Embedded System Software

C Language &
ARM Assembler

Topics

» Typical Structuresin C
— Low-level Bit Manipulation
— Control Structures (loops, case statements, etc.)

« State Machine Structure
« Keil RTX Topics

Typical Structures in C

 Headers and C Function Structure
» Low-level Bit Manipulation

— Bit-level Logic

— Arithmetic
* Program Control Structure

— Loops

— Case Statements

Functions and Headers

« All C Programs are a Collection of One or More
Functions

— can be nested
* Function Returns a Value (unlessiit is type void)

« Often Used Functions are Available in Header
Files (also contain Constants)
- stdio.h — Contains I/O Functions
- math.h — contains math functions (eg. sin and
M PI)
- string.h — functions to manipulate strings of char

C Keywords

auto else long switch
break enum register typedef
case extern return union
char float short unsigned
const for signed wvoid
continue goto sizeof +wvolatile
default if static while
do int struct = Packed
double
5
Variable Typesin C

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,768 to 32,767

unsigned int

short
unsigned short
long

unsigned long
float

double

long double

or -2,147,483,648 to 2,147,483,647
2 or 4 bytes 0 to 65,535

2 bytes
2 bytes
4 bytes

4 bytes
4 byte

8 byte

10 byte

or 0 to 4,294,967,295
-32,768 to 32,767
0 to 65,535

-2,147,483,648 to 2,147,483,647

0 to 4,294,967,295

1.2E-38 to 3.4E+38
6 decimal places

2.3E-308 to 1.7E+308
15 decimal places

3.4E-4932 to 1.1E+4932

19 decimal places

Co

nstants in C

* Values Beginning with 0x are Hexadecimal
» Values Beginning with 0 are Octal

* Values begmning with 1 through 9 are Decimal
212 Integer - Legal */
215u /* Integer - Legal */
OxFeelL /* Integer - Legal */
078 /* Integer - Illegal: 8 is not an octal digit */
032UU /* Integer - Illegal: cannot repeat a suffix */
85 /* Integer - decimal */
0213 /* Integer - octal */
0x4b /* Integer - hexadecimal */
30 /* Integer - int */
30u /* Integer - unsigned int */
301 /* Integer - long */
30ul /* Integer - unsigned long */
3.14159 /* Floating Point - Legal */
314159E-5L /* Floating Point - Legal */
510E /* Floating Point - Illegal: incomplete exponent */
210f /* Floating Point - Illegal: no decimal or exponent */
.e55 /* Floating Point - Illegal: missing integer or 7

fraction */

Character Constants in C

* Values Beginning with 0x are Hexadecimal
» Values Beginning with 0 are Octal
-\ Values beginning with 1 through 9 are Decimal

\ character

\' ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three digits
\xhh . Hexadecimal number of one or more digits

A\ ”

z ASCII for z char

“This is a string” String of ASCII chars

Increment/Decrement Operators

* |Increments/Decrements and Overwrites
* ARM: Memory read, Arith, Memory write

int x;
int vy,

// Increment operators

x = 1;

y = ++x; // x is now 2, y is also 2
Yy = x++; // x is now 3, y is 2

// Decrement operators

x = 3;

y = x——; // x is now 2, y is 3

y = --X; // x is now 1, y is also 1

Compound Assignment Operators

« Performs Operation and Assignment in One Statement
« Compound Assignment

+= b; //same as a=a+b; addition

; //same as a=a-b; subtraction

//same as a=a*b; multiplication

//same as a=a/b; division

//same as a=a%b; modulus (remainder)
//same as a=aé&b; bitwise AND

; //same as a=a|b; bitwise OR

; //same as a=a”“b; bitwise XOR

<<= b; //same as a=a<<b; left shift a by b bits
>>= b; //same as a=a>>b; right shift a by b bits

N R VI U U
4]
L
bbobboo oo

» Other Operators

sizeof (b) ; //returns size of b in bytes
a=b?c :d; //a=c when b is TRUE else a=d

Address Operator

» Address Return Operator
&b; //returns address of b

« Example

#include <stdio.h>
void main (void)
{
int wvarl;
char var2[10];
printf ("Address of varl variable: %x\n", &varl);
printf ("Address of var2 variable: %x\n", &var2);

}

* Output of main Function

Address of varl wvariable: bff5a400
Address of var2 wvariable: bff5a3fé6

Pointers

 Variable Whose Value is Address of Another Variable

* Declaration of Pointers

int *int var; /* pointer to variable of type int */
double *double var; /* pointer to variable of type

/* double */
float *varl; /* pointer to variable of type float */
char *varl; /* pointer to variable of type char */

Pointer Example

#include <stdio.h>
void main (void)
{
int wvar = 20; /* actual variable declaration */
int *ip; /* pointer variable declaration */
ip = &var; /* store address of var in pointer
/* variable*/
printf ("Address of var variable: %$x\n", &var);
/* address stored in pointer variable */
printf ("Address stored in ip variable: %x\n", ip);
/* access the value using the pointer */
printf ("Value of *ip variable: %d\n", *ip);
}

* Output of main Function

Address of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c
Value of *ip variable: 20

Bit-level Operators

» Operators Same as Reduction Operators in Verilog
» Don’t Confuse with Logical Operators (&&, | |, ==,
and !)
— these evaluate to a Boolean (true or false)

— used in Conditional Expressions
/* Each prepocessor directive defines a single bit */

#define MASK 0x5555 // 32-bit Constant

unsigned int valuel, value2; //32-bit for ARM (Keil-MDK)

valuel = MASK | value2; // sets even bits to 1 (OR)
valuel = MASK & value2; // sets odd bits to 0 (AND)
valuel = MASK * value2; // inverts even bits (XOR)
valuel = ~value2; // inverts all bits (NOT)

Bit-level Operators

* Usually Stored in unsigned int or char Variables
 Different Systems have Differing Lengths of int
« char is Always 8 bits

/* Each prepocessor directive defines a single bit */

#define KEY UP (1 << 0) // 000001
#define KEY RIGHT (1 << 1) // 000010
#define KEY DOWN (1 << 2) // 000100
#define KEY LEFT (1 << 3) // 001000

#define KEY BUTTON1 (1 << 4) // 010000
#define KEY BUTTON2 (1 << 5) // 100000

int gameControllerStatus = 0;

Bit-level Operators (cont)

/* Sets the gameCtrollerStatus using OR */
void keyPressed(int key) ({
gameControllerStatus |= key;

/* Turns the key in gameControllerStatus off

using AND and ~ */

void keyReleased(int key) {
gameControllerStatus &= ~key;

/* Tests whether a bit is set using AND */
int isPressed(int key) {

return gameControllerStatus & key;

if Statement

» Conditionally Executes BODY Based on CONDITION
* Delimiters {, } When BODY Consists of 2 or More

Statements
if (a == b)
{
if (a == b) a = \b;
¢ }
a = !b; else
b = MASK & b; {
}

b = MASK & b;
}

if else if Statement

if (a ==1)
{
a++;

}

else if (a == 2)

switch Statement

switch (expression) {
case constant-expression
statement (s) ;
break; /* optional */
case constant-expression
statement (s) ;
break; /* optional */

/* you can have any number of case statements */
default : /* Optional */
statement (s) ;

switch Example

#include <stdio.h>
void main (void)

{

/* local variable definition */
char grade = 'B';
switch (grade)
{
case 'A' :
printf ("Excellent!\n");
break;
case ('B'||'C') Well done
printf ("Well done\n"); .
break; Your grade is B
case 'D' :
printf ("You passed\n");
break;
case 'F' :
printf ("Better try again\n");
break;
default
printf ("Invalid grade\n");
}

printf ("Your grade is %c\n", grade);

20

for Statement

* Most Common Loop in C
» Tests Condition BEFORE Body Execution
* Loop Executes When Condition is True

void func (void)

{
unsigned int i, int j=0;
for (i = 0; 1 < 100; i++)
{
Jj++;
}

21

for Example

« device_id is the “Name” of an Input Device
« sensor_read Retrieves the Value from device id

« Sensor Values are Accumulated and Returned
int acc_func (int device_id)
{
int sensor_read(int device_id);
unsigned int i, int sum=0;
for (i = 0; i < 100; i++)
{
sum = sensor_read(device_id)+sum;

}

return (sum) ;

}

22

while Statement

» Tests Condition BEFORE Body Execution
» Possible to Never Execute if Condition is False
* Outputs n Copies of the Character ch

#include <stdio.h>

void repeat_char (int n,char ch)
{
while (n--)
{
putchar (ch) ;
}

23

while Example

« func Retrieves String from Input Device

« process_string Processes Retrieved String

* Loop Exits When get string Returns NULL Pointer
#include <stdio.h>
char * get_string(void);
void process_string(char *s) ;

void func (void)
{
char *string;
while ((string = get_string()) !'= NULL)
{

process_string(string) ;

}

24

do while Statement

* Used Less Often than for or while Loops
» Tests Condition AFTER Body Execution

» Always Executed at Least Once
« transfer 1 line reads char from I/P, copies to

O/P until newline encountered
char input_char(void) ;
void output char(char) ;

void transfer 1 line(void)

{

char c;

do {
¢ = input_char();
output_char(c) ;

} while (¢ !'= '\n');

do while Example

« prod_do Function “prods” Device Until it is
Successfully “prodded” (whatever that means)

void prod(int device_id);
int prod status(int device_id);

/* codes returned by prod status */
#define PROD_FAIL -1
#define PROD_OK 0

void prod do completion(int device_id)
{
do {
prod(device_ id) ;
} while (prod status(device_id) != PROD_OK) ;

26

State Machine as Control Program

State Definition

Case/Switch Implementation

Transition Table Implementation

Polling versus Interrupts

Timing: HW Timers versus Delay Loops

27

Embedded System Programming

Many ES Systems are Event-Driven

— eg. ES Responds to Input Sensor, Processes an
Input Data Stream, then Provides Processed Data
to Output Device

Many ES Systems are Real-Time

— Must Respond to Input Sensor(s) within a
Deadline

— Must Utilize Priority Structure Among Multiple
Input Sensors

Common Structure for Control Software is in
Form of a State Machine

28

Embedded System Programming

 Many ES Systems are Event-Driven

— eg. ES Responds to Input Sensor, Processes an
Input Data Stream, then Provides Processed Data
to Output Device

* Many ES Systems are Real-Time

— Must Respond to Input Sensor(s) within a
Deadline

— Must Utilize Priority Structure Among Multiple
Input Sensors

e« Common Structure for Control Software is in
Form of a State Machine

29

Comparison: Application vs. ES Software

« Conventional Application
— Written in High-Level Programming Language

— Compiled into Machine Code (static schedule)
— Loaded and Run

« ES Control Program

— Written in Low-level Language to Optimize
Performance, Power, Memory Footprint

— Responds to Events in Real-time (dynamic
schedule)

— Operates under Deadline Constraints

30

State Machine Model

» Deterministic Finite Automaton
— Mathematical Structure
— Basis of all Conventional Computation (Turing
Machine)
 Known as “State Machine”

« Complex ES Control Software may be
Implemented as Hierarchical (nested) State
Machines

« Two Main Implementation Structures

— Program in Form of Case Statement with Each Case
Corresponding to a State

— Program in Form of SM with a “Transition Table”

31

State Machine Model

* When no Operating System or Monitor is Used,
Entry Pointis a “RESET” Event that Causes
Transition into an Initial State

« ES Program Typically has no “Halting State”
(unlike an application) and is an Infinite Loop

« Within Each State,

— another Lower-level SM may be Invoked

— Timing Constraints Implemented through use of SW
Delay Loops or HW Timers that Interrupt Processor

— Input Events may be “Sensed” through SW Polling
Loop or as Processor Interrupts

32

HW/SW Partitioning

SM Model Allows Easy Translationinto HDL for
Custom HW if Needed

SM Model Allows for Critical Processing within
Each State to be implemented as Interaction with
HW Assets or as I/O to Dedicated Hardware

Typically Implementedin C

— Design Tools Available that Allow SM to be Specified
at Higher-Level (UML, Graphical Input) and then
Automatically Synthesized into SM in Form of SW
Language

Use of ES Real-time OS (like Keil RTX) Provides

OS Services as Callable Functions

33

State Machine Example

switch (state)
{
case STATE 1:
state = DoStatel (transition) ;
break;
case STATE 2:
state = DoState2 (transition) ;
break;

}

DoState2 (int transition)
{
// Do State Work

if (transition == FROM_STATE 2) {
// New state when doing STATE 2 -> STATE 2
}
if (transition == FROM STATE 1) {
// New State when moving STATE 1 -> STATE 2
}

return new_state;

34

Inline Assembler

Performance Critical Functions Require Manual
Generation of Assembler

Can use Inline or Embedded Assembler
Use armIn Place of Normal C Statement

__asm("ADD x, x, #1l\n"
"MOV y, x\n");

Can Define Macros

#define ADDLSL(x, y, shift) _asm ("ADD " #x ", " #y ", LSL " #shift)

35

Inline Assembler Rules

* Multiple instructions on the same line must be separated with a
semicolon (;).

» If an instruction requires more than one ling, line continuation must be
specified with the backslash character (\).

» For the multiple line format, C and C++ comments are permitted
anywhere in the inline assembly language block. However, comments
cannot be embedded in a line that contains multiple instructions.

« The comma (,) is used as a separatorin assembly language, so C
expressions with the comma operator must be enclosed in
parentheses to distinguish them:

asm

{
ADD x, y, (£(), 2)

36

Inline Assembler Rules

Labels must be followed by a colon, :, like C and C++ labels.

An asm statement must be inside a C++ function. An asm statement
can be used anywhere a C++ statement is expected.

Register names in the inline assembler are treated as C or C++
variables. They do not necessarily relate to the physical register of the
same name. If the registeris not declared as a C or C++ variable, the
compiler generates a warning.

Registers must not be saved and restored in inline assembler. The
compiler does this for you. Also, the inline assembler does not
provide direct access to the physical registers. However, indirect
access is provided through variables that act as virtual registers.

asm

{
ADD x, y, (£(), 2)

37

Inline Assembler Register Usage Rules

Registers such as r0-r3, sp, 1r, and the NzCV flags in
the CPSR must be used with caution.

If C or C++ expressions are used, these might be used as
temporary registers and NzcCvVv flags might be corrupted by
the compiler when evaluating the expression.

The pc, 1r, and sp registers cannot be explicitly read or
modified using inline assembly code because there is no
direct access to any physical registers.

The intrinsic functions can be used to read these
registers.

current pc
current sp
return_address

38

Inline Assembler Register Reads

 If registers other than CPSR and SPSR are read without
being written to, an error message is issued.

int f£(int x)
{

asm

{

STMFD sp!, {r0} // save r0 - illegal: read before write

ADD r0, x, 1
EOR x, r0, x
LDMFD sp!, {r0} // restore r0 - not needed.

}

return x;

39

Inline Assembler Register Reads

» Acceptable Way to Implement

int f£(int x)
{
int r0;
asm

{
ADD r0, x, 1

EOR x, r0, x
}

return x;

40

Inline Assembler

» Performance Critical Functions Require Manual
Generation of Assembler

e« Can use Inline or Embedded Assembler

// #pragma ARM // would do the same as __arm below !

void ChangeIRQ (unsigned int NewState) __ arm
{ // use ARM-mode for this function
__asm {
AND RO,RO, #0 //
MRS RO,CPSR //
ORR RO,RO, #0x80; //

LDAV R1,R10,NewState // load parameter-value 'NewState' into Rl
BIC RO,RO,R1,LSL #7 //
MSR CPSR c, RO //

4

Delay Loop

» Performance Critical Functions Require Manual
Generation of Assembler

e« Can use Inline or Embedded Assembler

void nop_ () {
__asm("mov r0,r0");

//Function Name: delay

void delay (void) //delay
{
int 1i;
for (i=0;i<=10;i++)
{
nop();

}

Delay Loop (cont)

» Performance Critical Functions Require Manual
Generation of Assembler

e« Can use Inline or Embedded Assembler

void delaylO0 (void)
{
int 1i;
for (i=0,;i<=10;i++)
{
delay () ;

}

43

