Embedded System-Operating System

* Use of an OS or Monitor can Aid in Implementation
— Increased Cost and Licensing
— Increases Memory Footprint

— Allows for Easier Extensions/Modifications to ES
Software

* If OS not Used:

— Controlling ES Program Must be Loaded through an
Event such as Assertion of RESET

— eg. RESET Asserted, Reset Interrupt Vector Points to
Control Program Entry Point which is “INIT” State of SM

— Control Program SM has no “Halting State”

When to use an RTOS

» Typically used When ES has Several Concurrent Tasks

» Splitting up ES Software into Independent Parts can Simplify
System Complexity

» Concurrency, Timing, and Synchronization can be Challenging
(but doable)

* You might want to use an RTOS if:

— ES Software more Natural as Implemented in Set of Tasks
or Concurrent Activities

— Need Different Activities to Occur at Different Times, and
they Initiate Based on “Events” (not static sched.)

— Need to Prioritize Tasks
— Anticipate Adding New Tasks to ES in Future
— Lots of Timing (RT) Involved

3/29/13

Keil RL-RTX

Need to Include rtl.h Header File in C Program
Provides Access to RTX Functions

Can Create RT ES Without RTOS, but RTOS
Provides Access to

— 1/0 Allocation

— Scheduling

— Maintenance

— Timing

RTX Enables Flexible Scheduling of Resources
Such as CPU and Memory

Provides Methods to Communicate Between
Tasks s

RTX Interprocess Communication

Event Flags
— Primary Instrument for Task Communication
— Each Task has 16 Flags Assigned to it

— Task “Waits” for Flag Events to Execute
+ All Selected Flags (AND-connection)
* Any One of Selected Flags (OR-connection)

Event Flags Set by Other Tasks or by an ARM
Interrupt

Synchronize to External Event by Making an ARM
Interrupt Set a Flag

3/29/13

The Dining Philosophers

Classic Problem in Task Synchronization

Each Philosopher must Alternately Dine and
Think (Task Processes data and Access I/0
Device)

Each Fork can Only be Held by One Philosopher
and they Need Two of them to Eat

The Philosopher can Grab a Fork if it is not Being
Held by Another

There is an Infinite Supply of Spaghetti

The Problem is how to let all Philosophers think
and eat Fairly-One Solution is to use Semaphores

5

Dining Philosophers

3/29/13

Dining Philosophers - Allocated

Dining Philosophers - Deadlocked

3/29/13

Semaphores

Used When More than One Task Needs Access
to a Single Common Resource

eqg, if 2 tasks assigned to process 2 different
sensors and each task must output to common
device, need a means to prevent both tasks from
attempting to output to common device at same
time

Can Cause Unexpected Behavior or DEADLOCK
— Dining Philosopher’s Problem

Binary Semaphores are Data Objects Containing
a Virtual Token

Details on Semaphores in OS Class (CSE 5343)

MUTEX Blocks

Concept of “Mutual Exclusion” can be Used for Process
Synchronization

Keil RTX Provides MUTEX Block Services

MUTEX is Software Object used by a Task to “Lock” a
Common Resource

OS Kernel Blocks all Tasks for using a Common
Resource until Original Locking Task Releases it
When Task Needs Resource, it Attempts to Acquire it and
if Available it “Locks” Resource using a MUTEX

Task Must Wait Until Resource is Available “Unlocked” to
Acquire Control

— can be tricky when there are Real-time Deadlines

— uses concept of “time out” and task priorities

3/29/13

The “Talking Stick”

aka “Speaker’s Staff’ an Instrument of
Aboriginal Democracy

Talking Stick Passed Around a Group as
Symbol of Authority and Right to Speak
Enables Everyone the Right to “Speak”
Stick is Passed Around Group
(Scheduling)

Order of Passing it Around Indicates
Priority

Person Holding Stick May Choose to Give

it to Someone Temporarily and They must

Give it Back after they have Spoken
— One Task Signals Another

Mailboxes

Each Task can have a Mailbox to Receive Messages from
other Tasks

Message is Typically a Pointer to a Block of Memory
containing a data frame

— system designer has responsibility to allocate/deallocate the
memory when task processes message (not RTX)

RTX Kernel puts Waiting Task to Sleep if there is
no Message

RTX Kernel “wakes up” Task whenever it
Receives a Mailbox Message from another Task

3/29/13

RL-ARM Technical Data

Description

Defined Tasks

Active Tasks
Mailboxes
Semaphores

Mutexes

Signals / Events

User Timers

Code Space

RAM Space for Kernel

RAM Space for a Task

RAM Space for a Mailbox
RAM Space for a Semaphore
RAM Space for a Mutex

RAM Space for a User Timer
Hardware Requirements
User task priorities

Task switch time

Interrupt lockout time

ARM7™/ARM9™
Unlimited

250 max
Unlimited
Unlimited
Unlimited

16 per task
Unlimited

<4.2 Kbytes

300 bytes +
80 bytes User Stack

TaskStackSize + 52 bytes
MaxMessages * 4 + 16 bytes
8 bytes

12 bytes

8 bytes

One on-chip timer

1-254

<5.3 psec @ 60 MHz

<2.7 psec @ 60 MHz

Cortex™-M
Unlimited
250 max
Unlimited
Unlimited
Unlimited
16 per task
Unlimited
<4.0 Kbytes

300 bytes +
128 bytes Main Stack

TaskStackSize + 52 bytes
MaxMessages * 4 + 16 bytes
8 bytes

12 bytes

8 bytes

SysTick timer

1-254

<2.6 ysec @ 72 MHz

Not disabled by RTX

RL-ARM Timing Data

Function

Initialize system (os_sys_init), start task

Create task (no task switch)
Create task (switch task)
Delete task (os_tsk_delete)

Task switch (by os_tsk_delete_self)

Task switch (by os_tsk_pass)

Set event (no task switch)
Set event (switch task)

Send semaphore (no task switch)
Send semaphore (switch task)
Send message (no task switch)

Send message (switch task)

Get own task identifier (os_tsk_self)

Interrupt lockout

ARM7™ /ARM9™ Cortex™-M
(cycles) (cycles)
1721 1147
679 403
787 461
402 218
458 230
321 192
128 89
363 215
106 72
364 217
218 117
404 241
23 65

<160 0

3/29/13

3/29/13

Example RTX Application

» Taken from Folder:
\Keil\ARM\RL\RTX\Examples\RTX exl

» ES Application Divided into Two Activities
— Activity 1: Continuously Repeats every 50ms
— Activity 2: Repeats 20ms after Activity 1 completes

« Each Activity Task Processing is in Separate C
Function uses __task Defined in RTL.H

__ task void taskl (void) {
// place code of task 1 here
}

__task void task2 (void) {
// place code of task 2 here
} 15

Example RTX Application (cont)

* Main Function Must Invoke the RTX Kernel Initially
os_sys_init
* Need to Pass Task Function Name to Kernel as Argument
of os_sys_init
— This Starts the Execution of the Task

* In Example, Initialize task1 and then task1 Initializes
task2 using
os_task_create

void main (void) {
os_sys_init (taskl);
}
__task void taskl (void) {
os_tsk_create (task2, 0);
// place code of task 1 here
}

Implement Timing

» Code for Each Task is in Form of Infinite Loop

* When taskl Finishes, it Sends a Signal to task2 and
Waits (os_dly wait) for it to Complete

+ RTX Kernel uses on-chip HW Timer and Programs it
Directly based on os_dly wait Arguments
— Default is Timer 0 with Each Time Interval=10ms
— Can Configure to use Different Timers and Intervals

* Canuse os_evt _wait or to Make taskl Wait
for task2 to Complete

+ Can use os_evt_set to Send Signal (Event) to
task2
— example uses bit 2 (position 3) of Event Flags

Example Code

/* Include type and function declarations for RTX. */
#include <rtl.h>

/* idl, id2 will contain task identifications at run-time. */
OS_TID idl, id2;

/* Forward declaration of tasks. */
__task void taskl (void);
__task void task2 (void);

void main (void) {
/* Start the RTX kernel, and then create and execute taskl.
os_sys_init(taskl);

}

*/

3/29/13

Example Code

__task void taskl (void){
/* Obtain own system task identification number. */
idl = os_tsk_self();

/* Create task2 and obtain its task identification number.

id2 = os_tsk_create (task2, 0);

for (;;) { //infinite loop
/* ... place code for taskl activity here ... */

/* Signal to task2 that taskl has completed. */
os_evt_set(0x0004, id2);

/* Wait for completion of task2 activity. */
/* OXxFFFF makes it wait without timeout. */
/* 0x0004 represents bit 2. */
os_evt_wait_or (0x0004, OxFFFF);

/* Wait for 50 ms before restarting taskl activity. */
os_dly wait(5);

*/

Example Code

__task void task2 (void) {
for (;:) { //infinite loop
/* Wait for completion of taskl activity. */
/* OXFFFF makes it wait without timeout. */
/* 0x0004 represents bit 2. */
os_evt wait_or (0x0004, OxFFFF)

/* Wait for 20 ms before starting task2 activity. */
os_dly wait(2);

/* ... place code for task2 activity here ... */

/* Signal to taskl that task2 has completed. */
os_evt_set(0x0004, idl);

20

3/29/13

10

Using Keil MDK

* To Compile and Link with RTX

— select RTX operating system for the Project
Project —Options for Target

— Select Target tab
— Select RTX Kernel for Operating System
— Build Project to Generate absolute File

« Can Run Project (object file output)
—on the Target (the ARM board)
—on the pVision Simulator

21

RTX Functions (9 Classes)

« Event Flag Management

* Mailbox Management

* Memory Allocation Functions
* Mutex Management

» Semaphore Management

« System Functions

» Task Management

* Time Management

» User Timer Management

22

3/29/13

1

RTX Functions (9 Classes)

Event Flag Management
Mailbox Management
Memory Allocation Functions
Mutex Management
Semaphore Management
System Functions

Task Management

Time Management

User Timer Management

23

RTX Functions (9 Classes)

Event Flag Management
Mailbox Management
Memory Allocation Functions
Mutex Management
Semaphore Management
System Functions

Task Management

Time Management

User Timer Management

24

3/29/13

12

Lab 6 RTX Functions

- os_tsk create creates/starts new task

* os_dly wait pauses calling task

* os_evt set sets an event flag

- os_evt wait and waits for event flags to be set
« os_mut init initializes a MUTEX object

- os_mut release releases a MUTEX object

« os_mut wait waits for MUTEX object to
become available

25

os_mu t_ini t

* Initializes a MUTEX Object Specified by Funciton
Argument

+ MUTEX Object is of Type 0S_MUT

#include <rtl.h>
void os_mut_init (
OS_ID mutex) ; /* The MUTEX to initialize */

+ Type 0s_1ID Identifies an Object (defined in rtl.h)

typedef void *OS_ID; // System calls returning an
// object identification

+ Example:

#include <rtl.h>
void os_mut_init (
O0S_ID mutex); /* The mutex to initialize */

3/29/13

13

3/29/13

os mut_ init Example

+ Example Code for Initializing a MUTEX Block

#include <rtl.h>
OS_MUT mutexl;
__task void taskl (void) ({

os mut init (&mutexl);

27

os_mut_release

* This Function Decrements Internal MUTEX Counter
Specified by Function Argument

* When Internal Counter Value Reaches Value of Zero,
MUTEX is Free to be Acquired by Another Task

+ MUTEX Object “knows” Which Task has it Currently
Locked

» Owning Task can Acquire/Lock MUTEX as Needed
through Call to os_mut_wait

+ If Task that Owns MUTEX Tries to Acquire it Again, the
Internal Counter is Incremented

28

14

os_mut release (cont)

e Task that Owns MUTEX must Release it Same
Number of Times that it was Acquired
— in order to decrement internal count to zero

* Interacts with Task Priority if Priority Inheritance
Feature is Used

» Function Returns a Value (One of):
OS_R OK MUTEX Successfully Released

OS_R NOK Error Occurred Because MUTEX Value
is Already Zero or Calling Task is not
Current MUTEX Owner

29

os_mut release Example

#include <rtl.h>

OS_MUT mutexl;
void f1 (void) {
os_mut_wait (&mutexl, Oxffff);

/* Critical region 1 */

/* £2() will not block the task. */
£2 ();
os_mut_release (&mutexl);

}

void £f2 (void) {
os_mut_wait (&mutexl, Oxffff);

/* Critical region 2 */
os_mut_release (&mutexl);

}

30

3/29/13

15

os_mut release Example (cont)

___task void taskl (void) {

os mut init (&mutexl);
£f1 ()’

}

__task void task2 (void) ({

£2 () ;

31

os_mu t_wai t

This Function Attempts to Acquire MUTEX Specified by
Function Argument

If MUTEX not Locked, Calling Task Acquires and Locks
Mutex

If MUTEX Locked, RTX Kernel puts Calling Task to Sleep
Until

— MUTEX Becomes Unlocked OR

— A timeout Value is Exceeded

Function Temporarily Raises Priority of Task
Owning MUTEX if Lower than Priority of Calling
Task

— This is priority inheritance

32

3/29/13

16

os mut wait timeout Values

« timeout Argument has a Value [0x0, Oxf££f]

— 0x0 Value Allows Calling Task to Acquire
MUTEX Even if Higher Priority Task in the
Ready List

- Oxf£f££f Indicates timeout Value is Infinite
(dangerous)

- 0x1 through Oxfffe Assign a Finite Value to
timeout which causes task to Release MUTEX
upon Expiration

* timeout Measured in Units of System

Intervals

— default value is 10ms w

os_mut wait (cont)

» Function Returns a Value (One of):
OS_R MUT MUTEX Successfully Acquired & Locked
OS_R TMO timeout has Expired

O0S_R OK MUTEX was Available and Function
Returned to Calling Task Immediately

34

3/29/13

17

os_mut wait Example

#include <rtl.h>

OS_MUT mutexl;

void f1 (void) {

os_mut_wait (&mutexl, Oxffff);
/* Critical region 1 */
/* £2() will not block the task. */

£2 ();
os_mut_release (&mutexl);

35

os_mut wait Example

void £2 (void) {

}

os_mut_wait (&mutexl, Oxffff);
/* Critical region 2 */

os_mut_release (&mutexl);

__task void taskl (void) {

os_mut_init (&mutexl);
f1 (O

_ task void task2 (void) {

£2 ();

36

3/29/13

18

