
From last time

Does each of the following appear in processes, programs,
both, or neither?
– instructions
– read-only data
– registers
– a stack
– a heap
– network connections
– system calls
– a shared data area

Program (loadable file): instructions (which refer to all the rest),
read-only data (& loader info to set up stack etc.)
Process (running): everything (?)
(system calls only as instances of instructions, in the thread of
computation)

COMP25111 Lecture 6 1/41



COMP25111: Operating Systems
Lecture 6: An Introduction to Process (and Thread) Scheduling

John Gurd

School of Computer Science, University of Manchester

Autumn 2014

COMP25111 Lecture 6 2/41



Overview & Learning Outcomes

Scheduling

– When to change process

– How to select the next process to run

– Criteria

COMP25111 Lecture 6 4/41



Process States & Transitions

(OSC/J fig3.2 (older - fig4.1); MOS fig2-2)

COMP25111 Lecture 6 Scheduling 7/41



Basic Concepts

Scheduler:
– component of OS process manager
– decides which “ready” process to run next

1 per CPU (core)
– “scheduling algorithm”

– processes or kernel-level threads

– CPU time was expensive, so scheduling very important
– PC (1 user & cheap) but scheduling ever more sophisticated

COMP25111 Lecture 6 Scheduling 9/41



When to schedule?

When a process frees the CPU

When a new process joins the “ready” list

CPU burst: executing on CPU
I/O burst: blocked, waiting for I/O

Process alternates between CPU & I/O bursts

CPU bound: long CPU bursts
I/O bound: short CPU bursts

A very long CPU burst keeps other processes waiting

COMP25111 Lecture 6 Scheduling 11/41



Example

Two processes, A and B, arrive at time 0;
CPU-burst time length: A=10, B=4 time-units (total=14)

e.g. run A then B

A: running
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B: ready running

e.g. run B then A

A: ready running
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B: running

Average turnaround time: A,B (10+14)/2=12; B,A (14+4)/2=9;
Average waiting time: A,B (0+10)/2=5; B,A (4+0)/2=2;

COMP25111 Lecture 6 Scheduling 13/41



First-Come-First-Served (FCFS)
Simplest CPU scheduling algorithm
First process in ready state gets CPU first & runs until blocked
(or finished).

Requires a single queue of ready processes:
– add ready process to queue tail
– if the CPU is free, run process at queue head

e.g. A is CPU-bound
B & C are I/O-bound
A: running I/O ready running I/O ready running...

B: ready run I/O ready run I/O ready...

C: ready run I/O ready run I/O ready...

(“I/O” = blocked, waiting for I/O to complete)
B and C spend too much time “ready”

COMP25111 Lecture 6 Scheduling Algorithms 16/41



Question - FCFS scheduling

Process A arrives at time 0: 4 time-units CPU, then 2 I/O, then
3 CPU, then 2 I/O
Process B arrives at time 1: 3 time-units CPU, then 1 I/O, then
1 CPU, then 1 I/O

A:
0 1 2 3 4 5 6 7 8 9 10 11 12 13

B:

COMP25111 Lecture 6 Scheduling Algorithms 18/41



Preemptive vs Non-Preemptive Scheduling

Non-preemptive scheduling: process runs until terminated or
“blocked”

To avoid a process with a very long CPU-burst hogging CPU:

Preemptive scheduling: process can run (continuously) for
some fixed maximum time;
if it reaches the maximum time, it is interrupted & set “ready”
and the scheduler runs another process

needs timer interrupt

fixed amount of time = “time-slice” or “time quantum”
e.g. 10-100msec

Appropriate length for time quantum?

COMP25111 Lecture 6 Preemptive scheduling 21/41



A preemptive version of the first example

Two processes, A and B, arrive at time 0;
CPU-burst time length: A=10, B=4 time-units
time-slice = 5 time-units

3rd case: A then B, & time-slice=5
A: running ready running

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
B: ready running

Average turnaround time: 3rd: (14+9)/2=11.5 (was 12 or 9)
Average waiting time: 3rd: (4+5)/2=4.5 (was 5 or 2)

COMP25111 Lecture 6 Preemptive scheduling 23/41



Round-Robin Scheduling

FCFS:
A: running I/O ready running I/O ready running...

B: ready run I/O ready run I/O ready...

C: ready run I/O ready run I/O ready...

time-sliced; preempted process to ready-queue tail; run head

A: run ready run ready run I/O ready run ready run ready...

B: run I/O ready run I/O ready run I/O ready run I/O ready run

C: ready run I/O ready run I/O ready run I/O ready run I/O

Simplest algorithm for time-sharing systems
Improves average turnaround time & waiting time

COMP25111 Lecture 6 Preemptive scheduling 25/41



Question - Round-Robin scheduling

Process A arrives at time 0: 4 time-units CPU, then 2 I/O, then
3 CPU, then 2 I/O
Process B arrives at time 1: 3 time-units CPU, then 1 I/O, then
1 CPU, then 1 I/O

time-slice = 1 time-unit
A:

0 1 2 3 4 5 6 7 8 9 10 11 12 13
B:

COMP25111 Lecture 6 Preemptive scheduling 27/41



Length of time-slice?

Two identical processes: 3 time-units CPU, then 4 time-units
I/O, then 3 time-units CPU

Time-slice = 3:
run blocked run

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ready run blocked run

Question: Time-slice = 2:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

COMP25111 Lecture 6 Preemptive scheduling 29/41



Scheduling Goals / Criteria for Evaluation

General, chose scheduling algorithms with most typical
behaviour that best satisfies most desirable criteria:

– Fairness
– high CPU utilisation
– high Throughput
– low Turnaround time
– low Waiting time
– low Response time
– Meeting deadlines
– Prioritisation
... etc.

COMP25111 Lecture 6 Preemptive scheduling 31/41



What is a good choice for the time quantum?

Different time slices may lead to different results (e.g. above)
The major trade-off is the cost of a context switch – ignored so
far.
(i.e. save process state, pick new process, restore its state)
If the time slice is smaller, the cost of the context switch (CS)
becomes more significant e.g.:

running CS ready CS running CS ready...

ready CS running CS ready CS running...
time-slice:context-switch = 3:1→ 25% CPU time lost

Two solutions:
- increase the time slice (but too much will make Round-Robin
look like FCFS);
- reduce the cost of context switch (H/W support?)
e.g. quantum = 20-50ms, context switch < 1ms

COMP25111 Lecture 6 Preemptive scheduling 33/41



Non-preemptive – Shortest-Job-First

In the first example, starting with shortest job minimised
average turnaround & waiting time.

Generalise: given a set of ready processes, run the one that
has the smallest CPU burst

e.g. processes A, B, C, D arrive at time 0,
CPU bursts: A=7, B=4, C=9, D=5
A: ready run 7

B: run 4

C: ready run 9

D: ready run 5

COMP25111 Lecture 6 Preemptive scheduling 35/41



Summary of key points

Scheduler: chooses a process from the ready state to run

Preemptive & Non-Preemptive

Algorithms: FCFS, Round-Robin, Shortest-First
– typical behaviour?

Criteria: fairness, utilisation, throughput, turnaround, wait,
response, ...
– most desirable in given situation?

Next lecture: more process scheduling – (priority-based)

COMP25111 Lecture 6 Preemptive scheduling 36/41



Your Questions

COMP25111 Lecture 6 Preemptive scheduling 37/41



For next time

Explain why the time slice in pre-emptive process scheduling
algorithms is normally significantly longer than the time needed
for a context switch (2 marks)

Why is a schedule giving lowest average turnaround time the
same as that giving lowest average waiting time? (1 mark)

Given a set of jobs with known processing time, all available to
run, explain why repeatedly running the shortest job next gives
the lowest average turnaround time. (3 marks)

What is a CPU burst and an I/O burst? What is a CPU-bound
and an I/O bound process? Why is it a good strategy in
process scheduling to give higher priority to I/O bound
processes? (4 marks)

COMP25111 Lecture 6 Preemptive scheduling 38/41



Exam Questions

Three identical processes arrive at time 0, 3, 6. Each requires
3 time-units of CPU, then 6 time-units of I/O, then 3 time-units
of CPU. Using FCFS scheduling, what is the maximum amount
of time that can be spent for each context switch so that all
processes will have finished in at most 20 time units? (5 marks)

A process manager needs to run a total of 100 processes,
each needing 3 seconds of CPU time.
i) Explain why no scheduling algorithm could complete all 100
processes in less than 5 minutes on 1 CPU. (2 marks)
ii) Using FCFS scheduling, calculate the average turnaround
time and average waiting time of these processes. (3 marks)

COMP25111 Lecture 6 Preemptive scheduling 39/41



Glossary
Scheduling
CPU burst
I/O burst
CPU bound
I/O bound
First-Come-First-Served (FCFS) Scheduling
(Average) Turnaround time
(Average) Waiting time
Non-preemptive scheduling
Preemptive scheduling
Time-slice, Time quantum
Round-Robin Scheduling
Shortest-Job-First Scheduling (SJF)
Scheduling Fairness
CPU utilisation
Throughput
Response time

COMP25111 Lecture 6 Preemptive scheduling 40/41



Reading

OSC/J: sections 5.1, 5.2, 5.3.1, 5.3.4

older OSC/J: sections 6.1, 6.2, 6.3.1, 6.3.4

MOS2: sections 2.5, 2.5.1, first 2 pages of 2.5.2 and of 2.5.3
(round-robin)

MOS3: sections 2.4, 2.4.1, first 2 pages of 2.4.2 and of 2.4.3
(round-robin)

COMP25111 Lecture 6 Preemptive scheduling 41/41


	Scheduling
	Scheduling Algorithms
	Preemptive scheduling

