
3/29/13

1

1

Embedded System-Operating System

•  Use of an OS or Monitor can Aid in Implementation
–  Increased Cost and Licensing
–  Increases Memory Footprint
–  Allows for Easier Extensions/Modifications to ES

Software
•  If OS not Used:

–  Controlling ES Program Must be Loaded through an
Event such as Assertion of RESET

–  eg. RESET Asserted, Reset Interrupt Vector Points to
Control Program Entry Point which is “INIT” State of SM

–  Control Program SM has no “Halting State”

2

When to use an RTOS
•  Typically used When ES has Several Concurrent Tasks
•  Splitting up ES Software into Independent Parts can Simplify

System Complexity
•  Concurrency, Timing, and Synchronization can be Challenging

(but doable)
•  You might want to use an RTOS if:

–  ES Software more Natural as Implemented in Set of Tasks
or Concurrent Activities

–  Need Different Activities to Occur at Different Times, and
they Initiate Based on “Events” (not static sched.)

–  Need to Prioritize Tasks
–  Anticipate Adding New Tasks to ES in Future
–  Lots of Timing (RT) Involved

3/29/13

2

3

Keil RL-RTX

•  Need to Include rtl.h Header File in C Program
•  Provides Access to RTX Functions
•  Can Create RT ES Without RTOS, but RTOS

Provides Access to
–  I/O Allocation
–  Scheduling
–  Maintenance
–  Timing

•  RTX Enables Flexible Scheduling of Resources
Such as CPU and Memory

•  Provides Methods to Communicate Between
Tasks

4

RTX Interprocess Communication

•  Event Flags
–  Primary Instrument for Task Communication
–  Each Task has 16 Flags Assigned to it
–  Task “Waits” for Flag Events to Execute

•  All Selected Flags (AND-connection)
•  Any One of Selected Flags (OR-connection)

•  Event Flags Set by Other Tasks or by an ARM
Interrupt

•  Synchronize to External Event by Making an ARM
Interrupt Set a Flag

3/29/13

3

5

The Dining Philosophers

•  Classic Problem in Task Synchronization
•  Each Philosopher must Alternately Dine and

Think (Task Processes data and Access I/O
Device)

•  Each Fork can Only be Held by One Philosopher
and they Need Two of them to Eat

•  The Philosopher can Grab a Fork if it is not Being
Held by Another

•  There is an Infinite Supply of Spaghetti
•  The Problem is how to let all Philosophers think

and eat Fairly-One Solution is to use Semaphores

6

Dining Philosophers

3/29/13

4

7

Dining Philosophers - Allocated

8

Dining Philosophers - Deadlocked

3/29/13

5

9

Semaphores
•  Used When More than One Task Needs Access

to a Single Common Resource
•  eg, if 2 tasks assigned to process 2 different

sensors and each task must output to common
device, need a means to prevent both tasks from
attempting to output to common device at same
time

•  Can Cause Unexpected Behavior or DEADLOCK
–  Dining Philosopher’s Problem

•  Binary Semaphores are Data Objects Containing
a Virtual Token

•  Details on Semaphores in OS Class (CSE 5343)

10

MUTEX Blocks
•  Concept of “Mutual Exclusion” can be Used for Process

Synchronization
•  Keil RTX Provides MUTEX Block Services
•  MUTEX is Software Object used by a Task to “Lock” a

Common Resource
•  OS Kernel Blocks all Tasks for using a Common

Resource until Original Locking Task Releases it
•  When Task Needs Resource, it Attempts to Acquire it and

if Available it “Locks” Resource using a MUTEX
•  Task Must Wait Until Resource is Available “Unlocked” to

Acquire Control
–  can be tricky when there are Real-time Deadlines
–  uses concept of “time out” and task priorities

3/29/13

6

11

The “Talking Stick”
•  aka “Speaker’s Staff” an Instrument of

Aboriginal Democracy
•  Talking Stick Passed Around a Group as

Symbol of Authority and Right to Speak
•  Enables Everyone the Right to “Speak”
•  Stick is Passed Around Group

(Scheduling)
•  Order of Passing it Around Indicates

Priority
•  Person Holding Stick May Choose to Give

it to Someone Temporarily and They must
Give it Back after they have Spoken

–  One Task Signals Another

12

Mailboxes
•  Each Task can have a Mailbox to Receive Messages from

other Tasks
•  Message is Typically a Pointer to a Block of Memory

containing a data frame
–  system designer has responsibility to allocate/deallocate the

memory when task processes message (not RTX)

•  RTX Kernel puts Waiting Task to Sleep if there is
no Message

•  RTX Kernel “wakes up” Task whenever it
Receives a Mailbox Message from another Task

3/29/13

7

13

RL-ARM Technical Data

14

RL-ARM Timing Data

3/29/13

8

15

Example RTX Application
•  Taken from Folder:

 \Keil\ARM\RL\RTX\Examples\RTX_ex1
•  ES Application Divided into Two Activities

–  Activity 1: Continuously Repeats every 50ms
–  Activity 2: Repeats 20ms after Activity 1 completes

•  Each Activity Task Processing is in Separate C
Function uses __task Defined in RTL.H

__task void task1 (void) {
 // place code of task 1 here
}

__task void task2 (void) {
 // place code of task 2 here
}

16

Example RTX Application (cont)
•  Main Function Must Invoke the RTX Kernel Initially

 os_sys_init
•  Need to Pass Task Function Name to Kernel as Argument

of os_sys_init
–  This Starts the Execution of the Task

•  In Example, Initialize task1 and then task1 Initializes
task2 using

 os_task_create

void main (void) {
 os_sys_init (task1);
}
__task void task1 (void) {
 os_tsk_create (task2, 0);
 // place code of task 1 here
}

3/29/13

9

17

Implement Timing
•  Code for Each Task is in Form of Infinite Loop
•  When task1 Finishes, it Sends a Signal to task2 and

Waits (os_dly_wait) for it to Complete
•  RTX Kernel uses on-chip HW Timer and Programs it

Directly based on os_dly_wait Arguments
–  Default is Timer 0 with Each Time Interval=10ms
–  Can Configure to use Different Timers and Intervals

•  Can use os_evt_wait_or to Make task1 Wait
for task2 to Complete

•  Can use os_evt_set to Send Signal (Event) to
task2
–  example uses bit 2 (position 3) of Event Flags

18

Example Code

/* Include type and function declarations for RTX. */
#include <rtl.h>

/* id1, id2 will contain task identifications at run-time. */
OS_TID id1, id2;

/* Forward declaration of tasks. */
__task void task1 (void);
__task void task2 (void);

void main (void) {
 /* Start the RTX kernel, and then create and execute task1. */
 os_sys_init(task1);
}

3/29/13

10

19

Example Code

__task void task1 (void){
 /* Obtain own system task identification number. */
 id1 = os_tsk_self();

 /* Create task2 and obtain its task identification number. */
 id2 = os_tsk_create (task2, 0);

 for (;;) { //infinite loop
 /* ... place code for task1 activity here ... */

 /* Signal to task2 that task1 has completed. */
 os_evt_set(0x0004, id2);

 /* Wait for completion of task2 activity. */
 /* 0xFFFF makes it wait without timeout. */
 /* 0x0004 represents bit 2. */
 os_evt_wait_or(0x0004, 0xFFFF);

 /* Wait for 50 ms before restarting task1 activity. */
 os_dly_wait(5);
 }
}

20

Example Code

__task void task2 (void) {
 for (;;) { //infinite loop
 /* Wait for completion of task1 activity. */
 /* 0xFFFF makes it wait without timeout. */
 /* 0x0004 represents bit 2. */
 os_evt_wait_or(0x0004, 0xFFFF);

 /* Wait for 20 ms before starting task2 activity. */
 os_dly_wait(2);

 /* ... place code for task2 activity here ... */

 /* Signal to task1 that task2 has completed. */
 os_evt_set(0x0004, id1);
 }
}

3/29/13

11

21

Using Keil MDK

•  To Compile and Link with RTX
– select RTX operating system for the Project

 Project →Options for Target
– Select Target tab
– Select RTX Kernel for Operating System
– Build Project to Generate absolute File

•  Can Run Project (object file output)
– on the Target (the ARM board)
– on the µVision Simulator

22

RTX Functions (9 Classes)

•  Event Flag Management

•  Mailbox Management

•  Memory Allocation Functions

•  Mutex Management

•  Semaphore Management

•  System Functions

•  Task Management

•  Time Management

•  User Timer Management

3/29/13

12

23

RTX Functions (9 Classes)

•  Event Flag Management

•  Mailbox Management

•  Memory Allocation Functions

•  Mutex Management

•  Semaphore Management

•  System Functions

•  Task Management

•  Time Management

•  User Timer Management

24

RTX Functions (9 Classes)

•  Event Flag Management

•  Mailbox Management

•  Memory Allocation Functions

•  Mutex Management

•  Semaphore Management

•  System Functions

•  Task Management

•  Time Management

•  User Timer Management

3/29/13

13

25

Lab 6 RTX Functions

•  os_tsk_create creates/starts new task

•  os_dly_wait pauses calling task

•  os_evt_set sets an event flag

•  os_evt_wait_and waits for event flags to be set

•  os_mut_init initializes a MUTEX object

•  os_mut_release releases a MUTEX object

•  os_mut_wait waits for MUTEX object to
 become available

26

os_mut_init

•  Initializes a MUTEX Object Specified by Funciton
Argument

•  MUTEX Object is of Type OS_MUT
#include <rtl.h>
void os_mut_init (
 OS_ID mutex); /* The MUTEX to initialize */

•  Type OS_ID Identifies an Object (defined in rtl.h)
typedef void *OS_ID; // System calls returning an
 // object identification

•  Example:
#include <rtl.h>
void os_mut_init (
 OS_ID mutex); /* The mutex to initialize */

3/29/13

14

27

os_mut_init Example

•  Example Code for Initializing a MUTEX Block

#include <rtl.h>

OS_MUT mutex1;

__task void task1 (void) {
 ..
 os_mut_init (&mutex1);
 ..
}

28

os_mut_release

•  This Function Decrements Internal MUTEX Counter
Specified by Function Argument

•  When Internal Counter Value Reaches Value of Zero,
MUTEX is Free to be Acquired by Another Task

•  MUTEX Object “knows” Which Task has it Currently
Locked

•  Owning Task can Acquire/Lock MUTEX as Needed
through Call to os_mut_wait

•  If Task that Owns MUTEX Tries to Acquire it Again, the
Internal Counter is Incremented

3/29/13

15

29

os_mut_release (cont)

•  Task that Owns MUTEX must Release it Same
Number of Times that it was Acquired
–  in order to decrement internal count to zero

•  Interacts with Task Priority if Priority Inheritance
Feature is Used

•  Function Returns a Value (One of):
OS_R_OK MUTEX Successfully Released
OS_R_NOK Error Occurred Because MUTEX Value

 is Already Zero or Calling Task is not
 Current MUTEX Owner

30

os_mut_release Example

#include <rtl.h>

OS_MUT mutex1;
void f1 (void) {
 os_mut_wait (&mutex1, 0xffff);
 ..
 /* Critical region 1 */
 ..
 /* f2() will not block the task. */
 f2 ();
 os_mut_release (&mutex1);
}

void f2 (void) {
 os_mut_wait (&mutex1, 0xffff);
 ..
 /* Critical region 2 */
 ..
 os_mut_release (&mutex1);
}

3/29/13

16

31

os_mut_release Example (cont)

__task void task1 (void) {
 ..
 os_mut_init (&mutex1);
 f1 ();
 ..
}

__task void task2 (void) {
 ..
 f2 ();
 ..
}

32

os_mut_wait

•  This Function Attempts to Acquire MUTEX Specified by
Function Argument

•  If MUTEX not Locked, Calling Task Acquires and Locks
Mutex

•  If MUTEX Locked, RTX Kernel puts Calling Task to Sleep
Until
–  MUTEX Becomes Unlocked OR
–  A timeout Value is Exceeded

•  Function Temporarily Raises Priority of Task
Owning MUTEX if Lower than Priority of Calling
Task
–  This is priority inheritance

3/29/13

17

33

os_mut_wait timeout Values
•  timeout Argument has a Value [0x0, 0xffff]

– 0x0 Value Allows Calling Task to Acquire
MUTEX Even if Higher Priority Task in the
Ready List

– 0xffff Indicates timeout Value is Infinite
(dangerous)

– 0x1 through 0xfffe Assign a Finite Value to
timeout which causes task to Release MUTEX
upon Expiration

• timeout Measured in Units of System
Intervals
–  default value is 10ms

34

os_mut_wait (cont)

•  Function Returns a Value (One of):
OS_R_MUT MUTEX Successfully Acquired & Locked
OS_R_TMO timeout has Expired
OS_R_OK MUTEX was Available and Function

 Returned to Calling Task Immediately

3/29/13

18

35

os_mut_wait Example

#include <rtl.h>

OS_MUT mutex1;

void f1 (void) {
 os_mut_wait (&mutex1, 0xffff);
 ..
 /* Critical region 1 */
 ..
 /* f2() will not block the task. */
 f2 ();
 os_mut_release (&mutex1);
}

36

os_mut_wait Example

void f2 (void) {
 os_mut_wait (&mutex1, 0xffff);
 ..
 /* Critical region 2 */
 ..
 os_mut_release (&mutex1);
}

__task void task1 (void) {
 ..
 os_mut_init (&mutex1);
 f1 ();
 ..
}

__task void task2 (void) {
 ..
 f2 ();
 ..
}

