
1

The ARM Architecture

With a focus on v7A and Cortex-A8



2

Agenda

 Introduction to ARM Ltd

ARM Processors Overview

ARM v7A Architecture/Programmers Model

Cortex-A8 Memory Management

Cortex-A8 Pipeline



3

ARM Ltd

 Founded in November 1990

 Spun out of Acorn Computers

 Initial funding from Apple, Acorn and VLSI

 Designs the ARM range of RISC processor cores

 Licenses ARM core designs to semiconductor
partners who fabricate and sell to their
customers

 ARM does not fabricate silicon itself

 Also develop technologies to assist with the design-
in of the ARM architecture

 Software tools, boards, debug hardware

 Application software

 Bus architectures

 Peripherals, etc



4

ARM’s Activities

memorymemory

SoCSoC

Processors

System Level IP:

Data Engines

Fabric

3D Graphics

Physical IP

Software IP

Development Tools

Connected Community



5

Huge Range of Applications

Energy Efficient Appliances

IR Fire
Detector

Intelligent
Vending

Tele-parking

Utility
Meters

Exercise
MachinesIntelligent toys

Equipment Adopting 32-bit ARM
Microcontrollers



6

Agenda

Introduction to ARM Ltd

 ARM Processors Overview

ARM v7A Architecture/Programmers Model

Cortex-A8 Memory Management

Cortex-A8 Pipeline



7

ARM Cortex Processors (v7)

ARM Cortex-A family (v7-A):
 Applications processors for full OS

and 3rd party applications

ARM Cortex-R family (v7-R):
 Embedded processors for real-time

signal processing, control applications

ARM Cortex-M family (v7-M):
 Microcontroller-oriented processors

for MCU and SoC applications

Cortex-R4

Cortex-A8

SC300™

Cortex-M1

Cortex™-M3

...2.5GHz
x1-4

Cortex-A9

12k gates...

Cortex-M0

Cortex-M4

x1-4

Cortex-A5
1-2

HeronR

x1-4

Cortex-A15



8

Relative Performance*

*Represents attainable speeds in 130, 90, 65, or 45nm processes

Cortex-
M0

Cortex-
M3

ARM7 ARM926 ARM1026 ARM1136 ARM1176 Cortex-A8
Cortex-A9
Dual-core

Max Freq (MHz) 50 150 184 470 540 610 750 1100 2000

Min Power (mW/MHz) 0.012 0.06 0.35 0.235 0.36 0.335 0.568 0.43 0.5

0

500

1000

1500

2000

2500
M

a
x

F
re

q
u

e
n

c
y

(M
h

z
)



9

Cortex family

Cortex-A8

 Architecture v7A

 MMU

 AXI

 VFP & NEON support

Cortex-R4

 Architecture v7R

 MPU (optional)

 AXI

 Dual Issue

Cortex-M3

 Architecture v7M

 MPU (optional)

 AHB Lite & APB



10

Agenda

Introduction to ARM Ltd

ARM Processors Overview

 ARM v7A Architecture/Programmers Model

Cortex-A8 Memory Management

Cortex-A8 Pipeline



11

Cortex-A8 Block Diagram

AXI Level 3 Memory Interface

L2 Memory System

Instruction
Fetch
Unit

Instruction
Decode

Unit

Instruction
Execute &
Load/Store

NEON Media Processor

Cortex-A8

L1 I Cache L1 D Cache



12

ARM Cortex-A Architecture

Cortex A Base Architecture
 Thumb-2 technology for power efficient

execution
 TrustZoneTM for secure applications
 v6 SIMD for compatibility with ARM11
 media acceleration applications

Cortex-A8 Extensions
 Jazelle-RCT for efficient acceleration

of execution environments such as
Java and Microsoft .NET

 NEON technology accelerating
multimedia gaming and signal
processing applications

 VFPv3 supports full IEEE 754
specification and has been expanded
to support 32 registers



13

Data Sizes and Instruction Sets

 The ARM is a 32-bit architecture.

 When used in relation to the ARM:

 Byte means 8 bits

 Halfword means 16 bits (two bytes)

 Word means 32 bits (four bytes)

 Most ARM’s implement two instruction sets

 32-bit ARM Instruction Set

 16-bit Thumb Instruction Set

 Jazelle cores can also execute Java bytecode



14

ARM and Thumb Performance

Memory width (zero wait state)

0

5000

10000

15000

20000

25000

30000

32-bit 16-bit 16-bit with

32-bit stack

ARM

Thumb

Dhrystone 2.1/sec
@ 20MHz



15

The Thumb-2 instruction set

 Variable-length instructions

 ARM instructions are a fixed length of 32 bits

 Thumb instructions are a fixed length of 16
bits

 Thumb-2 instructions can be either 16-bit or
32-bit

 Thumb-2 gives approximately 26%
improvement in code density over ARM

 Thumb-2 gives approximately 25%
improvement in performance over
Thumb



16

Cortex-A8 Processor Modes

 User - used for executing most application programs

 FIQ - used for handling fast interrupts

 IRQ - used for general-purpose interrupt handling

 Supervisor - a protected mode for the Operating System

 Undefined - entered upon Undefined Instruction exceptions

 Abort - entered after Data or Pre-fetch Aborts

 System - privileged user mode for the Operating System

 Monitor - a secure mode for TrustZone



17

Cortex-A8 Register File

User
mode
r0-r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r0

r1

r2

r3

r4

r5

r6

r7

User/Sys

r13 (sp)

r14 (lr)

spsr

IRQ

User
mode

r0-r12

r13 (sp)

r14 (lr)

spsr

Undef

User
mode

r0-r12

r13 (sp)

r14 (lr)

spsr

SVC

User
mode

r0-r12

r13 (sp)

r14 (lr)

spsr

Abort

User
mode

r0-r12

Note: System mode uses the User mode register set

r13 (sp)

r14 (lr)

spsr

Mon

User
mode

r0-r12

r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc)

cpsr



18

Vector Table

Cortex-A8 Exception Handling

 When an exception occurs, the ARM:

 Copies CPSR into SPSR_<mode>

 Sets appropriate CPSR bits

 Change to ARM state

 Change to exception mode

 Disable interrupts (if appropriate)

 Stores the return address in LR_<mode>

 Sets PC to vector address

 To return, exception handler needs to:

 Restore CPSR from SPSR_<mode>

 Restore PC from LR_<mode>

This can only be done in ARM state.

* Represents an offset, as vector
table can moved to different base

addresses

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

SVC or SMC

Undefined Instruction

Reset

0x1C*

0x18*

0x14*

0x10*

0x0C*

0x08*

0x04*

0x00*



19

Cortex-A8 Program Status Register

31 27 26 25 24 23 20 19 16 15 10 9 5 4 0

IT7:2Flags ReservedJIT1:0 GE3:0 M4:0E A I F T

 New IT field in Program Status Registers

 Bits 7:5 indicate base condition

 Bits 4:0 indicate the number of instructions and condition/inverse condition

 Updated by
 IT, BX, BLX, BXJ instructions

 Loads to PC (except in User mode)

 New execution state (CPSR/SPSR)
J bit T bit State

0 0 ARM

0 1 Thumb

1 0 Jazelle-DBX
1 1 Thumb2-EE

 EnterX / LeaveX instructions



20

 ARM instructions can be made to execute conditionally by postfixing them with the
appropriate condition code field.

 This improves code density and performance by reducing the number of
forward branch instructions.

CMP r3,#0 CMP r3,#0
BEQ skip ADDNE r0,r1,r2
ADD r0,r1,r2

skip

 By default, data processing instructions do not affect the condition code flags but
the flags can be optionally set by using “S”. CMP does not need “S”.

loop
…
SUBS r1,r1,#1
BNE loop if Z flag clear then branch

decrement r1 and set flags

Conditional Execution and Flags



21

16-bit Conditional Execution

ITTET EQ

Inst 1

Inst 2

Inst 3

Inst 4

 If – Then (IT) instruction added (16 bit)

 Up to 3 additional “then” or “else” conditions maybe specified (T or E)

 Makes up to 4 following instructions conditional

 Any normal ARM condition code can be used

 16-bit instructions in block do not affect condition code flags
 Apart from comparison instruction

 32 bit instructions may affect flags (normal rules apply)

 Current “if-then status” stored in CPSR
 Conditional block maybe safely interrupted and returned to

 Must NOT branch into or out of ‘if-then’ block

MOVEQ

ADDEQ

SUBNE

ORREQ



22

 Branch : B{<cond>} label

 Branch with Link : BL{<cond>} subroutine_label

 The processor core shifts the offset field left by 2 positions, sign-extends it
and adds it to the PC

 ± 32 Mbyte range

 How to perform longer branches?

2831 24 0

Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
1 = Branch with link

232527

Branch instructions



23

Data processing Instructions

 Consist of :

 Arithmetic: ADD ADC SUB SBC RSB RSC

 Logical: AND ORR EOR BIC

 Comparisons: CMP CMN TST TEQ

 Data movement: MOV MVN

 These instructions only work on registers, NOT memory.

 Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

 Comparisons set flags only - they do not specify Rd

 Data movement does not specify Rn

 Second operand is sent to the ALU via barrel shifter.



24

Register, optionally with shift operation

 Shift value can be either be:

 5 bit unsigned integer

 Specified in bottom byte of
another register.

 Used for multiplication by constant

Immediate value

 8 bit number, with a range of 0-255.

 Rotated right through even
number of positions

 Allows increased range of 32-bit
constants to be loaded directly into
registersResult

Operand
1

Barrel
Shifter

Operand
2

ALU

Using a Barrel Shifter:The 2nd Operand



25

Single register data transfer

LDR STR Word

LDRB STRB Byte

LDRH STRH Halfword

LDRSB Signed byte load

LDRSH Signed halfword load

 Memory system must support all access sizes

 Syntax:

 LDR{<cond>}{<size>} Rd, <address>

 STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB



26

Agenda

Introduction to ARM Ltd

ARM Processors Overview

ARM v7A Architecture/Programmers Model

 Cortex-A8 Memory Management

Cortex-A8 Pipeline



27

Memory Protection

Application Code

OS

Privileged
Mode

User Mode

OS
Code + Data

Application
Code + Data

Physical Memory



28

Memory Allocation

Virtual
Address

Physical Memory

Application Code

OS

Privileged
Mode

User Mode

Application
Code + Data

Application
Code + Data

Physical
Address

Memory
Management

Unit

OS
Code + Data

Application Code

User Mode



29

Memory Management
 Memory Management Unit (MMU)

 Controls accesses to and from external memory

 Assigns access permissions to memory regions

 Performs virtual to physical address translation

 Instruction and Data Translation Look-Aside Buffers (TLB)

 Contains recent virtual to physical address translations

 Associates an ASID with each entry

 ASID identifies which process is currently active

Cortex-A8 Core
Instruction

Cache
Data

Cache

cp15

ITLBDTLB MMU Control logic

L2 Cache Control and RAM



30

Agenda

Introduction to ARM Ltd

ARM Processors Overview

ARM v7A Architecture/Programmers Model

Cortex-A8 Memory Management

 Cortex-A8 Pipeline



31

Full Cortex-A8 Pipeline Diagram

13-Stage Integer Pipeline 10-Stage NEON Pipeline

A
rch

ite
ctu

ra
lre

g
iste

r
file

N
E

O
N

re
g
is

te
r

file



32

Security - TrustZone

 Security – Property of the System which ensures resources
of value cannot be copied, damaged or made un-available to
genuine users

 Security cannot be foolproof so focus should be on

 Assets to protect

 Attacks against which it has to be protected

 Goal: Attack A on Asset B will take Y days at Z dollars cost

 Need for Security

 Embedded devices are handling data of increasing value such as
Banking data

 Different market sectors have need different needs. Ex Mobile Sector,
Consumer electronics



33

Cellular Handset SoC Design



34

TrustZone



35



36

Cortex-A8 References

 Cortex-A8 Technical Reference Manual

 ARM Architecture Reference Manual v7-AR

 RealView Compilation Tools Compiler Reference Guide

 RealView Compilation Tools Compiler User Guide

http://infocenter.arm.com



37

ARM University Program Resources

http://www.arm.com/support/university/

University@arm.com



38

Fin


