Memory Interfaces

Evaluator7T Memory Map

After reset the BSL code begins running from address 0x0. and then reconfigures the
memory map very early in its execution. After the BSL reconfigures the memory map.
it 1s structured as shown in Table 3-1.

Table 3-1 Memory map after remap

Address range Size Description

0x00000000 to 0x0003FFFF 256KB 32 bit SRAM bank. using ROMCON1

0x00040000 to 0x0007FFFF 256KB 32 bit SRAM bank. using ROMCON?2

0x01800000 to 0x0187FFFF 512KB 16 bit flash bank. using ROMCONO

0x02FE0000 to 0x023FELFFF 8KB 32 bit internal SRAM
0x02FF0000 to 0x03FFFFFF 64KB Microcontroller register space
Note

The BSL does not enable the cache. When the caches are enabled. you cannot use the
32-bit internal SRAM.

Evaluator7T Memory Map

Ox3FFFFFF
Special function registers
0x3FFO000
@Ox3FEFFFF
Undefined area
0x2000000 Tt
Ox1FFFFFF SA[25:0]
ROM/SRAM/FLASH
Bank O area
(nonaccessible)
0x0400000
Ox@3FFFFF » 32 MB
Cgancomes | pE
(accessible) Address[21:0]
0x0000000 ! !

Memory Map under BSL

Table 3-2 SRAM usage under BSL

Address range

Description

0x00000000t0 0x0000C03F

Exception vector table and address constants

0x00000040 to 0x00000FFF

Unused

0x00001000to Ox00007FFF

Read-write data space for BSL

0x00008000t0 Ox00077FFF

Available as download area for user code and data

0x00078000t0 Cx0CO7FFFF

System and user stacks

Memory Map under Angel debug monitor

Table 3-3 SRAM usage under Angel

Address range

0x00000000t0 0x0000C03F

Description

Exception vector table and address constants

0x00000040t0 Cx0C0000FF

Unused

0x00000100t0 Cx0C007FFF

Read-write data and privileged mode stacks

0x00008000 t0o 0x00073FFF

0x00074000 to Cx0C07FFFF

Available as download area for user code and data

Angel code execution region

Flash Memory Map

Table 3-4 Flash memory usage

ADDRESS RANGE

DESCRIPTION

0x01800000t0 Ox01806FFF

0x018C70001t0 Cx01807FFF

Bootstrap loader

Production test

0x01808000 to Ox0180FFFF

Reserved

0x01810000t0 Ox0181FFFF

Angel

0x01820000t0 Ox0187FFFF

Available for your programs and data

SRAM Memory Interface

I\

W
Samsung
KS32C50100
1)

NWBE1

NWBEO

64K x 16
A[15:0] SRAM
D[31:16] us)
NRCS1 | g
NOE | op
NBE3 | o
NBE2 | o
NUWWE | e
B
NWBE3
j 64K x 16
A[15:0] SRAM
NWBE2 > D[15:0] w2
NRCS1 | g
NWBE1 } ‘ NOE | oo
NBE1 | g
\ NBEO | | 5
NWBEO / NLWWE W—E
NWBE3
Nwaszji
_\7
L/

Figure 2-3 SRAM memory array

Load/Store (Memory Access)
Instructions

Instruction Class

ARM instructions can be broadly separated into three basic
classes:

1.

Data Movement
Memory load/store
Register Transfers

Data Operation
Arithmetic

Logical

Register movement
Comparison and test

Flow Control
Branch
Conditional execution

ARM Instructions

Fixed length of 32 bits

Commonly take two or three operands

Process data held in registers

Access memory with load and store instructions only
Can be extended to execute conditionally by adding
the appropriate suffix

Affect the CPSR status flags by adding the ‘S’ suffix
to the instruction

Load / Store Instructions

* The ARM is a Load / Store Architecture:

— Does not support memory to memory data processing
operations

— Must move data values into registers before using them

» This might sound inefficient, but in practice isn’t:
— Load data values from memory into registers

— Process data in registers using a number of data
processing instructions which are not slowed down by
memory access

— Store results from registers out to memory

« The ARM has three sets of instructions which
interact with main memory. These are:
— Single register data transfer (LDR / STR)
— Block data transfer (LDM/STM)
— Single Data Swap (SWP) "

Load and Store Instructions

Only two basic instructions are used for data transfer between
memory and processor registers.

LDR: LoaD words from memory into a Register
STR: STore words from a Registerinto memory

Basic syntax:
<LDR/STR>{cond}{type} Rd, [Rn, addressing]

where Rd = destination (for LDR) & source (for STR)
Rn = Base address register
cond = condition flag
type = byte, halfword, word(default), signed
& unsigned

Load Instruction Format - LDR

Syntax ~ LDR <Rd>, [<Rn>, #<immed 5> * 4]

e <Rd> Destination Register for Memory Word

e <Rn> Register Containing Base Address

e <immed_5> b5-bit value Multiplied by 4 and added to
<Rn> to Form the Memory Address

RTL
address <- Rn + (immed 5 * 4)
if (address[1:0] == 0bO0O
data <- Memory[address, 4]
else
data <- UNPREDICTABLE
Rd <- data .

Load Instruction Format - LDR

Syntax

LDR <Rd>, [<Rn>, #<immed 5> * 4]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1110/0101 1001 Rn RdA |0 0 00 0| immed5 |00
cond op . reserved
o e 32 bit ARM LDR

15 14 13 12 11 10 9 8 7 6 5 4 3] 1 0

|o 1 1o 1| immed_5 | Rn | Rd |

16 bit Thumb LDR

Nice Ref on Machine Code Format:

Store Instruction Format - STR

Syntax =~ STR <Rd>, [<Rn>, #<immed 5> * 4]

e <Rd> Register containing Word to Write to Memory
e <Rn> Register Containing Base Address
e <immed_5> b5-bit value Multiplied by 4 and added to

<Rn> to Form the Memory Address

RTL
address <- Rn + (immed 5 * 4)
if (address[1l:0] == 0bO0O
Memory|[address,4] <- Rd

else
data <- UNPREDICTABLE

Store Instruction Format - STR

Syntax
STR <Rd>, [<Rn>, #<immed 5> * 4]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111001011000 Rn Rd 0 000 O immed5 (00

32 bit ARM STR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o

0 1 1(0({0]| immed_5 Rn Rd

16 bit Thumb STR

Examples

LDR r0, [rl]
; load r0 with the content of the memory location
; pointed toin r1

STR r2, [rl]
; store content of r2 to memory location with address
; pointed to in r1

LDRB r0, [r1] ;load byte size data
STRH r0, [r1] ; store halfword size data
LDRSB r0, [r1] ; load signed byte

Load and Store Word or Byte:
Base Register

« The memory location to be accessed is held in a
base register

— STR O, [r1] ; Store contents of r0 to location pointed to
; by contents of r1.
— LDR r2, [r1] ; Load r2 with contents of memory location
0 ; pointed to by contents of r1.
Source Merr:ory
. 0x5
Register !
for STR
r r2
Ba.se 0x200) — 4,000 [Ox5 | ——— Destination
Register ! Register
: for LDR

18

Common Load/Store Instructions

Loads Stores Size and Type
LDR STR Word (32 bits)
LDRB STRB Byte (8 bits)
LDRH STRH Halfword (16 bits)
LDRSB Signed Byte
LDRSH Signed Halfword
LDM STM Multiple Words
Load Half Word Example
LDRH rll, ;load a halfword into rll
r0 content Memory
before/after load
Address Data
0x00008000
0x8000 |OXEE
0x8001 |OXFF
r11 before load
0x8002 |0x90
0x12345678
0x8003 |0xA7

r11 after load
0x0000FFEE

Is this Little Endian or Big Endian ?

20

Load Half Word Example

LDRH rll, [rO] ;load a halfword into rll
rO content Memory
before/after load

Address Data
0x8000 |OxXEE
0x8001 |OxXFF
0x8002 |0x90
0x8003 |0xA7

0x00008000

r11 before load
0x12345678

r11 after load
0x0000FFEE

Little Endian

21

Signed Byte Load Example

LDRSB rll, [rO] ;load a signed byte into rll
rO content Memory
before/after load

Address Data
0x8000 |OxXEE
0x8001 |0x8C
0x8002 |0x90
0x8003 |0xA7

0x00008000

r11 before load
0x12345678

r11 after load
O0XFFFFFFEE

22

Store Example Using Post Increment

STR r3, [r8], #4 ;Memory write to address 0x8000
inc. by 4
r3 content Memory after Store
before/after store
Address Data
O0xXFEEDBABE
0x8000 |0OxBE

0x8001 |0xBA
0x8002 |OxXED

r8 before store

0x00008000

0x8003 |OxXFE
r8 after store Is this Little Endian or Big Endian ?
0x00008004

23

Store Example Using Post Increment

STR r3, [r8], #4 ;Memory write to address 0x8000
3 content Memory after Store
before/after store
Address Data
O0xXFEEDBABE
0x8000 |0OxBE

0x8001 |0xBA
0x8002 |OxXED
0x8003 |OXFE

r8 before store
0x00008000

r8 after store
0x00008004

Little Endian

24

More Examples

LDR

STRB

STR

LDR

STRB

LDR

STR

rb,

r0,

r3,

rl,

r7,

r3,

r2,

[r3]

[ro,

[r9],

[r>],

;load r5 with data from
;ea <r3>

;store data in r0 to

;ea<r9>
r5, LSL #3] ;store data in r3
;ea<r0+r5*8>
#4]1! ;load rl from ea<r0+4>,
;r0 <- r0+4 (! is wrt-bak)
#-1]! ;store byte to ea<r6-1>,
;ro <— ro-1 (! is wrt-bak)
#4 ;load r3 from ea<r9>,

;r9 <- r9+4
#8 ;store word to ea<r5>,

;r5 <- r5+8
25

Addressing Modes

ARM uses a fixed-length instruction, with the lowest 12
bits available to specify immediate address

 not sufficient to cover the full 232 address space
* hence do not support direct addressing

ARM only provides indirect addressing modes
1. Register indirect addressing
2. PC-relative addressing

26

Register Indirect Addressing

An address is available in a register
Example: ILDR r0, [rl]

Here, the r1 content is known as the ‘base address’, and
r1 is called the base address register.

Can be further extended to:

a) Pre-indexed addressing

b) Pre-indexed with write-back addressing (uses “!”)
c) Post-indexed addressing (implicit write-back)

27

Pre-Indexed

Pre-indexed addressing adds an offset to the base address
before executing the load/store.

LDR|STR{<cond>} <Rd>, [<Rn>, <offset>]{!}

Example: ILDR r0, [rl, #8]

This instruction loads r 0 with the content of memory location at (base
address + 8).

Optional ! specifies to write the effective address back into Rn after
execution of instruction. Otherwise Rn retains original value.

Useful for addressing an element in a data structure.
For example, access a particular register of a peripheral

through the peripheral base address and its offset.
28

Pre-Indexed with Write-Back

Pre-indexed addressing with write-back automatically updates the
base address before executing the load/store.

Example: LDR r0, [rl, #4]!
This instruction adds 4 to the base registerr1, loads r0 with the

content of memory location (now is at base address + 4), and
increments r1 by 4.

Increment to the base address is done before the execution of the
load instruction but r1 changes value after execution.

Useful for automatic stepping through a lookup table with a starting
address placed in the base address register.

29

Pre-Indexed Example

LDR|STR{<cond>} <Rd>, [<Rn>, <offset>]{!}

ST

r1

0x200 0x200

R rO, [rl, #12] ;writes 0x5 to address 0x20C
offset address memory r0
0x20C | 0x5 0x5

r1 retains 0x200

after instruction is

executed

30

STR Pre-indexed Addressing

STR r0, [rl, #12] ;writes 0x5 to address 0x20C

 To store to location 0x1f4 instead use
- STR r0, [rl,#-12]

« To auto-increment base pointer to 0x20c use
- STR r0, [rl, #12]!

« If r2 contains 3, access 0x20c by multiplying this by 4
- STR r0, [rl, r2, LSL #2]

31

Pre-Indexed Example with Writeback

LDR|STR{<cond>} <Rd>, [<Rn>, <offset>]{!}

STR rO, [rl, #1271 ;writes 0x5 to address 0x20C
offset address memory r0
0x20C | 0x5 0x5

r1 contains 0x20C

after instruction is

executed

r1

0x200 0x200

32

Pre-Indexed Examples

LDR|STR{<cond>} <Rd>, [<Rn>, <offset>]{!}

;r3 data written to ea(r0+(r5*8))
STR r3, [r0, r5, LSL #3]

;r6 gets data from ea(rO+(rl/64)), after data is read
r0 is updated r0 <- r0+(rl/64)
LDR ro, [r0O, rl, ROR #6]!

;r0 gets data from ea(rl1-8)
LDR r0, [rl, #-8]

;r0 gets data from ea(rl-(r2*4))
LDR r0O, [rl, -r2, LSL #2]

33

Pre-Indexed Examples
LDR|STR{<cond>} <Rd>, [<Rn>, <offset>]{!}

;r5 gets 2 bytes of data from ea(r9) and is sign
;extended to fill the 32 bit r5 register
LDRSH R5, [R9]

;r3 gets 1 byte of data from ea(r8*8) and is sign
;extended to fill the 32 bit r3 register
LDRSB R3, [RS8, #3]

;r4 gets 1 byte of data from ea(r10+193) and is sign
;extended to fill the 32 bit r4 register
LDRSB R4, [R10, #0xcl]

;r4 gets 1 byte of data from ea(r10+193) and is sign
;extended to fill the 32 bit r4 register and rl0 is
;updated to contain rl1l0 <- r10+193

LDRSB R4, [R10, #0xcl]! 34

Post-Indexed

Post-indexed addressing automatically updates the base address
after executing the load/store.
Example: STR r0, [rl], #4;

This instruction stores the content of rO into the memory location
pointed to in base address registerr1, executes the store
operation, and increases the base address value by 4.
Incrementis done after the execution.

Note that * I’ is not needed for post-indexed addressing since the
update is implicit.

Useful for storing a list of data into a table with a starting address
pointed to by the base address valuein r1.

Post-Indexed Example

LDR|STR{<cond>} <Rd>, [<Rn>], <offset>

STR r0, [rl], #12 ;writes 0x5 to address 0x200
Updated
1 offset address memory

|Ox20C|<—| 12 Ho;aoc

Original Source for STR
r1 r0

0x200 0x200 0x5 0x5

STR: Post-indexed Addressing

STR r0, [rl], #12 ;writes 0x5 to address 0x200

« To auto-increment the base register to location
Ox1f4 instead use:

— STR r0, [rl], #-12

» If r2 contains 3, auto-increment base register to
0x20c by multiplying this by 4:

- STR r0, [rl], r2, LSL #2

37

Post-Indexed Examples
LDR| STR{<cond>} <Rd>, [<Rn>], <offset>

;32 bit data in r7 written to ea(r0) and
;r0 is updated to contain r0 <- r0+24 after write
STR r7, [r0], #24

;r3 gets 32 bits of data from address beginning at
;ea(r0) and r0 is updated to contain r0 <- r0+(r4/16)
LDR r2, [r0], r4, ASR #4

;r3 gets 16 bits of data from address beginning at
;ea(r9)and r9 is updated to contain r9 <- r99+2
LDRH r3, [r9], #2

;16 bit data written from r2 to address beginning at
;ea(rb5) and r5 is updated to contain r5 <- r5+8
STRH r2, [r5], #8

38

PC Relative Addressing

Program Counter relative addressing makes up for the unavailability
of full direct addressing in ARM instructions.

Example:
LDR rl, labell

labell:

The instruction is to load r1with a 32-bit value which is the address
of the label named 1abell.

But this will give an error because the 32-bit value cannotfit into an
instruction that s itself 32-bit long.

(In fact, for ARM, only the lowest 12 bits are available to store an
immediate value)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111001011001 Rn Rd 0 0 0O0 0| immed5 (00

Pseudo-Instruction ADR

The solution is to store the 32-bit address somewhere nearby the
load instruction.

The 32-bit value can then be retrieved by accessing through a
relative offset from the PC register value of the instruction.

This PC relative addressing operation is represented using pseudo-
instructions ADR & ADRI.

Example:
ADR rl1, labell ; range < 255 Bytes
ADRL r2, label?2 ; range < 64K

Who decides where to store the 32-bit value of label1?
Ans: The assembler

40

Example - Memory String Copy

SRAM BASE EQU 0x04000000 ;address to store string

AREA StrCopy, CODE

ENTRY ;mark first instruction
Main adr rl, srcstr ;pointer to source string

ldr r0, =SRAM BASE ;pointer to destination string
strcopy

1drb r2, [rl], #1 ;load byte, update address

strb r2, [r0], #1 ;store byte, update address

cmp r2, #0 ;check for zero terminator

bne strcopy ;loop if terminator not reached
stop b stop ;halt processing, loop forever
srcstr DCB “This is my (source) string”,0

END ;end of file marker

41
Endian

Term arises from paper D. Cohen [1981]
ARM supports both conventions

Only arises with systems that have smaller-sized
memory storage than wordsize

Should storage be from “left-to-right” or “roght-to-
left”?

Intel x86 uses “right-to-left”, Motorola 68X (now
FreeScale) uses “left-to-right”

ARM allows for either

Core has input pin BIGEND, when asserted,
results in Big Endian

Assembler Directive used for this

42

Effect of endianess

« The ARM can be set up to access its data in either
little or big endian format.

» Little endian:
— Least significant byte of a word is stored in bits 0-7 of an
addressed word.
« Big endian:
— Leastssignificant byte of a word is stored in bits 24-31 of
an addressed word.
* This has no real relevance unless data is stored as
words and then accessed in smaller sized
quantities (halfwords or bytes).

— Which byte / halfword is accessed will depend on the
endianess of the systeminvolved.

43

Endianess Example

rO0= 0x11223344

31 2423 1615 87 0
[

I [
| 11 22 33

44|

312423 1615 87 ‘0 31§ 2423 1615 87 0

rl = 0x100| ,; ', a3 1oy Memory wa 33 Loy Ty | Tl = 0x100
Little-endian l LDRB 2, [r1] l Big-endian
31 24|23 lfilS 8|7 0 31 24|23 16|15 8|7
00 00 00 44 | | 00 00 00 11

r2 = 0x44 r2 = 0x11

44

Multiple-Register Load-Store

The multiple-register load-store instructions support the transfer of
a block of data in one instruction, through the use of Multiple
registers.

Basic instructions: LDMand STM

Usually used with a suffix: 1A, IB, DA, DB

IA: increment after

IB: increment before

DA: decrement after

DB: decrement before

Can also be used in conjunction with the ‘!’ for write-back.

45

Multiple-Register Load-Store (cont’d)

Example: STMIA r0, {rl-r3, 1lr};

This single instruction stores four registers (r1, r2, r3,and 1r —
i.e., r14)intothe 16 memory locations (4 words) starting at the
base address in r0.

Example: LDMDA r0!, {rl-r3, 1lr};

This instruction performs the loadinginto r1-r3, 1r ina
decrement fashion, and updates the base register r 0 itself after
performing the four word (16 byte) transfers.

46

Multiple-Register Load-Store (cont’d)

The execution of single multiple-register transfer
instruction will take multiple sequential memory access
cycles to complete.

+ stillmuch faster than transferring using multiple instructions

which incurs more access latency — uses the burst read/write
mode of ARM.

But these instructions affectmaximum interrupt latency.

* interruptthat occurs during the LDM and STM instruction

execution will be pending until the execution is fully completed.

47

