First ARM® Program

First Program

AREA Progl, CODE, READONLY ;directive for assembler

ENTRY ;entry point for program
MOV r0, #0x11 ;move a hex 11 into r0
MOV rl, r0, LSL #1 ;shift r0 one bit left
; and move result to rl
MOV r2, rl, LSL #1 ;shift rl one bit left
; and move to r2
stop B stop ;branch to stop
END ;directive for assembler

What is the value in r2 after the program reaches stop?

First Program - AREA

AREA Progl, CODE, READONLY ;directive for assembler

e AREA — indicates a section of code of type DATA
e Progl — the name of the program
e READONLY — default, can not be overwritten

The AREA directive instructs the assembler to assemble
a new code or data section. Sections are independent,
named, indivisible chunks of code or data that are

manipulated by the linker.

First Program - ENTRY

ENTRY ;entry point for program

The ENTRY directive declares an entry point to a
program.

Syntax ENTRY Usage

You must specify at least one ENTRY point for a

program. If no ENTRY exists, a warning is generated at
link time. You must not use more than one ENTRY
directive in a single source file. Not every source file has
to have an ENTRY directive. If more than one ENTRY
exists in a single source file, an error message is
generated at assembly time. s

First Program — 1st MOV

MOV r0, #0x11 ;move a hex 11 into r0

The MOV instruction places a copy of the operand (in this
case immediate value hexadecimal 0x11 into register
r0. 0x11 is the 32-bit string:

0000 0000 0000 0000 0000 0000 0001 0001

The # means that the constant is an immediate operand
that is coded into the machine instruction for MOV

First Program — 2nd MOV

MOV rl, r0, LSL #1 ;shift r0 one bit left
; and move result to rl

The MOV instruction places a copy of the operand (in this case
rO left shifted by 1 bit) into r1. In binary, this is the string:

0000 0000 0000 0000 0000 0000 0010 0010
LSL is “logical left shift”, vacates bits are replaced by Os.
L.SL can also be used as a standalone instruction

Due to unique ARM architecture, this is an efficient way to do
both a multiply (by certain values) and a MOV at the same
time.

First Program — 39 MOV

MOV r2, rl, LSL #1 ;shift rl one bit left

; and move to r2
The MOV instruction places a copy of the operand (in this case
r1 left shifted by 1 bit) into r2. In binary, this is the string:
0000 0000 0000 0000 0000 0000 0100 0100
LSL is “logical left shift”, vacates bits are replaced by Os.
LSL can also be used as a standalone instruction

Due to unique ARM architecture, this is an efficient way to do
both a multiply (by certain values) and a MOV at the same
time.

First Program - B

stop B stop ;branch to stop

‘stop’ is a user-defined label, B is the ARM branch (ie jump or
go to) instruction. This causes an infinite loop as in each
clock cycle the PC is updated to contain the address
represented by ‘stop’.

First Program — END

END ;directive for assembler

END is a directive that indicates to the assembler that the file
containing all the AREAS for this program are complete. It
directs the assembler to halt processing of the file content
into an object file.

Using ADS 1.2.1

» Create a separate subdirectory for each program you
are working on.

» Use a TEXT editor to create the source file. You can
use the one built in to ADS, or you can use a tools
such as DOS edit, Windows Notepad, MAC OS
textedit, or even MS Word — but you MUST save the
file as a text file (hot RTF or doc, etc)

* Follow the directions in Lab 1 to create a project,
assemble the code, and use the debugger to
download it into the Evaluator7T board

« Use the debugger to run the code and observe the
memory and register content. You can single step
and set break points.

Conditional Execution and Flags

= ARM instructions can be made to execute conditionally by postfixing them with the
appropriate condition code field.

® This improves code density and performance by reducing the number of forward branch

instructions.
CMP r3,#0 CMP r3,#0
BEQ skip ——— ADDNE rO,rl,r2
ADD r0,rl,x2

skip

= By default, data processing instructions do not affect the condition code flags but the flags
can be optionally set by using “S”. CMP does notneed “S”.

loop

éUBs rl,rl,#1 (_| decrement r1 and set flags |
BNE loop € | if Z flag clear then branch |

Condition Codes

= The possible condition codes are listed below
" Note AL is the default and does not need to be specified

Suffix Description Flags tested
EQ Equal Z=1

NE Not equal Z=0

CS/HS | Unsigned higher or same C=1

CC/LO | Unsigned lower C=0

MI Minus N=1

PL Positive or Zero N=0

VS Overflow V=1

vC No overflow V=0

HT Unsigned higher C=1&7=0
LS Unsigned lower or same C=0 or Z=1
GE Greater or equal N=V

LT Less than N!=V

GT Greater than Z=0 & N=V
LE Less than or equal Z=1 or N=IV
AL Always

Conditional Codes Examples

ARM instructions
C source code

unconditional conditional
if (r0 == 0) CMP r0, #0 CMP r0, #0
{ BNE else ADDEQ rl, rl, #1
rl =rl + 1; ADD rl, rl, #1 ADDNE r2, r2, #1
} B end
else else
{ ADD r2, r2, #1
r2 =r2 + 1; end ...
}
= 5 instructions = 3 instructions
= 5 words = 3 words
= 5o0r6cycles = 3 cycles

Conditional Codes Examples

m Use a sequence of several conditional instructions
if (a==0) func(l);

CMP r0,#0
MOVEQ r0,#1
BLEQ func

Set the flags, then use various condition codes

if (a==0) =x=0;

if (a>0) =x=1;
CMP r0,#0
MOVEQ rl,#0
MOVGT rl,#1

Use conditional compare instructions

if (a==4 || a==10) x=0;
CMP r0,#4
CMPNE r0, #10

MOVEQ

rl,#0

Second ARM® Program

Second Program

» (Calculates the factorial of a value #:

n

n!=]]i=(n)(n-1)(n-2)..(2)(1)

i=1
» Loads value of n into registers r6 and r4
« Uses a conditional loop to do each multiply (MULNE)
* 16 accumulates the factorial value
* r4 is decremented for each multiply

« when r4 is zero, the computation is complete and r6
contains »!

» Uses the Zero flag (z) to control the loop branching

Second Program

AREA Prog2, CODE, READONLY

ENTRY

MOV r6, #10 :r6<-n value

MOV r4, ré6 ;r4<-n value
loop SUBS rd, rd, #1 ;rd,<-r4d-1

;mult only if Z=0, Z flag is set
;based on previous subtraction

MULNE r7, r6, r4 ;r7<-ré6*r4
MOV ré6, r7 ;update latest
;value to ré6
BNE loop ;if Z=1, go to loop
stop B stop ;calculation done
END "

Second Program

loop SUBS rd, rd, #1 ;rd,<-r4-1

Placing the ‘S’ at the end of the SUB instruction indicates
that the processor is to update the condition flags in
CPSR based on the outcome of the instruction. Some
architectures automatically update flags after each
operation, but not in this case — it must be done
explicitly.

‘loop’ is a user-defined label that is used as a target for the
branch instruction (BNE).

Second Program

MULNE r7, r6, r4 ;r7<-ré6*r4

‘NE’ is short for ‘Not Equal’. To determine if to values are
equal, a subtraction is performed, and if the result is
zero, the 7z flag is set (z=1) and the values are equal.
Putting NE at the end of the MUL instruction makes it a
conditional instruction. If z=0 indicating ‘not equal’, the
multiplication is performed. If Zz=1 indicating ‘equal’ a
‘no-operation, nop) is executed in place of the MUL.

Second Program

BNE loop ;if Z=1, go to loop

The z flag is still set based on the SUBS command. In

other architectures, where flags are set after every
arithmetic instruction, this might not be the case since a
MUL occurred after the SUB. Here, we can still rely on
the 7z flag for the branch that was updated by the SUB

instruction.

20

Third Program

Exchanging the content of registers r0 and r1

In high-level languages, this is often done using a
temporary or third storage space

Can also use the logical Exclusive-OR operation
Recall the XOR operation:

N A®A=0
010 0 —
o1 A®l=A
T ABO=A

21

Third Program

EOR is bitwise XOR of register content

Swapping can be accomplished using three EOR
instructions:

A<~ ADB
B,.<—A®B=(A®B)®B=A
Aﬁnal < Al EI->Bﬁnal = (A@B)@(A)

B

22

Third Program

AREA Prog3, CODE, READONLY
ENTRY
LDR r0, =0xF631024C
LDR rl, =0x17539ABD
EOR r0, r0, rl
EOR rl, r0, rl
EOR r0, r0, rl
stop B stop
END
23
Third Program
LDR r0, =0xF631024C

This loads a constant into rO. Before we used a MOV with a

constant preceded by #. This is called a “pseduo-

instruction”. Because the immediate filed is limited in
size in the MOV instruction format, 0xF631024C cannot

fit into the field and we must use the pseudo-instruction
form to load this constant.

We will discuss this in more detail later in class.

What is the result of EOR of 0xF631024C with 0x17539ABD ?

24

Third Program

EOR Calculation:

O0xF631024C:
1111 0110 0011 0001 0000 0010 0100 1100

0x17539ABD:
0001 0111 0101 0011 1001 1010 1011 1101

0xF631024C EOR 0x17539ABD:

1110 0001 0110 0010 1001 1000 1111 o0OO1
0xE16298F1

25

ARM® Assembler Language

26

Constant Values

Constants can be Expressed as Numeric Values or
Character Strings

— Decimal: 1324

— Hexadecimal: 0x3DE2 (32-bit value, zero-padded)

— General: n_xxxx (nis basein [2,9], xxx is digit string)

— Character: 'V’ (enclosed in single quote)

— String: “Hello world\n”

Control Characters Specified as in C Language
Single Quote: “\'’

Dollar Sign or Double Quote: Use Two in a row “$$”
is a SINGLE Dollar Sign; “ “ “is a single Double
Quote

27

Predefined Register Names

r@-r15 and RO-R15

al-a4 (argument, result, or scratch registers, synonyms for r0 to r3)
v1-v8 (variable registers, r4 to r11)

sb and SB (static base, r9)

s1 and SL (stack limit, r10)

fp and FP (frame pointer, r11)

ip and IP (intra-procedure-call scratch register, r12)

sp and SP (stack pointer, r13)

1r and LR (link register, r14)

pc and PC (program counter, r15).

28

Predefined Register Names

Predeclared program status register names

The following program status register names are predeclared:
. cpsr and CPSR (current program status register)
. spsr and SPSR (saved program status register).

Predeclared floating-point register names

The following floating-point register names are predeclared:
. fo-f7 and Fo-F7 (FPA registers)

. s0-s31 and S0-531 (VFP single-precision registers)

. d@-d15 and D@-D15 (VFP double-precision registers).

Predeclared coprocessor names

The following coprocessor names and coprocessor register names are predeclared:
. p@-p15 (coprocessors 0-15)
. c0-c15 (coprocessor registers 0-15).

29

Format of Source Line

{symbo1} {instruction|directive|pseudo-instruction} {;comment}

 All 3 Portions Optional (indicated by {})

* Instructions CANNOT start in first line, must be at
least 1 space

« Directives may be in upper or lower case but
CANNOT mix cases

« symbol is usually a label and MUST begin in first
column — cannot contain white space or tab

30

Labels

{symbol} {instruction|directive|pseudo-instruction} {;comment}

« Can use Upper/Lower Case or Numeric Characters
or Underscore

« Can’t Use Numbers as First Character
« Symbol Names are Case Sensitive
« Symbol Names must be Unique (within Scope)

* No Predefined Names Allowed

31

Directives

* Directives are NOT ARM Instructions

* Directives tell the Assembler how to Process the
Source file

« These Notes are for the ADS Tools NOT the Keil
Tools

* Frequently Used Directives in Hohl Book, p. 51

« Suggest Making Directives and Instructions in
Opposite Case for Readability

32

Common Directives

Directive Comment

AREA Defines Block of data or code

RN Equates a Register with a
name

EQU Equates a Symbol to a
Numeric Constant

ENTRY Declares an Entry Point to a
Program

DCB Allocates one or more Bytes
of memory. It also specifies
initial runtime contents of
memory.

33
Common Directives

Directive Comment

DCW Allocates one or more Halfwords
(16 bits) of memory. It also
specifies initial runtime contents of
memory.

DCD Allocates one or more Words (32
bits) of memory. It also specifies
initial runtime contents of memory.

ALIGN Aligns data or code to a specific
boundary

SPACE Reserves a zeroed block of memory
of a certain size.

LTORG Assigns starting point of a literal
pool.

END Designates end of source file

ARM Instruction Set

Mnemonic ISA Version Description
ADC vl add two 32-bit values and carry
ADD vl add two 32-bit values
AND vl logical bitwise AND of two 32-bit values
B vl branch relative +/— 32 MB
BIC vl logical bit clear (AND NOT) of two 32-bit values
BKPT v5 breakpoint instructions
BL vl relative branch with link
BLX v5 branch with link and exchange
BX v4T branch with exchange
CDP CDP2 v2 V5 coprocessor data processing operation
CLZ v5 count leading zeros
CMN vl compare negative two 32-bit values
CMP vl compare two 32-bit values
EOR vl logical exclusive OR of two 32-bit values

35

ARM Instruction Set (cont)

Mnemonic ISA Version Description
LDC LDC2 v2v5 load to coprocessor single or multiple 32-bit values
LDM vl load multiple 32-bit words from memory to ARM registers
LDR vl v4 v5E load a single value from a virtual address in memory
MCR MCR2 MCRR v2v5v5E move to coprocessor from an ARM register or registers
MLA v2 multiply and accumulate 32-bit values
MoV vl move a 32-bit value into a register
MRC MRC2 MRRC v2v5vVv5E move to ARM register or registers from a coprocessor
MRS v3 move to ARM register from a status register (cpsr or spsr)
MSR v3 move to a status register (cpsr or spsr) from an ARM register
MUL v2 multiply two 32-bit values
MVN vl move the logical NOT of 32-bit value into a register
ORR vl logical bitwise OR of two 32-bit values

PLD v5E preload hint instruction

36

ARM Instruction Set (cont)

Mnemonic ISA Version Description
QADD v5E signed saturated 32-bit add
QDADD v5E signed saturated double and 32-bit add
QDSUB v5E signed saturated double and 32-bit subtract
QSUB v5E signed saturated 32-bit subtract
RSB vl reverse subtract of two 32-bit values
RSC vl reverse subtract with carry of two 32-bit integers
SBC vl subtract with carry of two 32-bit values
SMLAxy v5E signed multiply accumulate instructions ((16 x 16) + 32 = 32-bit)
SMLAL v3M signed multiply accumulate long ((32 x 32) + 64 = 64-bit)
SMLALxy v5E signed multiply accumulate long ((16 x 16) + 64 = 64-bit)
SMLAWy v5E signed multiply accumulate instruction (((32 x 16) > 16) + 32 = 32-bit)
SMULL v3M signed multiply long (32 x 32 = 64-bit)
37
ARM Instruction Set (cont)
Mnemonic ISA Version Description
SMULxy v5E signed multiply instructions (16 x 16 = 32-bit)
SMULWy v5E signed multiply instruction ((32 x 16) > 16 = 32-bit)
STC STC2 v2v5 store to memory single or multiple 32-bit values from coprocessor
STM vl store multiple 32-bit registers to memory
STR vl v4 v5E store register to a virtual address in memory
SuB vl subtract two 32-bit values
SWI vl software interrupt
SWP v2a swap a word/byte in memory with a register, without interruption
TEQ vl test for equality of two 32-bit values
TST vl test for bits in a 32-bit value
UMLAL v3M unsigned multiply accumulate long ((32 x 32) + 64 = 64-bit)
UMULL viM unsigned multiply long (32 x 32 = 64-bit)

38

