ARM® Processor
Programmer Model
aka
Instruction Set Architecture

An assembly language programmer’ s
view of the processor hardware

Instruction Set Architecture

« Programmer’ s do care about:
— What happenswhen a “branch” is executed?
— What happenswhen a subroutine is called?
— What happenswhen an interrupt occurs?

* Programmers Don’ t Care so much about:
— How is the processor control unit structured?
— What is architecture of the cache memory?
— What is the memory decoding architecture?
— Whatis the I/O bus protocol?

* We care about BOTH since this
“Microcontroller Architecture and Interfacing” -

ISA Versions and Part Numbers

« Confusing since Acorn produced ARM1 and
ARM2 then Advanced Risc Machines started
with ARMG6 Part numbers

* ISA Versions More or Less in Sequential
order

 Be careful when referring to the “version” of
ARM, make it clear if you mean part numbers
or architectures

ISA Versions and Part Numbers

ARM Family ARM Architecture ARM Core
ARM1 ARMv1 ARM1
ARM2 ARMv2 ARM2

ARMv2a ARM250

ARM3 ARMv2a ARM3
ARMG60

ARM®6 ARMv3 ARM600
ARM610
ARM700

ARM7 ARMv3 ARM710
ARM710a

ISA Versions and Part Numbers (cont)

ARM Family ARM Architecture ARM Core
ARM7TDMI(-S)
ARM710T
ARM7TDMI ARMv4T
ARM720T
ARM740T
ARM7EJ ARMVSTEJ ARM7EJ-S
ARMS8 ARMv4 ARMS810
StrongARM ARMv4 SA-1
ARMOTDMI
ARM920T
ARMOTDMI ARMv4T
ARM922T
ARMO940T

ISA Versions and Part Numbers (cont)

ARM Family ARM Architecture ARM Core
ARM946E-S
ARMV5STE ARMO966E-S
ARMYE ARMO968E-S
ARMVSTEJ ARM926EJ-S
ARMV5STE ARM996HS
ARM1020E
ARM10E ARMVSTE ARM1022E
ARMVSTEJ ARM1026EJ-S
XScale
XScale ARMVSTE Bulverde

Monahans

ISA Versions and Part Numbers (cont)

V4

ARM9X6E ARM926EJ-S™

O

ARM Family ARM Architecture ARM Core
ARMv6 ARM1136J(F)-S
ARMvVGT2 ARM1156T2(F)-S
ARM11
ARMv6ZK ARM1176JZ(F)-S
ARMv6EK ARM11 MPCore
Cortex-A5
Cortex-A8
Cortex-A ARMvV7-A
Cortex-A9 MPCore
Cortex-A15MPCore
Cortex-R ARMvV7-R Cortex-R4(F)
Cortex-MO
ARMv6-M
Cortex-M1
Cortex-M
ARMv7-M Cortex-M3
ARMv7-ME Cortex-M4 ,
Version Timeline
c ARMv7 >
S
g ARM1156T2F-S™
> ARM1136JF-S™
ARMv6 O
ARM1176JZF-S™
ARM102xE XScale™ ARM1026EJ-S™
ARMv5 .

™
ARM7TDMI-S™ StrongARM® ARMO2XT SC200
SC100™ ARM720T™
i i i i i i —
1994 1996 1998 2000 2002 2004 2006
time

XScale is a trademark of Intel Corporation

Information on Features/Applications

http://en.wikipedia.orqg/wiki/ARM architecture

ARM® Processor Programmer Model

ARMO9 Processor

The ARM9™ processor family is built around the
ARMO9TDMI processor core, which implements the v4T
architecture with a 5-stage pipeline, and supports the
16-bit Thumb® instruction set.

ARM920T-based ARM9 processor:

* ARMOTDMI core + Dual Caches (32K) + MMU
*Targeted for OS-based embedded applications

Separate instruction cache and data cache enabled.

Harvard cache operation:

*The AMBA bus interfaces to the rest of the system using a
unified address and data buses.

ARM920T Block Diagram
External . " IPA[31:0]
coprocessor Insct:échte;on Insht;:dcltjlon
interface
IMVA[31:0] I
[re]
ID[31:0]
IVA[31:0]
e
< Trace ARMITDMI AMBA | AsB
<+ interface — Processor core CP15 bus
4 port (Integral EmbeddedICE) interface
e
DVA[31:0] DD[31:0] Write
buffer
[me]
DMVA[31:0] DPA[31:0]
JTAG
Data Data Write back
cache MMU PATAG RAM | wBPpA[31:0]

I DINDEX(5:0] t

ARMO9TDMI and ARM7TDMI

The ARMOTDMI processor core implements a v4T ARM
architecture like the ARM7TDMI

*Executes the ARM 32-bit instruction set and the compressed
Thumb 16-bit instruction set

Fully code compatible to the ARM7TDMI, with two
differences:

1.Better handling of the Data Abort exceptions that occurs during a
memory access — Base registeris restored to the original value
before the exception occurs.

2.Fully implements the instruction set extension space — provides
the flexibility to emulate additional instruction sets triggered through
the Undefined exception.

Programmer’ s Model

The Programmer’ s Model describes the features of
the processor available to the programmer:

*What are the registers available
*How codes are stored in the memory
*How different data types are handled

*What instructions are available to manipulate the
processing of data

(Usually best understood through a processor
instruction set presented at the lowest level, i.e.,
assembly language)

Memory Format

The ARM is a 32-bit architecture.

When used in relation to the ARM:
= Nybble means 4 bits (Halfbyte-one Hex digit)
= Byte means 8 bits
= Halfword means 16 bits

= Word means 32 bits (four bytes, Word definition varies for diff.
processors, eg. Intel 8088 is 8, 8086 is 16, 80486 is 32, Coldfire is 16)

Most ARM’s implement two instruction sets
= 32-bitARM Instruction Set
= 16-bit Thumb Instruction Set

Jazelle cores can also execute Java bytecode

Memory Format

The 32-bit v4T ARM processors access memory in
word aligned format

*Stored in groups of four bytes in an ascending memory
order
— The first data will correspond from byte 0 to byte 3 in
the memory
— The second data will be stored from byte 4 to byte 7

Data can be in the endian format (i.e., bi-endian)
31 24 23 16 15 8 7 0
Word at address A
Halfword at address A+2 [Halfword at address A
Byte at address A+3 | Byte at address A+2 | Byte at address A+1 Byte at address A

Addresses used for a little-endian word

Data Types

The 32-bit v4T ARM processors support data types
of the following sizes with the proper boundary
alignmentin the memory:
*32-bit words
— Aligned to four byte boundaries, with the lowest
two address bits equal to zero (xxxxxx00Db)
*16-bit half-words
— Aligned to two byte boundaries, with the lowest
address bit equal to zero (xxxxxxx0b)
8-bit bytes
— Can be placed on any byte boundary

Processor Operating States

The v4T based ARM processor has two operating states
(don’ t confuse states with modes):
1.ARM state
— Executes 32-bit word aligned ARM instructions
2.Thumb state
— Executes 16-bit half-word aligned Thumb instructions

The two states can be switched through the BX (Branch
and Exchange) instruction.

As all exception handlings are performed in the ARM
state, processors in the Thumb state will change to the
ARM state when any exception occurs and revert back
to the Thumb state on return.

Processor Operating Modes

The v4T-based ARM processor has seven operating
modes that are further classified into Non-Privileged (1)
mode and Privileged mode (6)

1.Non-Privileged mode
—User

2.Privileged modes
—System

—Supervisor

-FIQ

-IRQ

—Abort

—Undefine

Processor Operating Modes Explained

= The ARM has seven basic operating modes:

= User: unprivileged mode under which most tasks run

= FIQ : entered when a high priority (fast) interrupt is raised
(eg. fast response-battery drained-save registercontentto memory)

= |RQ : entered when a low priority (normal) interrupt is raised
(eg. slowerresponse-userhas pressed a button)

= Supervisor: entered on reset and when a Software Interrupt
instruction is executed
= Abort: used to handle memory access violations
(violations cause a type of interrupt sometimes called a “trap” or
“exception”)

= Undef: usedto handle undefined instructions

= System : privileged mode using the same registers as user mode
20

Processor Operating Modes (cont’ d)

User mode
The usual processor mode used when executing a program

Switch to the one of the other modes when exception occurs.
(For example, when an IRQ interrupt occurs)

System mode

A privileged user mode; share the same register set as those
of the User mode. But allows, for example, enabling and
disabling of FIQ and IRQ interrupt

Useful for implementing nested priority interrupt system, and
executing with an operating system

21

Processor Operating Modes (cont’ d)

Supervisor (SVC) mode
The default mode entered on reset and SWI exception

No restriction to the access of hardware, which is needed
during boot up in order to initialize the processor and system

Normally, this is the mode the processoris in when an
operating systemis operating in its Protected mode

Fast Interrupt (FIQ) mode
Entered through the nFIQ exception

Use for fastinterrupt response. For example, to support data
transfer or channel process

22

Processor Operating Modes (cont’ d)

5. Interrupt (IRQ) mode

— Entered through the lower priority interrupt

— Use for general-purpose interrupt handling from peripheral and
external signal sources

6. Abort mode
— Entered through either Data Abort or Prefetch Abort exception

— Triggered by invalid memory access violation (data or
instruction prefetch access)

7. Undefined mode
— Entered when an undefined instruction is encountered

— Can be useful for the software emulation of hardware

23

Processor Registers

The v4T based processor has a total of 37 registers
that are selectively made available dependingon
the operating modes and states of the processor.
These include:

« 30 general-purpose registers
» Six status registers
* One program counter

The registers are arranged in an overlapped bank

* some registers are shared among different operating
modes

24

Processor Registers

» General-purpose Registers
— 32 bits wide (one word)
— arranged in partially overlapping banks

* This means, at an instantin time, a programmer sees 15
(rO through r14), 1 or 2 status registers, and the PC (or
r15)

— Always have the same names (r0-r14, etc) but
Physically different depending on the MODE

— r3 may contain something DIFFERENT after a

« Why “Swap” or “Bank Out” Registers?

25

ARM Registers by State

System and User FlQ Supervisor Abort IRG Undefined

) 1 r0 i ro 0 L]

r 2 r rl r r r

2 3 r2 2 r2 r” 2

(] 4] (3 ra 5] 3

r4 5 rd ™ rd 4 4

rs 6 rs 5 rs 5]

6 7 6 % 6 6 s

7 8 7 7 7 7 T

8 9 Bfq 16 8 8 8 8

9 10 [y 17 9]] &

10 11 0 fig 18 Ao 1o fo Ao

1 12 M_fig 19 M r11 r1 r1

rz 13 M2 fig 20 rz rz rz rz

M3 14 ra_fiqg 21 M3 sw 23 r13_abt 25 rMa_irg 27 rM3_und 29

ri4 15 ri4_fig 22 r4_swc 24 ri4_abt 26 r4_irg 28 r4_und 30

r5{PC) 1 r3 (PC) r5 (FC) | r15 (PC) r5(FC) r5(PC)

ARM-state program status registers
| oPSR 1 CPSR CPSR | opsr CPSR CPSR

SPSR_fig2 SPSR swc3 SPSR_abt 4 SPSR_img 5 SPSR_und 6

L = banked register
26

ARM Register File

Current Visible Registers

Abort Mode

Banked out Registers

User FIQ IRQ SVC Undef

r8

r9
rl0
rll

rl2

rl3 (sp) rl3 (sp) rl3 (sp)
rld (lr) rld (1r) rld (lr)

cpsr

EENC TSN]

27

Register r0 to r15 and Special Uses

In the ARM state, 16 registers, plus one or two
Status Registers, are visible in any of the operating
modes.

Registers rO to r15 are directly accessible in all the
modes:

* r0 to r112: used for general purposes, holding either
data or addresses

* r13: used as the Stack Pointer (SP)

* r14: typically used as the return address Link
Register (LR) in subroutine and branch link operations

* r15: always used as the Program Counter (PC)

NOT FULLY ADHERING TO PURE RISC PHILOSOPHY

28

Program Counter (PC or r15) Register

» Keeps track of current instruction (IP in x86
architecture)

« Can be implemented differently is various
architectures

 lllustrated with Fetch/Decode/Execute Pipeline:

ARM THUMB
PC PC

PC-4 PC-2

PC-8 PC-4

29

Program Counter (PC or r15) Register

= When the processoris executing in ARM state:
= All instructions are 32 bits wide
= All instructions must be word aligned

= Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as instruction
cannot be halfword or byte aligned)

= When the processoris executing in Thumb state:
= All instructions are 16 bits wide
= All instructions must be halfword aligned

= Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as instruction
cannot be byte aligned)

= When the processoris executing in Jazelle state:
= All instructions are 8 bits wide
= Processor performs a word access to read 4 instructions at once

30

Current Program Status Register

Current Program Status Register (CPSR):

» Contain current state information of processor

» Contains the condition code flags of the most recently performed
ALU operation

» Controls (enable/disable) the interrupts

» Controls (set) the processor mode

Shared among all the operating modes

Condition
code flags Reserved Control bits
| | |
[[[|
31 30 29 28 27 26 2524 23 8 76 5 43 2 10
‘N[zlc[v[lLlIIFlTIM4M3IMZIM1lMO‘
Overflow Mode bits
Carry or borrow or extend State bit
Zero FIQ disable
Negative or less than IRQ disable

31

Program Status Registers

31 28 27 24 23 16 15 8 7 6 5 4 0
N|Z|C|VQ J U n d e f£f|Ji n e d IIFT |m|°d|e|
£ s X c
= Condition code flags = |nterrupt Disable bits.
= N = Negative result from ALU = | =1: Disables the IRQ.
= Z = Zero result from ALU = F =1: Disables the FIQ.
= C =ALU operation Carried out
= V =ALU operation oVerflowed = T Bit
= Architecture xT only
= Sticky Overflow flag - Q flag = T =0: Processorin ARM state
= Architecture 5TE/J only = T=1:Processorin Thumb state
= Indicates if saturation has occurred
= Mode bits
= J bit = Specify the processor mode

= Architecture 5TEJ only

= J=1: Processorin Jazelle state
(processor executes Java Bytecode)

32

CPSR Bit Settings

Mode bits (M4—MO) determines the processor
operating modes

schanges automatically when entering the exception privileged
modes of different processors

scan be changed through software instruction when in any of the
privileged mode (e.g., for nested interrupt support)

Mode Bit settings (M4-M0)

USER mode: 10000b SYS mode: 11111b
FIQ mode : 10001b IRQ mode: 10010b
SVC mode: 10011b ABORT mode: 10111b
UNDEFINE mode: 1100b

33

CPSR Bit Settings (cont’ d)

Conditional code flags (N, Z, C, V)

« usually affected during the arithmetic and logical
operations

« can also be changed by MSR and LDM instructions

Control bits F and | enable/disable the FIQ and IRQ
« setting the | bit disables the IRQ interrupt
« setting the F bit disables the FIQ interrupt

State bit T reflects the processor operating state
* when set, it indicates the processor is in the Thumb state

 when clear, it indicates the processor is in the ARM state

34

Vector Table

EXCEPTION VECTORS
EXCEPTIONTYPE MODE VECTORADDRESS
Reset SVC 0x00000000
Undefined Instructions | UNDEF 0x00000004
Software Interrupt SVC 0x00000008
(SWI)
Prefetch Abort ABORT 0x0000000C
(instruction fetch
memory abort)
Data Abort ABORT 0x00000010
(data access memory
abort)
IRQ (interrupt) IRQ 0x00000018
FIQ (fast interrupt) FlQ 0x0000001C

35

Saved Program Status Registers

Saved Program Status Register (SPSR):

*Only available when operating in the privileged mode (i.e.,
except user mode)

*Contains the condition code flags and mode bits that allow
entry to the privileged mode (i.e., during exception
handling)

There are five SPSRs: one for each of the five privileged
operating modes (except the system mode)

*Used to preserve the value of the CPSR when switching
modes

« Since User and System mode are not entered during an
exception, they have no SPSR

« Attempting to read SPSR while in User/System mode,
unpredictable result occurs, writes are ignored

36

What happens during an Exception?

= When an exception occurs, the ARM:
= Copies CPSR into SPSR_<mode>
= Sets appropriate CPSR bits :
= Change to ARM state 0x1C FIQ

= Change to exception mode ox18 IRQ
. .) . 0x14 (Reserved)
= Disable interrupts (if appropriate) 010 Data Abort
= Stores the return address in LR_<mode> oxoc Prefetch Abort
= Sets PC to vector address 0x08 Software Interrupt
. 0x04 Undefined Instruction
= To return, exception handler needs to: Reset
= Restore CPSR from SPSR_<mode> Vector Table
= Restore PC from LR_<mode> Vector table can be at
. . OxFFFF0000 on ARM720T
This can only be done in ARM state. and on ARM9/10 family devices

37

ARM Application Procedure Call
Standard (AAPCS)

ARM Application Procedure Call Standard (AAPCS)

« defines a standard way of how registers are used in a typical
program that is coded with routines, functions, and procedures

Examples:

* r0—r3: use to pass arguments and return results between
routines call

. r4 —r8, r10 and r11: use for local variables of each routine

* r12:use as scratchpad register

Hence, routines must preserve contents of r4—r8, r10,
and r11, usually by saving onto the stack.

38

ARM Application Procedure Call
Standard (AAPCS)

Register

The compiler has a set of rules known as a
Procedure Call Standard that determine how to
pass parameters to a function (see AAPCS)

Arguments into function
Result(s) from function
otherwise corruptible
(Additional parameters
passed on stack)

CPSR flags may be corrupted by function call.
Assembler code which links with compiled code
must follow the AAPCS at external interfaces

The AAPCS is part of the new ABI for the ARM

Register variables Architecture

Must be preserved
- Stack base
- Stack limit if software stack checking selected

Scratch register
(corruptible)

Stack Pointer rl3/sp | - SP should always be 8-byte (2 word) aligned
Link Register rl4/1lxr | -R14 can be used as a temporary once value stacked
Program Counter rl5/pc

39

Banked Registers

Most of the registers in the ARM states are shared
across different operating modes

*The same registers are used in all modes.

*The content must be saved first if the value needs to
be preserved.

Banked registers are separate physical registers
that are swappedin and out when switching modes

*Allow the immediate use of registers without saving the
content first.

40

Banked Registers (cont’ d)

System and User Fla Supervisor Abort IR Undefined
1] r0 L] r0 0 L]
r 1 r 1 r rl
r2 r2 2 r2 2 2
r3 r3] r3] 3
rd r4 4 r4 i 4
5 r5] r5 5]
] 6 L] 6] L]
7 7 7 7 7 7
rg r8_fiq i ré B B
9 r9 fig] ra 9 9
ro r10_fig rd ro o r
ri1 r11_fig 1 r11 r1 i1
2 r12_fig r2 r2 rz2 r2
r13 r13 fig r3_swc r1d_abt r13 irg r3_und
4 r4 fig ri4 sve r14 abt r4 irg r4_und
r15 {PC) r15 [PC) r5 (PC) | r15 (PC) 5 (PC) 5 (PC)

ARM-state program status registers
| cesr CPSR CPSR [cesr CPSR CPSR
SPSR_fig SPSR_swvc N.Psn_a bt SPSR_ing SPSR_und
= banked register

Banked Registers (cont)

Notes:

1. Different banks of r13 and r14 registers (used as the
Stacker pointer and Link register) are always
swapped when the operating mode changes.

2. SPSRs are always available as banked registers.

3. FIQ mode (Fast interrupt) contains the largest
banked register, which allows immediate access to
‘fresh’ r8 to r14 when entering this interrupt mode.

(Discussion: What is the advantage?)

ARM Core Pipelines

ARM7TDMI

g shit ALU (R€9
FETCH DECODE EXECUTE
ARMOTDMI
Shift + ALU e
FETCH DECODE EXECUTE MEMORY WRITE

43

ARM Core Pipelines (cont)

ARM10
Branch
... ARM or .
Prediction Thumb Shift + ALU
Instruction Instruction
Fetch Decode Multiply
FETCH ISSUE DECODE EXECUTE MEMORY WRITE
ARM11

Shift ALU Saturate

Data Data
Address Cache Cache

1 p

Superscalar Architecture “

The Thumb Processor State

45

Thumb Instruction Set

To reduce the higher memory footprint generally
associated with RISC-based architecture

*ARM also provides 16-bit instructions: the Thumb instruction
set

Can pack two Thumb instructions in one 32-bit memory
location

*i.e., more instructions can be stored in the same memory
device

Can use 16-bit data width memory device
*lowers the component cost

Hence, less memory means lower cost and lower
operating power.

46

THUMB Instructions

The Thumb instruction set is a subset of the 32-bit ARM
instruction set

*Some of the of 32-bit ARM instructions are not available
when operating in THUMB state.

For codes that cannot be implemented with the THUMB
instructions
*Two cycles are needed to fetch a single 32-bit instruction.

Additional constraint

*Restrictions in some of the instructions when used in the
Thumb state. (e.g., Branches have a shorter range)

*Some of the registers cannot be used

47

Thumb State Registers

The Thumb state provides a subset of the ARM-state
registers:

Eight general purpose registers r0 to r7 (also known as the
low registers)

*SP register (banked in all modes)

LR register (banked in all modes)

*PC register

*CPSR register

*SPSR (banked for the privileged modes)

The high registers r8 to r15 are generally not accessible
when in the Thumb state (except for the three
instructions MOV, ADD, and CMP).

48

Thumb-State Registers (cont’ d)

System and User FlQ Supervisor Abort IRQ Undefined
rQ r0 rQ r0 0 r0
ri r ri r1 ri r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 rd r4 rd4 r4 r4
rs rs rs rs rs rs
ré ré ré ré ré ré
7 7 7 r7 7 r7
SR SP fig SP sve SP abt SP ing SP und
LR LR_fig LR swc LR_abt LR irg LR _und
PC PC PC PC PC PC
Thumb-state program status registers
| CPSR CPSR CPSR CPSR CPSR CPSR
SPSRE_fig SPSR_svc SPSR_abt SPSR_irg SPSR_und

I\ = banked register

49

Switching Between States

The ARM processor starts up in ARM state on reset

» Switching between the Thumb state and the ARM state is
accomplished through the instruction

BX Rn (Branch and Exchange)

where Rn contains the destination address

When in the Thumb state

« Status bit ‘T’ of the CPSR will be set to 1

50

Unified Memory Address

The v4T ARM uses a unified memory space with the
32-bit address bus;

*hence, the total addressable memory space:
232_1=4GB

Memory and peripherals of specific functions are

mapped in various addresses within the 4 GB address
space;

*but certain address ranges are usually not utilized in
typical implementation — indicated as RESERVED

51

