
From last time

Explain briefly how starvation may occur in process
scheduling. (2 marks)

process never runs e.g. new processes keep getting in first

In round-robin scheduling, new processes are typically placed
at the end of the ready-state queue rather than at the
beginning. Suggest a good reason for this. (2 marks)

avoid starvation

A scheduler uses a time-slice of 4.5msec, and a context switch
takes 0.5msec. What percentage of CPU time is spent on
executing process instructions: (a) if processes use the whole
time-slice? (b) if processes only need 0.5msec CPU-bursts?

(a)0.5/(4.5+0.5)=90% (b)0.5/(0.5+0.5)=50%

In general, how would you improve the percentage of CPU
time spent on executing process instructions? (3 marks)

reduce & speed-up context switches

COMP25111 Lecture 8 1/40



COMP25111: Operating Systems
Lecture 8: Process/Thread Synchronisation

John Gurd

School of Computer Science, University of Manchester

Autumn 2014

COMP25111 Lecture 8 2/40



Overview & Learning Outcomes

Process Synchronisation

Semaphores

Deadlocks

Dining Philosophers

Message-passing

Everything in this handout about process synchronisation
also applies to thread synchronisation

COMP25111 Lecture 8 3/40



Problem: Too much milk

Time Person 1 Person 2 Person 3
8:00 sleeping sleeping check fridge - no milk
8:15 wakes up sleeping leave for lecture
8:30 check - no milk sleeping travelling
8:45 leave for store wakes up arrive at University
9:00 arrive at store check - no milk go to lecture
9:15 bought milk leave for store (lecture)
9:30 return home arrive at store (lecture)
9:45 bought milk go to store

10:00 return home arrive at store
10:15 bought milk
10:45 return home

COMP25111 Lecture 8 Process Synchronisation 6/40



Data inconsistency

Concurrent access to shared data

static int i; // shared by A & B
// process or thread A // process or thread B
i = 0; i = 0;
while (i < 100) { while (i > -100) {

i++; i--;
} }
System.out.println("A"); System.out.println("B");

(assume both access & assignment are atomic i.e. indivisible)

Questions:
– which will finish first?
– will they ever finish?
– if one finishes, will the other also finish?
– does it help if one gets a head start?

COMP25111 Lecture 8 Process Synchronisation 8/40



Race Condition

Several processes manipulate shared data concurrently
& outcome depends on precise order of what happens when

Q: what are a CPU’s atomic operations?

e.g.: shared variable i in memory, initial value 4

process A: i++;
i.e. load Reg from i; Reg = Reg + 1; store Reg to i

process B: i--;
i.e. load Reg from i; Reg = Reg – 1; store Reg to i

Question: what can the final value of i be?

COMP25111 Lecture 8 Process Synchronisation 10/40



Definitions

Data inconsistency: disagreement about data values

Synchronisation: using appropriate policies and mechanisms
to ensure the correct operation of cooperating processes

Critical section (Critical region): section of code in which
shared data is used

Mutual exclusion (mutex): at most 1 process can be in its
critical section at once

i.e. if more than one process tries to enter a critical section
simultaneously, only one can succeed – others must wait

COMP25111 Lecture 8 Process Synchronisation 12/40



Semaphores

Dijkstra, 1965: An integer variable (e.g. S)
accessed via two atomic operations (with Dutch names!):

P(S) (“try-to-reduce”, down, wait, aquire, probe, procure)
while (S<=0)
; /*no action*/

S--;

V(S) (“increase”, up, signal, release, vacate)
S++;

Initialise S appropriately
= number of processes allowed in critical section at once
(usually 1)

COMP25111 Lecture 8 Semaphores 15/40



Don’t loop – yield

In practice, it is silly to busy-wait in P()

P() adds process to a queue & gives up CPU

V() takes process from queue & makes it “ready”

COMP25111 Lecture 8 Semaphores 17/40



Example – 1 semaphore

Two processes sharing A[100]; initialise S=1;

... ...
P(S); P(S);
r1=A[100]; r2=A[100]; critical
r1++; r2++;
A[100]=r1; A[100]=r2; section
V(S); V(S);
... ...

COMP25111 Lecture 8 Semaphores 19/40



Example – 2 semaphores

Initialise: S1=0; S2=0; I=0;

... /* A */ ... /* B */ ... /* C */
P(S1); P(S2); for(j=0;j<10;j++)
I=I*2; I=I+5; I++;
V(S1); V(S1); V(S2);
... ... ...

Question: What is the the sequence of events?

semaphores initialised to 0 →
A & B wait immediately
C makes I = 10 & vacates S2, allowing B to procure it
B makes I = 15 & vacates S1, allowing A to procure it
A makes I = 30 & vacates S1

COMP25111 Lecture 8 Semaphores 21/40



Deadlock: everyone waiting for everyone else

COMP25111 Lecture 8 Semaphores 23/40



Deadlock

A set of waiting processes,
where each process is waiting for something
that can only be provided by another of the processes

e.g. S1, S2 initialised to 1
// A // B
P(S1); P(S2);
P(S2); P(S1);
... ...
V(S1); V(S2);
V(S2); V(S1);

Detection complicated

Once occurred, almost impossible for OS to solve

COMP25111 Lecture 8 Semaphores 25/40



Prevention e.g. Deadlock (trajectory) Diagram

-

Process-1’s progress
P(S1) P(S2) V(S1) V(S2)

6

Process-2’s progress

P(S2)

P(S1)

V(S2)

V(S1)

S1
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�
�

S2

@@ @
@

@
@

@
@

@
@

@
@@

@
@

@
@

@
@@

@
@

@
@ @@

�
�

�
�

�
�3

DEAD-
-LOCK

COMP25111 Lecture 8 Semaphores 26/40



Benjamin D. Esham / Wikimedia Commons

COMP25111 Lecture 8 Dining Philosophers 29/40



The Dining Philosophers

5 philosophers, 5 plates of spaghetti, 5 forks, 1 circular table
Alternately think (alone) or eat with 2 forks (from right and left)

Semaphore fork[5]; // initialise to 1

philosopher (int i) {
while(true) {
System.out.println (i + " hungry");
P(fork[i]); P(fork[(i+1)mod 5]);
System.out.println (i + " eating");
V(fork[i]); V(fork[(i+1)mod 5]);
System.out.println (i + " thinking"); // delay?

}
}

This may deadlock

COMP25111 Lecture 8 Dining Philosophers 31/40



Message-passing

Shared data → Semaphore(s) control access

No shared data → send copy to other processes

Wait for message instead of semaphore
– from known source(s), or from any source

Con: slower(?)

Pro: more general/flexible
– RPC
– multi-CPU
– Distributed/Network

COMP25111 Lecture 8 Higher-level Synchronisation 33/40



Summary of key points

Process Synchronisation

Semaphores

Deadlocks – may occur in a variety of situations, usually fatal

Dining Philosophers – many solutions

Message-passing

Everything in this handout about process synchronisation
also applies to thread synchronisation

Next: Threads in Java.

COMP25111 Lecture 8 Higher-level Synchronisation 34/40



Your Questions

COMP25111 Lecture 8 Higher-level Synchronisation 35/40



For next time

Explain briefly how a deadlock may occur (2 marks)

shared variables x, y, s; initial values S1=S2=0 x=y=1 s=0
line Thread A Thread B Explain the purpose
1. do{ do{ of the semaphores in:
2. V(S1) P(S1) – lines 2 & 3
3. P(S2) V(S2) of both threads
4. x=x+y P(S1) – line 4 of B
5. V(S1) y=x-y & line 5 of A
6. V(S1) s=s+1 – lines 6 & 7 of A
7. P(S2) P(S1) and 7 & 8 of B
8. print s,y V(S2)
9. }while(s<7) }while(s<7) (1 mark each)

Will A ever terminate? Justify your answer. (1 mark)
What is output by the print statement in line 8 of A? (3 marks)

COMP25111 Lecture 8 Higher-level Synchronisation 36/40



Exam Questions

shared variables x1,x2,x3,x4,x5,x6; initially S1=S2=S3=0

Thread A Thread B Thread C
2. x1= 1 x2= 2 x3= 3
3. V(S1) V(S1) P(S1); P(S1)
4. P(S2) P(S3) V(S2); V(S3)
5. x4= x2+x3 x5= x1+x3 x6= x1+x2
6. V(S1) V(S1) P(S1); P(S1)
7. P(S2) P(S3) V(S2); V(S3)
8. x2= x5+x6 x3= x4+x6 x1= x4+x5

continued...

COMP25111 Lecture 8 Higher-level Synchronisation 37/40



Exam Question ctd.

Is it possible that:
– line 5 of A executes before line 2 of B?
– line 5 of C executes before line 2 of A?
– line 5 of B executes before line 5 of C?
– line 5 of A executes before line 5 of B?
– line 5 of A executes after line 5 of C?
– line 8 of A executes before line 5 of B?
– line 8 of A executes before line 5 of C?
– line 8 of C executes before line 5 of B?

What are the final values of x1, x2, x3, x4, x5, x6?

If S3 is replaced by S2 throughout, can you find a pattern of
execution which gives different answers to the questions
above?

COMP25111 Lecture 8 Higher-level Synchronisation 38/40



Glossary

Shared data
Concurrent access
Data (in)consistency
Atomic action/operation
Race condition
Synchronisation
Critical section/region
Mutual exclusion (mutex)
Semaphore
P()
V()
Busy-wait
Deadlock
Deadlock trajectory diagram
Dining Philosphers
Message-passing

COMP25111 Lecture 8 Higher-level Synchronisation 39/40



Reading

OSC/J: 6.1, 6.2, 6.5 (skim 6.3, 6.4, 6.6)

older OSC/J: 7.1, 7.2, 7.5 (skim 7.3, 7.4, 7.6)

MOS: 2.3 (opening paragraphs), 2.3.1, 2.3.2, 2.3.5 (skim 2.3,
2.4, intro of MOS2 ch.3 or MOS3 ch.6)

Dining philosphers: AOS 7.6.3, MOS2 2.4.1)

Traffic deadlock: http://www.glommer.net/blogs/?p=189

COMP25111 Lecture 8 Higher-level Synchronisation 40/40


	Process Synchronisation
	Semaphores
	Dining Philosophers
	Higher-level Synchronisation

