish “cleanly”

Also: accounting, security, error detection/reporting, ...

COMP25111 Lecture 4 OS Structure 35/44



Engineering an OS...

Monolithic systems (no structure - the “big mess”)

Layered approach (bottom = H/W, highest = U.I)
Layers selected so each only uses functions, operations &
services of lower layers.
Lower layers (“kernel”) contain most fundamental functions to
manage resources.

Big OS Kernels have problems (complexity, debugging)
several Mbytes (linux 2-3)

Microkernels keep only minimal functionality in the OS

COMP25111 Lecture 4 OS Structure 37/44



Summary of key points

Process = Thread + Address Space

Protection: Virtual Machine
– H/W support: User mode v. System mode
– System calls for Priviledged operations

OS Structure
– Components (Managers): Process, Memory, I/O, File, ...
– Layered, Kernel, Micro-Kernel

Next time: Process Management

COMP25111 Lecture 4 Coda 39/44



Your Questions

COMP25111 Lecture 4 Coda 40/44



For next time

Which of the following operations would you expect to be
privileged (available only in System mode) & which available in
User mode?
– halt the processor?
– system call?
– write an absolute memory location?
– load register from memory?
– disable interrupts?
– load stack pointer?
– write to segment or page not present in memory?
– change memory management register value?
– write to Program Status Register?
– write to interrupt vector table?

COMP25111 Lecture 4 Coda 41/44



Exam Questions

Why do computers typically have two modes of operation,
namely user mode and system mode (also known as
supervisor or kernel or privileged mode)? (2 marks)

Explain briefly what is a system call (2 marks)

What does it mean to say that a system is constructed using
the ”micro-kernel approach”? (2 marks)

COMP25111 Lecture 4 Coda 42/44



Glossary
Device
Resource
Concurrency
Process
Address space
Thread
Multi-threading
Relocation
Virtual Machine
System/Supervisor/Priviledged mode
User mode
System call
Library function
Manager
Monolithic OS
Layered OS
OS Kernel
Microkernel OSCOMP25111 Lecture 4 Coda 43/44



Reading

OSC/J: Chapters 1 & 2

MOS: Sections 1.5-1.11 (skim through the system call details)

(both books use some concepts in these sections that will be
clarified later on)

COMP25111 Lecture 4 Coda 44/44


	Reminder of first lecture
	Processes
	Protection
	OS Structure
	Coda

