
From last time
Explain briefly how a deadlock may occur (2 marks)

set of processes, each holding some resources & waiting for
resources held by another process in the set

line Thread A Thread B shared variables:
1. do{ do{ x, y, s
2. V(S1) P(S1)
3. P(S2) V(S2) initial values:
4. x=x+y P(S1) S1=S2=0
5. V(S1) y=x-y x=y=1
6. V(S1) s=s+1 s=0
7. P(S2) P(S1)
8. print s,y V(S2)
9. }while(s<7) }while(s<7)

Will A ever terminate? Justify your answer. (1 mark)

sequence = e.g. A2 B2-3 A3-5 B4-6 A6 B7-8 A7-8
x=1 y=1 s=0; x=2 y=1 s=1; x=3 y=2 s=2; x=5 y=3 s=3; ...
(fibonacci) so s eventually reaches 7

COMP25111 Lecture 9 1/40

ctd.

Explain the purpose of the semaphores in:

– lines 2 & 3 of both threads (1 mark)

barrier (B waits for A then A waits for B): synchronises loops

– line 5 of A & line 4 of B. (1 mark)

x=x+y happens before y=y-y, s++

– lines 6 & 7 of A & lines 7 & 8 of B. (1 mark)

another barrier: y=y-y, s++ happens before print

What is output by the print statement in line 8 of A? (3 marks)

1,1 2,2 3,3 4,5 5,8 6,13 7,21

COMP25111 Lecture 9 2/40

COMP25111: Operating Systems
Lecture 9: Java Threads

John Gurd

School of Computer Science, University of Manchester

Autumn 2014

COMP25111 Lecture 9 3/40

Overview & Learning Outcomes

Creating and running threads
– java.lang.Thread (class)
– java.lang.Runnable (interface)
– run(), start()

Synchronized accesses to shared data
– synchronize methods & blocks
– wait(), notify(), notifyAll()

java.util.concurrent

COMP25111 Lecture 9 4/40

java.lang.Thread

public class Thread extends Object implements Runnable

– create new thread

– call start() of thread to execute run() concurrently

In two ways:

– subclasss of Thread

– Runnable interface

COMP25111 Lecture 9 Creating and running threads 6/40

1) subclass of Thread

class T1 extends Thread {
public void run() {...}

}

...

new T1().start();

COMP25111 Lecture 9 Creating and running threads 8/40

Example 1

class MyThread extends Thread {
public void run() {
try {
for (int i = 5; i > 0; i--) {
System.out.println(i);
Thread.sleep(1000);

}
}
catch (InterruptedException e) {
System.out.println("child interrupted");

}
System.out.println("exiting child thread");

}
}

COMP25111 Lecture 9 Creating and running threads 9/40

Example 1 ctd

public static void main(String [] args) {
MyThread myt = new MyThread();
myt.start();
try {
Thread.sleep(2000);

}
catch (InterruptedException e) {
System.out.println("interrupted");

}
System.out.println("exiting main thread");

}

COMP25111 Lecture 9 Creating and running threads 10/40

Question

What output would you expect from Example 1?

5
4
exiting main thread
3
2
1
exiting child thread

COMP25111 Lecture 9 Creating and running threads 11/40

2) Runnable interface

class T2 implements Runnable {
public void run() {...}

}

...

new Thread(new T2()).start();

COMP25111 Lecture 9 Creating and running threads 13/40

Example 2
class ThreadDemo implements Runnable {
ThreadDemo() {
Thread ct = Thread.currentThread();
Thread t = new Thread(this, "Demo Thread");
System.out.println("currentThread: " + ct);
System.out.println("Thread created: " + t);
t.start();
try {Thread.sleep(3000);}
catch (InterruptedException e)

{System.out.println("interrupted");}
System.out.println("exiting main thread");

}
// public void run() as previous example
public static void main(String args[]) {
new ThreadDemo();

}
}

COMP25111 Lecture 9 Creating and running threads 14/40

Example 2 – output

currentThread: Thread[main,5,main]
Thread created: Thread[Demo Thread,5,main]
5
4
3
exiting main thread
2
1
exiting child thread

COMP25111 Lecture 9 Creating and running threads 16/40

Synchronized Method

Every object/class has an associated mutually exclusive “lock”

use to synchronize access to object/class contents

Only one thread may hold the lock at any one time

Methods can be declared synchronized

i.e. the lock must be obtained before the method can start

COMP25111 Lecture 9 Thread Synchronisation 19/40

Example

class Position {
private double x, y, z;
Position (double x, double y, double z) {
this.x= x; this.y= y; this.z= z;

}
synchronized void update(double newx,

double newy, double newz) {
x= newx; y= newy; z= newz;

}
synchronized void retrieve(Position ans) {
ans.x= x; ans.y= y; ans.z= z;

}
}

COMP25111 Lecture 9 Thread Synchronisation 20/40

Synchronized Block

synchronized (expression) { ... }

“expression” gives object (e.g. this)

whose lock will be obtained and held

while the following block { ... } is executed

COMP25111 Lecture 9 Thread Synchronisation 22/40

wait & notify

void wait() throws InterruptedException

Having obtained a lock, we can relinquish it temporarily
The waiting thread is re-queued

void notify()
Wakes one thread waiting on the lock

void notifyAll()
Wakes all threads waiting on the lock

Can also explicity use any object as the locking object

COMP25111 Lecture 9 Thread Synchronisation 24/40

Example – Bounded Buffer

We want a data buffer of fixed maximum size
to carry values between processes (or threads).

Able to read to/write from buffer asynchronously (at any time),
but prevent buffer overflow/underflow

overflow: write a value when the buffer is already full
underflow: to read from an empty buffer

COMP25111 Lecture 9 Thread Synchronisation 25/40

Example code – class BoundedBuffer

class BoundedBuffer {
private int [] buffer;
private int inPtr, outPtr, count, numEls;
public BoundedBuffer (int size) {
buffer= new int[size]; numEls= size;
inPtr= 0; outPtr= 0; count= 0;

}
public synchronized void deposit(int message)

throws InterruptedException {
while (count == numEls)
wait();

buffer[inPtr]= message;
inPtr= (inPtr + 1) % numEls;
if (count++ == 0)
notifyAll();

}

COMP25111 Lecture 9 Thread Synchronisation 26/40

Example code – class BoundedBuffer ctd.

public synchronized int extract ()
throws InterruptedException {

while (count == 0)
wait();

int message= buffer[outPtr];
outPtr= (outPtr + 1) % numEls;
if (count-- == numEls)
notifyAll();

return message;
}

} // end of class BoundedBuffer

COMP25111 Lecture 9 Thread Synchronisation 27/40

Notes

use while ... wait(); not if ... wait();
because the notified thread does not necessarily succeed
when it tries to acquire the lock
and if some other thread changes the state it may not be
appropriate to continue.

Similarly, use notifyAll() not notify()
because otherwise danger of “lost wakeup”
e.g. two consumers waiting, two items deposited, but only one
notify occurs

stackoverflow.com/questions/37026/#3186336

COMP25111 Lecture 9 Thread Synchronisation 28/40

Example code – class User

class User implements Runnable {
private BoundedBuffer buffer ;
User(BoundedBuffer newBuffer) {
buffer= newBuffer;
Thread t= new Thread(this, "Consumer");
t.start();
try {
for (int i= 0; i < 30; i++) {
buffer.deposit(i);
System.out.println("Sent " + i);

}
} catch (InterruptedException e) {
System.out.println("Producer interrupted");
}

}

COMP25111 Lecture 9 Thread Synchronisation 29/40

Example code – class User ctd.

public void run() {
try {
for (int i= 0; i < 30; i++)
System.out.println("Got " +

buffer.extract());
} catch (InterruptedException e) {
System.out.println("Consumer interrupted");

}
}
public static void main(String [] args) {
BoundedBuffer myBuffer=new BoundedBuffer(8);
new User(myBuffer);

}
}// end of class User

COMP25111 Lecture 9 Thread Synchronisation 30/40

Question: Possible Output?

Typical (just last digit of each number output):
Sent 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
Got 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
Sent 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Got 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Possible?:
Sent 01234567 89012345
Got 01234567 89012345
Sent 67890123 456789
Got 67890123 456789

I saw this once, I don’t know why:
Sent 012345678 9 01 23 4
Got 012345678 90 12 34
Sent 56 7 8 9 01 2 3 4 5 67 8 9
Got 5 6 7 8 90 1 2 3 4 56 7 8 9

COMP25111 Lecture 9 Thread Synchronisation 31/40

java.util.concurrent

Executors

Queues

TimeUnit

Synchronizers

Concurrent Collections

Memory Consistency

http://download.oracle.com/javase/7/docs/api/java/
util/concurrent/package-summary.html

COMP25111 Lecture 9 java.util.concurrent 34/40

Summary of key points

Creating and running threads
– java.lang.Thread (class)
– java.lang.Runnable (interface)
– run(), start()

Synchronized accesses to shared data
– synchronize methods & blocks
– wait(), notify(), notifyAll()

java.util.concurrent

Next time . . .

COMP25111 Lecture 9 java.util.concurrent 35/40

Your Questions

COMP25111 Lecture 9 java.util.concurrent 36/40

Exam Questions

What happens when a synchronised static method is called in
Java? (2 marks)

In Java, it is possible to use a synchronised statement as the
body of an instance method instead of making the method itself
synchronised. Illustrate this with some simple code. (2 marks)

Briefly explain why Java code which waits in a synchronized
method for a condition to hold will commonly retest the
condition when it has been released from its wait. (2 marks)

COMP25111 Lecture 9 java.util.concurrent 37/40

Glossary

Thread
start()
run()
sleep()
InterruptedException
Runnable
currentThread()
Lock
synchronized
wait()
notify()
notifyAll()

COMP25111 Lecture 9 java.util.concurrent 38/40

Reading

Java books/docs: Thread, Runnable, Object.wait(),
Object.notify()
http://download.oracle.com/javase/tutorial/

essential/concurrency/

OSC/J (6th ed.): Sections 5.7, 7.8 good; 6.8 OK

OSC (7 ed.): Section 4.3.3 (rather condensed) & box on p218

COMP25111 Lecture 9 java.util.concurrent 40/40

	Creating and running threads
	subclass of Thread
	Runnable interface

	Thread Synchronisation
	Synchronized Method
	Synchronized Block
	wait, notify, notifyAll

	java.util.concurrent

