Universal Serial Bus
(USB)



USB ACRONYMS

USB — “Universal Serial Bus”

OTG — “On The Go” — similar concept to “Plug and Play” — allows a
host to change roles and act as a device

LS- - “Low Speed” — 1.5MB/s (v1.0) — (eg. joystick) — Low BW

FS — “Full Speed” — 12 Mb/s (v1.0) — (eq. disk drive) — Full BW

HS — “High Speed” - 480 Mb/s (v2.0)

SS — “Super Speed” — 5Gb/s (v3.0)

USB-IF — USB Implementers Forum (dev. 2.0 spec — HP, Intel, Lucent,
NEC, Philips)

UTMI — USB 2.0 Transceiver Macrocell Interface — standard
developed by Intel

UTMI+ - extension to UTMI incl support for OTG

ULPI — (UTMI+ Low Pin Interface) — standard developed for low-pin
count (12) discrete USB chip using the UTMI+ interface

— complete i/f also requires front-end PHY circuit



USB System

 Network of Attachments in Logical Star-like
Structure and Physical Tree-like Structure with
the Host at the Center/Root

Host

— @ @ Printer

Keyboard
[Mouse |

Figure 1(a) : The physical USB arrangement
Functions are joing to hubs in a star arrangement

IMouse | [Speakers |  [onitor]
Sindle connecting pus Host

[Keyboard]  [Printer] Modem |
~igure 1(b) : How the USB system appears to functions

http://www.geoffknagge.com/uni/elec101/essay.shtml



USB Terms in Standard

 Attachments are Functions or Hubs

* Functions — Peripheral devices like SS disk,
mice, keyboards

e Hubs — Converts one Port to Several Ports
e Hubs and Functions are both called Devices

Photo of a DLink USB Hub

http://www.bhphotovideo.com/bnh/controller/home?sku=403654&Q=&0=&is=REG&A=details



USB Function

* Logically Communication between Device and
Host Appears to be Traffic over a Single Bus

A Busis a Single Set of Wires Interconnecting
a “Talking” Device and a “Listening” Device

e Later Versions of USB (2.0+) Enable Host to
Keep Track of Which Attachments are Present
oy Sensing When they are Plugged-in to a USB

Socket (plug-and-play)




USB Host

e Host is the Center of the Star and Contains a
Hub embedded within it — the Root Hub
— Example is a Notebook PC that serves as a USB
host/root hub

— Notebook PC Root Hub has Connections to
External USB Connectors (sockets) and possibly
Dedicated Internal Devices

* Host keeps Track of Attached Devices by
Giving them Unique Numbers (called an
Address) when it Detects them as Attached



USB Host (cont)

* A Given Device may have a Different Address
assigned to it each time it is Attached

* Devices Contain Different Internal Sources/
Destinations for Data Called Endpoints

* Endpoints are Either Transmit or Receive Data
not both

— EXAMPLE: keyboard keypad has output endpoint “1”
and caps lock light has receiving endpoint “1”

— Each Device has 16 Possible Endpoints

— Endpoint Zero Reserved for Configure/control/auto-
detect



USB Pipe
 Combination of Address, Endpoint Number, Data
Direction (rec or xmit) Defines a Pipe

* Pipe is Data Path Between Endpoint and Controlling
Software

e Special Pipe Contains Endpoint 0: Default Control Pipe

Default Control Pipe To Keypad

‘ software from BIOS
fmane b om i
1L I}JUL AT

Oq%ui BITdpoTts #0 | I ermt—]

endpoint
output
endpoint 1
Figure 2 : Simple keyboard model illustrating endpoints and pipes

http://www.geoffknagge.com/uni/elec101/essay.shtml



USB Serial Data Transfer

1) Control Transfer — intended for configuring,
controlling, checking status of USB device.
Host sends status request to device, later
device sends status back

2) Isochronous Transfers — Accuracy not critical,
but timing is, for example an audio stream
where one garbled frame is unnoticeable
(1023 bytes per frame)



USB Serial Data Transfer

3) Interrupt Transfer — small infrequent
transfers that require priority over other
requests

4) Bulk Transfers — purpose is for transmitting
large amounts of data — lowest priority.
Useful for things like scanner data



USB Serial Data Transfer

e Serial Data Transfer Means One Bit at a Time

Serial Bus LSB

MSB
o0 — © —0 35 © — O — ©

Figure 3 : Serial transmission of the binary number 11010010

http://www.geoffknagge.com/uni/elec101/essay.shtml

* Data Transfer Occurs After Software Sends 1/O
Request Packet (IRP) to Appropriate Pipe

e Data Sent in Bundles Called Packets



USB Packets
 USB Data Packet

Sync (8) | PID (8) | Address | Endpoint (4) | Data (0-1023 bytes)

Figure 4 : A typical data packet. Numbers represent size of field in
bits, unless otherwise indicated.

http://www.geoffknagge.com/uni/elec101/essay.shtml

* Sync — Used for Timing

* PID — Type/format of data

* Address — address of function on end of pipe
* Endpoint — endpoint for data

e Data —the payload of the packet



USB Connector/Signals

Pin out
USB
Standard A
- D+ D- +
- -

The standard USB A plug (left) and B plug
(right) (male view)

Pin 1 Ve (45 V)
Pin 2 Data-

Pin 3 Data+

Pin 4 Ground

http://en.wikipedia.org/wiki/Universal_Serial_Bus

Standard B

Signal
Max. voltage

Max. current

Data signal

Width
Bitrate

Max. devices

Protocol

Electrical
5volt DC
5.00+0.25 V

500-900 mA @ 5 V (depending
on version)

5 A for Battery Charging
devices

Data

Packet data, defined by
specifications

1 bit
1.5/12/480/5,000 Mbit/s
(depending on mode)

127

Serial



USB Signals

USB 1.x/2.0 standard pinout
12 Pin Name Cable color Description

i 1 |VBUS Red +5V

roed ' 2 D-  White (gold*) Data —
TypeA Type B

3 D+ |Green Data +

4 GND Black (blue*) Ground
Mini-A Mini-B

* *Some manufacturers use

@ ﬂ USB 1.x/2.0 Mini/Micro pinout

12345 12345 ° i e
Micro-A Micro-B Pin Name Cable color Description
|1 |VBUS|Red +5V
Pinouts of Standard, Mini, and Micro USB & )
plugs. The white areas in these drawings 2 D- White Data -
represent hollow spaces. As the plugs are 3 D+ Green Data +
shown here, the USB logo (with optional
letter A or B) is on the top of the overmold in Permits distinction of host connection from slave connection
all cases [contradiction][23] 4 |ID None * host: connected to Signal ground
* slave: not connected
5 | GND Black Signal ground

http://en.wikipedia.org/wiki/Universal_Serial_Bus



NRZ-Non-Return to Zero

' 101 1 0001 00

Serial Data at Baseband

http://en.wikipedia.org/wiki/Universal_Serial_Bus



NRZI-Non-Return to Zero Inverted

. B
- ----e-
- ----e-

. B

101 1 00 10

Transitions are 1, Constant are O

http://en.wikipedia.org/wiki/Universal_Serial_Bus



Differential Signal (Dual-rail)

—<+— Voo
OUT+
— — —GND
—_ —— Vg
OuT-
] 4——GND
VoD
DIFFERENTIAL QUTPUT %2 % Vpg
(OUT+ - OUT-)
_ — — Vpp /

Common-mode Noise Rejection
Better for High BW Transmissions

http://en.wikipedia.org/wiki/Universal_Serial_Bus



USB Signaling

* Based on NRZI Differential Encoding

* Asynchronous Transmission uses a SYNC
Frame

e Receiver Detects SYNC Frame and Starts Local
CLK
— Clock Data Recovery (CDR) Extracts CLK from Data

— Usually a PLL or DLL



USB Sync Frame

At = L ~ 83 ns AV =3V
———y -.\‘ .‘\ \ ;"" N ,/,. N\ I N

Voltage signal in D +'\J U J / \—— -/ \-.\/--~J
the differential pair . ~ ~ A~
Differential decoding K | K | K ) KK ) J KKK | J K0 0 J
NRZI decoding 01011010

Start of packet Packet ID End
Packet format /cIockF;'.ync LLSB first, 1010 = NAK)I f packet

Example of a Negative Acknowledge packet transmitted by USB 1.1 Full-speed device when there is no more data to
read. It consists of the following fields: clock synchronization byte, type of packet and end of packet. Data packets
would have more information between the type of packet and end of packet.

http://en.wikipedia.org/wiki/Universal_Serial_Bus



USB Line States

Line State. These signals reflect the current state of the
single ended receivers. They are combinatorial until a
"usable" CLK is available then they are synchronized to
CLK. They directly reflect the current state of the DP
(LineState[0]) and DM (LineState[1]) signals:
DM DP Description

0 O 0: SEO

0 1 1:'J' State
1 O 2: 'K' State
1 1 3: SE1

NRZI Encoding:Non-Return to Zero Inverted
J=>K AND K-=J Indicates a Zero
K=K AND J-J Indicates a One

p. 12 UTMI spec



CDR

Lecture 200 — Clock and Data Recovery Circuits - [ (626803) Page 200-2

INTRODUCTION AND BASICS

o

T r

In many systems, data is transmitted or retrieved without any additional timing
reference. For example, in optical communications, a stream of data flows over a single
fiber with no accompanying clock, but the receiver is required to process this data
synchronously. Therefore, the clock or timing information must be recovered from the
data at the receiver.

Data
Recovered | |'
Clock
> |
Fig. 4.2-01

Most all clock recovery circuits employ some form of a PLL.

http://users.ece.gatech.edu/jskenney/L200-CDR-1(2UP).pdf



CDR Architecture

CLOCK RECOVERY ARCHITECTURES AND ISSUES
Clock Recovery Architectures

From the previous considerations, we see that clock recovery consists of two basic
functions:

1.) Edge detection

2.) Generation of a periodic output that settles to the input data rate but has negligible
drift when some data transitions are absent.

Conceptual illustration of these functions:

UL UL JuuttvuuyuuuuL

D & \4 ,|  Edge

High-Q R /| Dout

W

\ Oscillator

1

Detector

Fig. 4.2-11

In essence, the high-Q oscillator is “synchronized” with the input transitions and
oscillates freely in their absence. Synchronization is achieved by means of phase locking.

http://users.ece.gatech.edu/jskenney/L200-CDR-1(2UP).pdf



CDR Edge Detection

Edge Detection

CRC circuits require the ability to detect both the positive and negative transitions of the
incoming data as illustrated below,

NRZ
Data

o~ | | | | o | ]

Fig. 4.2-05

Methods of edge detection:
1.) EXOR gate with a delay on one input.

Dijp © | \
I_ Doyt
A Fig. 4.2-06

2.) A differentiator followed by a full-wave rectifier.

Out
Dino—— j—t i ‘ i ———o0D s

In | Fig. 4.2-07

\ 4

http://users.ece.gatech.edu/jskenney/L200-CDR-1(2UP).pdf



CDR PLL-Based

Phase Locked Clock Recovery Circuit

Circuit:
) Hase LPF || vco >S50
Detector
Fig. 4.2-11
Operation:

1.) Assume the input data is periodic with a frequency of 1/7}, (Hz).
2.) The edge detector doubles the frequency causing the PLL to lock to 2/7}, (Hz).

3.) If a number of transitions are absent, the output of the multiplier is zero and the
control voltage applied to the VCO begins to decay causing the oscillator to drift from
1/T, (Hz).

4.) To minimize the drift due to the lack of transitions,

17 pF >> Maximum allowable interval between consecutive transitions.

5.) The result is a small loop bandwidth and a narrow capture range. Fortunately, most
communication systems guarantee an upper bound of the allowable interval between
consecutive transitions by encoding the data.

http://users.ece.gatech.edu/jskenney/L200-CDR-1(2UP).pdf



USB Host-Attachment Clock Data
Recovery

Host Controller Device

From
Core F:D —P .
rh CDR —C

Ref
L PLL —4
CLK |-|]|-|
Ref
c<—| cor PLL M ek
To From
Core Q@ b Core

Figure 1: SuperSpeed USB clocking and jitter architecture

Source: USB 3.0 CDR Model White Paper, Revision 0.5, HP, Intel, Microsoft, NEC, ST-NXP, Tl, Jan. 15, 2009



USB CDR

In USB the receiver recovers the clock from the data by digitally adjusting the phase of
the local clock to try to match the phase of the incoming data as closely as possible. The

difference of the phase of the recovered clock and the data is a timing error, or jitter. The
clock recovery circuit is shown in the following block diagram.

Clock and Data Recovery

Recovered
Data D e Q Data
Sampler
Clock C
Reference Recovery
Clock Recovered
Clock

Figure 3: Receiver clock and data recovery

Source: USB 3.0 CDR Model White Paper, Revision 0.5, HP, Intel, Microsoft, NEC, ST-NXP, Tl, Jan. 15, 2009



USB 2.0 Clocks

5.12.2 USB Clock Model

Time is present in the USB system via clocks. In fact, there are multiple clocks in a USB system that must
be understood:

e Sample Clock: This clock determines the natural data rate of samples moving between client software
on the host and the function. This clock does not need to be different between non-USB and USB
implementations.

e Bus Clock: This clock runs at a 1.000 ms period (1 kHz frequency) on full-speed segments and
125.000 us (8 kHz frequency) on high-speed segments of the bus and is indicated by the rate of SOF
packets on the bus. This clock is somewhat equivalent to the 8 MHz clock in the non-USB example.
In the USB case, the bus clock is often a lower-frequency clock than the sample clock, whereas the bus
clock is almost always a higher-frequency clock than the sample clock in a non-USB case.

e Service Clock: This clock is determined by the rate at which client software runs to service IRPs that
may have accumulated between executions. This clock also can be the same in the USB and non-USB
cases.

In most existing operating systems, it is not possible to support a broad range of isochronous communication
flows if each device driver must be interrupted for each sample for fast sample rates. Therefore, multiple
samples, if not multiple packets, will be processed by client software and then given to the Host Controller
to sequence over the bus according to the prenegotiated bus access requirements. Figure 5-17 presents an
example for a reasonable USB clock environment equivalent to the non-USB example in Figure 5-16.

Source: USB 2.0 Standard



USB 2.0 Clocks

5.12.3 Clock Synchronization

In order for isochronous data to be manipulated reliably, the three clocks identified above must be
synchronized in some fashion. If the clocks are not synchronized, several clock-to-clock attributes can be
present that can be undesirable:

e  Clock Drift: Two clocks that are nominally running at the same rate can, in fact, have implementation
differences that result in one clock running faster or slower than the other over long periods of time. If
uncorrected, this variation of one clock compared to the other can lead to having too much or too little
data when data is expected to always be present at the time required.

e Clock Jitter: A clock may vary its frequency over time due to changes in temperature, etc. This may
also alter when data is actually delivered compared to when it is expected to be delivered.

e Clock-to-clock Phase Differences: If two clocks are not phase locked, different amounts of data may
be available at different points in time as the beat frequency of the clocks cycle out over time. This can
lead to quantization/sampling related artifacts.

The bus clock provides a central clock with which USB hardware devices and software can synchronize to
one degree or another. However, the software will, in general, not be able to phase- or frequency-lock
precisely to the bus clock given the current support for “real time-like” operating system scheduling support
in most PC operating systems. Software running in the host can, however, know that data moved over the
USB is packetized. For isochronous transfer types, a unit of data is moved exactly once per (micro)frame
and the (micro)frame clock is reasonably precise. Providing the software with this information allows it to
adjust the amount of data it processes to the actual (micro)frame time that has passed.

Note: For high-speed high-bandwidth endpoints, the data exchanged in the two or three transactions per
microframe is still considered to belong to the same “single packet.” The large amount of data per packet is
split into two or three transactions only for bus efficiency reasons.

Source: USB 2.0 Standard



USB 2.0 Host Interface

Host Interconnect
7\
[ 7/ = ]
Client L ]
L]
manages interfaces I o l

N/
Pipe Bundle

to an interface

IRPs Configuration
USB Driver Host
Software
[ ]
Default Pi
| HC Driver | o pe
- to Endpoint Zero
USB System
| manages pipes
HW-Defined
Host P R—
Controller "He- | SIE [l .
Defined i
USB Wire
USB Bus
Interface
I ] Pipe: Represents connection
abstraction between two horizontal
layers
Optional
Component H Interprocess Communication

Source: USB 2.0 Standard

Figure 10-2. Host Communications



USB 2.0 SIE (SERDES)

10.2.2 Serializer/Deserializer

The actual transmission of data across the physical USB takes places as a serial bit stream. A Serial
Interface Engine (SIE), whether implemented as part of the host or a USB device, handles the serialization
and deserialization of USB transmissions. On the host, this SIE is part of the Host Controller.

Source: USB 2.0 Standard



USB Example Interface

109193 R22 yLG ac: C3 ¥t U2 LHaaS
et — plinhe 28 | yor D@ |15 DO "
. A.B1u D1 16 D1 »
-T- cs 1. _1 3 fyz D2 }; gg—u
188y L 03 H5g—p3—
—_ 15 TaD D4 —29 :'—"5
N = 1 . B - I TR
: = =l 6ND D& S —p3—
_g ;; ié_ up- g Ao

- up + Ao -2 nE

— UCC | 2 RO¥ [— R

L 5 =2 RSTI UR# == - £

P1 = c11 S&1R2T s 1 —INT

USB S 43 RST# INT# L
. u
14 | yq . YCe
R¥D

t {D} 1 13 | w1 acT# |24 L1

Cl=— x1 =C2 R1 T+
15¢ | 12MHz | 15P
= = 1K

Source: http://docs.teguna.ro/CH375DS1.pdf, Romainian IC Vendor




USB Example Interface

avyY

cY
C18 o 4y cgucc U6 CH375
YLL 228u - 128 [yce po |15
B.81u 5 D1 gtg—
R3 — v3 g% 18
T L2 | gND DS |29
| =5 ane e 21
1 = == oo [22
|2 D - 11 | i
O uee | 2l RsTr R4 :
pz = LI 25 | p5T Co# 27
Ciz 26 | RST# INT# |- ~INT
USB A.47u
14 | wp THD 2 ;ig
RXD
Tt [ 1 13 {1 acT# [24
C6 == g, =—C?
15¢ | 12MHZz | 1P

Source: http://docs.teguna.ro/CH375DS1.pdf, Romainian IC Vendor




ULPI Figure

Source: http://www.ulpi.org

ULPI LINK CLK ULPI PHY
DR
NXT
STP i
ULPI DATA[T:0] ULPI
UTMI+ LINK > PHY UTMI+
Core ; ' wrapper wrapper "™ Transceiver
logic logic

To PC/Mobile/CE

PHY — Physical Layer portion, conversion of serial USB signals to logic signals appropriate

for processing by a CPU



UTMI

ASIC
Sernal Interface Engine

- - -

Destice Endpoint Logic -

Specific |

: b i i Control
Logic Endpoint Logic Logic

= Endpoint Logic

USB 2.0
Transceiver
Macrocell

USB 2.0

Figure 1: ASIC Functional Blocks

Source: p. 9, Fig. 1, USB 2.0 Transceiver Macrocell Interface (UTMI) Specification,
v. 1.05, 29 Mar 2001, Intel Corp.
http://www.intel.com/technology/usb/download/2_0 xcvr_macrocell 1 05.pdf



UTMI

HS XCVR
= W nrz |B Bit
Data+ e IZIJ-iLSL — E'I;smt‘l‘glrty —> lh]" —  Decoder [ | Unstuffer
e X ¢ ©
— > Rx Rx
Status/ "
Control Shift | Hold "
Data- o e Rea | Reg
State
-+ Machine Parallel
RX Data
Xmit g P
FS XCVR
Rev FSDLL &
Data -
Transmit Parallel
Recovery |« S TX Data
Machine Tx Tx
Shit | Hold
Status/ > —
R R
Control =g ©g
¢ (D)
- (F) NRZI (E) Bit
Amit Encoder [® |  Stuffer
Analog Front End External Clock K
Crystal > Multiplier >
Control Control
o —
-«

Figure 2: UTM Functional Block Diagram
Source: p. 11, Fig. 1, USB 2.0 Transceiver Macrocell Interface (UTMI) Specification,
v. 1.05, 29 Mar 2001, Intel Corp.
http://www.intel.com/technology/usb/download/2_0 xcvr_macrocell 1 05.pdf



UTMI Blocks

HS XCVR
(A) B ;
| — NRZI Bit
[lﬁtm N Rev > SLSL ™ Egsu;gty Decoder | ™| Unstuffer
< v J©
Rx Rx
Status/ X
Control shift | Hold ———"
Data- 4| Receive Reg | Reg
< > FEE Parallel
- Machine RX Data
Kmit 4 »
FS XCVR
Rev p| FSDLLE
Data -
Transmit Parallel
> Recovery |« Y Sae TX Data
Machine T= Tx
Shift Hold <;:]
Status/
Control b= || b=
¢ (D)
<« ln
(F) (E) -
- NRZI Bit
Amit (g Encoder < Stuffer
Analog Front End External Clock CLe
Crystal Lt Multiplier -
Control Control
< —
-«

Figure 2: UTM Functional Block Diagram

These logic blocks require CLK signals to operate
can use same or a derivative of same SYS




