From last time

Explain why the time slice in pre-emptive process scheduling
algorithms is normally significantly longer than the time needed
for a context switch (2 marks)

Why is a schedule giving lowest average turnaround time the
same as that giving lowest average waiting time? (1 mark)

Given a set of jobs with known processing time, all available to
run, explain why repeatedly running the shortest job next gives
the lowest average turnaround time. (3 marks)

What is a CPU burst and an 1/O burst? What is a CPU-bound
and an 1/O bound process? Why is it a good strategy in
process scheduling to give higher priority to 1/0O bound
processes? (4 marks)

COMP25111 | ecture 7 1/37



MANCHESTER
1824

Y
er

The Universit
of Manchest

COMP25111: Operating Systems

Lecture 7: Process Scheduling 2

John Gurd

School of Computer Science, University of Manchester

Autumn 2014

COMP25111 | ecture 7 /37



Overview & Learning Outcomes

Shortest First
Priorities — static & dynamic

Multiple Queues

COMP25111 | ecture 7

/37



Shortest-Job-First (SJF)

last lecture — starting the shortest job first gave a better result

From a set of ready processes, start process with smallest
CPU burst
— minimises average turnaround & waiting time

e.g. processes A, B, C, D arrive together,
CPU-burst time: A=7, B=4, C=9, D=5

o 0w >

COMP25111 | ecture 7 Shortest First B/37



Shortest Remaining Time First/Next (SRTF)

Preemptive (not time-sliced) version of SJF:

For each newly-ready process:

if CPU-burst < time to complete running process,
then context-switch & run the new process

Question: as previous example, but staggered arrival:

(oy]

C
D

Shorter average waiting time than (non-preemptive) SJF

COMP25111 | ecture 7 Shortest First /37



Problems with Shortest-First

Starvation: A process may be overlooked repeatedly

How to predict CPU-burst length

COMP25111 | ecture 7 Shortest Firat 10/37



Priority Scheduling

So far, implicitly assumed that all processes are equally
important

Use Process Priority to e.g.

— run first/last

— give longer/shorter time slice

e.g. SJF: “highest priority” = shortest CPU-burst

Many variants of priority scheduling

Major problem starvation — ensure low-priority processes

eventually run

Separate Policy & Mechanism

COMP25111 | ecture 7 Priorities 13/37



Static vs Dynamic Priorities

Static (externally defined) priorities: predetermined for each
process

Dynamic (internally defined) priorities: assigned by the system
to achieve certain goals

May use both externally and internally defined priorities

COMP25111 | ecture 7 Priorities 15/37



Multiple Queues

How to map priority — scheduling decisions?
e.g. higher priority — longer time slice?

more convenient: ready state has multiple queues, each with
its own priority

Options:

— Higher-priority queues must be empty for low-priority
processes to run at all

— Higher priority queues get more time than lower priority
queues

— Processes may move between queues (dynamically
adjusted)

COMP25111 | ecture 7 Priorities 17/37



Example
3 queues: Q1 > Q2 > Q3

1st scenario:

— Q1 must be empty for Q2 processes to run; Q1 & Q2 empty
for Q3 processes

— Run processes round-robin for 1 quantum each

COMP25111 | ecture 7 Priorities 19/37



Example ctd.

2nd scenario: (repeatedly)
— 3 quanta for Q1, then 2 quanta for Q2, then 1 quantum for Q3
— each queue applies round-robin (time-slice = 1 quantum)

Question: A-F as before:
A (Q1)

COMP25111 | ecture 7 Priorities 21/37



Multilevel Feedback Queues

3 queues: Q1 > Q2 > Q3

— Q1 must be empty for Q2 processes to run; Q1 & Q2 empty
for Q3 processes

—a process in Q1 gets 1 quanta, in Q2 gets 2 quanta, in Q3
gets 4 quanta

— every process is initially assigned to Q1.

— A process using all its time slice will go down one queue

— A process not using all its time slice, will go up one queue.
(i.e. higher priority for I/O-bound, lower priority for CPU-bound)

COMP25111 | ecture 7 Priorities 29/37



Another example
(similar to Linux process scheduling prior to version 2.5)

3 queues: Q1 > Q2 > Q3
Q1=FIFO, Q2=Round-Robin, Q3=priority based (1 to 40)
process in Q1 (Q2) always higher priority than one in Q2 (Q3)

Q3: each process given a quantum, g, (or credits)
g = (quantum_left / 2) + priority

reduce quantum of running process by 1 per clock tick
— if quantum=0, remove process from CPU

select ready process with the highest quantum;
if all ready processes have 0 quantum,
— recompute quantum of all processes in the system

if a process with a higher quantum than the one running
~omeosisDECAMeES ready, then it is set runnipg... .



example ctd.

Three processes A, B, C (in the 3rd queue)
initial priority & quantum A=23, B=22, C=21

A:15CPU, 28 I/O, 44 CPU, 24 1/0, 21 CPU ...
B: 40 CPU, 22 1/0, 27 CPU ...
C:3CPU, 91/0, 51 CPU ...

A |15

/O 6
=[]
JEER

recomputes 407

Question: what triggers each recompute? what new quanta?

COMP25111 | ecture 7 Priorities 27/37



Disadvantages

— does not scale well
— boosting 1/0O-bound processes is not optimal
For linux fans: source code & books available

Not a topic to cover with a couple of slides

COMP25111 | ecture 7 Priorities 2Q/37



More process/thread scheduling

Many more algorithms
UNIX & Windows have priority/multiqueue algorithms

Real-time systems may require other algorithms
(need to meet deadline) e.g.
— Earliest Deadline First (start process with first deadline)
— Least Slack First (start process with smallest:
deadline — completion_time)

Process scheduling settled — many open problems with
multiprocessors, hyperthreading

Evaluation: analytic (deterministic), queuing theory, simulation

COMP25111 | ecture 7 Priorities 21/37



Summary of key points

Shortest First

Priorities — static & dynamic

Multiple Queues

Multilevel feedback queue scheduling

— most generic (configurable for different policies)

— most complex

Next: process synchronisation

COMP25111 | ecture 7 Priorities 29/37



Your Questions

COMP25111 | ecture 7 Priorities 27/37



For next time

Explain briefly how starvation may occur in process
scheduling. (2 marks)

In round-robin scheduling, new processes are typically placed
at the end of the ready-state queue rather than at the
beginning. Suggest a good reason for this. (2 marks)

A scheduler uses a time-slice of 4.5msec, and a context switch
takes 0.5msec. What percentage of CPU time is spent on
executing process instructions: (a) if processes use the whole
time-slice? (b) if processes only need 0.5msec CPU-bursts?
In general, how would you improve the percentage of CPU
time spent on executing process instructions? (3 marks)

COMP25111 | ecture 7 Priorities 24/37



Exam Questions

i) An SRTF scheduler also uses time-slices (of length 1). Show
what is run in each time-slice if these processes are present at
the start: A needing 3 time-units of CPU, B needing 6, C
needing 7, & D needing 8. What is the average turnaround
time? (5 marks)

ii) The scheduler is modified so, after a process has had a
time-slice, instead of just using the length of the remaining
CPU-burst of a process, it uses this minus the time since the
process last received a time-slice. If two or more processes are
tied, the one with the shorter remaining CPU-burst is chosen.
Show what is run in each time quantum for the same set of
processes. What is the average turnaround time? (5 marks)

iif) What scheduling defect is the modification in (ii) attempting
to remedy, and how effective is it? (2 marks)

COMP25111 | ecture 7 Priorities 25/37



Glossary

Shortest Remaining Time First/Next (SRTF)
Starvation

Priority

Static Priority

Dynamic Priority

Scheduling Policy

Scheduling Mechanism

Multiple Scheduling Queues

Dynamically Adjusted Scheduling Queues
Mulitlevel Feedback Queue Scheduling

COMP25111 | ecture 7 Priorities 26/37



Reading

OSC: sections 5.3.2-5.3.6, 5.8 (skim through 5.5-5.7)
OSCJ: sections 5.3.2-5.3.6, 5.9 (skim through 5.5-5.8)

older OSCJ: sections 6.3.2-6.3.6, 6.7.3, 6.10 (skim through
6.5-6.9)

MOS3: sections 2.4.2-2.4.3 up to Shortest Process Next, 2.7
(skim through 2.4.4)

MOS2: sections 2.5.2-2.5.3 up to page 146, 2.7 (skim through
2.5.4)

COMP25111 | ecture 7 Priorities 27/37



	Shortest First
	Priorities

