Processor General Concepts

Basic Processor-Based System

® Processor

(0]

@ core

(@))

(0]

s Cache/SRAM
memory

Address bus, data bus,
and bus control signals

System Components

The basic components:

a) Processor with its associate temporary memory (registers
and cache if available) for code execution

b) Main memory and secondary memory where code and
data are temporary and permanently stored

c) Input and output modules that provide interface between
the processor and the user

Connected through an interface bus consists of
Address, Data, and Control signals

* e.g. AMBA bus for the ARM-based processor

Memory Hierarchy

Cache

Main
memory
Secondary

storage

Performance/costs

| I

1 MB 1 GB
Memory Size

Memory Hierarchy

A typical processor is supported by:

» on-board main memory (e.g. SDRAM up to GB)
 on-chip cache memory (e.g. SRAM KB to MB)

* on-chip registers

Some processors also provide general purpose on-chip

+ SRAM (e.g. embedded processor) which may be
configured as SRAM/Cache combination (e.g. TI' s DSP)

Typically, a processor also utilizes secondary non-volatile
memory

« for permanent code and data storage like Flash-based
memory and hard disk

Address Space

Address space of a processor depends on its address
decoding mechanism

*size will depend on the number of address bit used

Depending on the processor design, there may be two types
of address space

*one is used by normal memory access

«another one is reserved for I/O peripheral registers (control,
status, and data)

*need extra control signal or special means of accessing the
alternate address space

Address Space (cont’ d)

Refer to the range of address that can be accessed by the
processor determined by the number of address bit utilized in the
processor architecture.

Some processor families (e.g. ARM) utilize only one address space
for both memory and I/O devices

*i.e. everything is mapped in the same address space

Processor

/0 Reg OxFFFFFFFF
110
/0 Reg
Gy —— =
Memory Data
Code
0x00000000

Memory Mapped vs I/O Mapped

Some processor families have two address spaces.

E.g., for the x86 processor, memory and I/O devices can be

mapped in two different address spaces:

*memory address space and I/O address space

OxFFFF
1/0 Reg
== -~ ¢ >
1/0 Reg
0x0000
1/0 Address
Space

Processor

Space

OxFFFFFFFF
Data
Code
Data
Code
0x00000000
Memory
Address

Memory System Architectures

Two types of information are found in a typical program
code:

I. Instruction codes for execution
ii. Data that is used by the instruction codes

Two classes of memory system design to store
these information:

i. von Neumann architecture
ii.Harvard architecture

von Neumann Architecture

The von Neumann architecture utilizes only one memory bus
for both instruction fetching and data access

*simplifies the hardware and

FFFFh
glue logic design Data

Table
ecode and data located

in the same address space Data
Processor 0 Code
Single path (bus) —

for both Code &
Data Code

0000h

von Neumann Features

Single memory interface bus
 simplifies the hardware and glue logic design
More efficient use of memory

« code and data can reside in the same physical memory
chip

More flexible programming style

* e.g. can include self-modified code

But data may overwrite code (e.g. due to program bug)
* need memory protection (e.g. hardware-based MPU)

Bottleneck in code and data transfer

» only one memory bus for both data and code fetching

Harvard Architecture

The Harvard architecture utilizes separate instruction
bus and data bus

ecode and data may

still share the same FFFFh
Data
memory space
r, Data
Data 8000h
Separate bus for i
Code & Data IHAOEEEOT Code

' Code

Code

0000h

Harvard Features

Separate instruction and data bus

+ allow code and data access at the same time which gives
improved performance

» provide better support for instruction pipeline operation and
shorter instruction execution time

 allow different sizes of data and instruction to be used which
results in more flexibility

« do not incur any code corruption by data which makes the
operation more robust

Requires TWO Bus Controllers — Logic Interfaces between
Processor and Memory.

Architecture Variations

FFFFh FFFFh
Independent data L Processor Code
and code memory
but with one shared Data it
bus (e.g. 8051) Data o
0000h 0000h
FFFFh

Data

Two separate T
Cache Code

internal busses for l <>
code & data (e.q. E Data
ARMQ) Cache

Data

Code

0000h

Top Boot and Bottom Boot

Different processor families use differentlocations for reset vector
storage at boot-up.

Examples:

* x86 boots up from the top of the memory space
* ARM boots up from the bottom of the memory space

FF..FFh Reset FF..FFh
vector
Data
Processor 0 Data Processor 0 Data
Program Data
LTS Program
vector
00..00h 00..00h

Processor ‘Size’

The processor size is described in terms of ‘bits’ (e.g. an 8-
bit, 32-bit processor)

« corresponds to the data size that can be manipulated at a
time by the processor

+ typically reflected in the size of the processor (internal) data
path and register bank

Hence an 8-bit processor can only manipulate byte size
data at a time,

while a 32-bit processor can handle 32-bit double word
size data at a time

» even though the data content may only be of single byte size

Registers

The most fundamental storage area in the processor

* is closely located to the processor

» provides very fast access, operating at the processor clock
* butis of limited amount (less than 100 typical)

Most are of the general purpose type and can store any
type of information:

« data - e.g. timer value, constants
» address - e.g. ASCII table, stack

Some are reserved for specific purpose
» program counter (r15 in ARM)
» program status register (CPSR in ARM)

Data Organization in Memory

Memory contains storage locations that store data of a
certain fixed size

» most commonly of the 8-bit (byte) size

Each location is provided with a unique address.

Depending on the data path/size of the processor

 the memory content is accessible in sizes of an
8-bit byte, a 16-bit half word, a 32-bit word, and even a
64-bit double word

Data Alignment

A 32-bit datum consists of four bytes of data, and is
stored in four successive memory locations.

Data and code must be aligned to the respective
address size boundary.

* e.g. for a 32-bit system, align to the word boundary,
with the lowest two address bits equal to zero

But what is the order of the four bytes of data?
» depends on the Endianness of the processor

Data Endianness

In the Little Endian format,

« the least significant byte (LSB) is stored in the
lowest address of the memory, with the most

significant byte (MSB) stored in the highest address

location of the memory.

In the Big Endian format,

» the least significant byte (LSB) is stored in the
highest address of the memory, with the most
significant byte (MSB) stored in the lowest address
location of the memory.

20

Data Endianness (cont’ d)

MSB LSB

MMM NN

Big Endian Little Endian
Memory . Memory
S TOIIIONN]] Acaress

Address
Space Space
2277,
JIIIIIIIIIIIIIIIIIIII_L =;\\\\\\\\\\\;,
0x000000 N
Comparison
Little Endian

« The order matched with processor instructions typically
process numbers from LSB to MSB.

The byte number corresponds with the address offset, suitable
for multi-precision data manipulation.

« LSB — Lower Address (Little Endian) The Three “L’s”

Big Endian
« Can compare numerical data by just accessing the zero offset
byte.

Corresponds to the written order of number (starting with the
most significant digit).

Some processors (e.g. ARM) have bi-endian hardware that feature

‘switchable’ endianness.
22

RISC versus CISC

CISC RISC
(Compiler) S (Compiler]
Complexity
Code Code
Generation Generation
Greater Y
Complexity | Frocessor Processor

RISC and CISC are PHILOSOPHIES of Computer
Architecture. Most modern processors have Features
from each Philosophy although they may be
MARKETED as being only RISC (or CISC).

23

CISC

Features of the Complex Instruction Set Computer
(CISC):

* many instructions

« complex instructions

— each instruction can execute several low level
operations

« complex addressing modes
— smaller number of registers needed

A semantically rich instruction set is accommodated by
allowing instructions that can be of variable lengths.

24

Advantages of CISC

As each instruction can execute several low level operations,
* the code size is reduced to save on memory requirement

* less main memory access is required and hence faster.

Backward code compatibility is maintained

 can add new (and more powerful) instructions while retaining the
‘old’ instruction set for code compatibility (i.e. the legacy program
can still run)

Easier to program

» direct support of high-level language constructs

» complex instructions that fit well with high-level language
expression

25

Limitations of CISC

A highly encoded instruction set needs to be decoded
by complex instruction decoder circuitry (often
microcoded style)

* more complex hardware design

* slower instruction decoding/execution

Variable length instructions

« different execution time among instructions
« affect pipelined operations

* more complex bus controller

26

RISC

RISC — Reduce Instruction Set Computer

« Small instruction sets

» Simpler instructions — all execute in same number of
cycles

* Fixed length instructions

« Large number of registers

» Simpler addressing mode with the Load/Store
instruction for accessing memory

» Hardware (CPU datapath) can be pipelined

» Programming (compiler) is more complex and requires
longer instruction sequences to do same job as CISC

27

RISC Philosophy

1. Instructions
— reduced number of instruction classes
— eachis simple: execute in single cycle
— compiler/programmer must implement
complicated operations such as division
— fixed length: fast fetch and decode

2. Pipelining
— instruction processing broken into small units
— eachunit executedin parallel
— no microcode

28

RISC Philosophy (cont)

3. Registers
— large registerfile (number of registers)
— general purpose registers (data or addresses)
— very fastlocal memory

4. Load/Store Architecture
— separate load and store instructions (no MOV)

— no data processing ops access memory (no
CMPSB)

29

Advantages of RISC

Simpler instructions

* one clock per instruction gives faster execution than
on a CISC processor with the same clock speed

Simpler addressing mode
» faster decoding

Fixed length instructions
- faster decoding and better pipeline performance

Simpler hardware
* less silicon area
* less power consumption

30

RISC Memory Footprint

The RISC processor typically needs more memory than
a CISC does to store the same program.

» complex functions performed in a single but slower
instruction in a CISC processor may require two, three,
or more simpler instructions in a RISC.

To reduce memory requirements and hence cost,

* ARM provides the 16-bit Thumb instruction set as an
option for its RISC processor cores.

* Thumb instructions are “compressed” versions of ARM
instructions

31

Limitations of RISC

Fewer instructions than CISC

as compared to CISC, RISC needs more instructions to execute
one task

code density is less

need more memory

No complex instruction

no hardware support for division, floating-point arithmetic
operation

* need a more complex compiler and a longer compiling time

But ARM also adds DSP-like instructions to support
commonly used signal processing function

32

Instruction Code Format

Opcode encoding depends on the number of bit used.

Example: For ARM, all instructions are of 32-bit length, but only 8
bits (bit 20 to 28) are used to encode the instruction. Hence a
total of 28 = 256 different instructions possible.

A typical instruction is encoded with a specific bit pattern that
consists of the following:

an opcode field specifying the operation to be performed.

2. anoperand(s)identification (address) field that depends on the
modes of addressing;

— this provides the address of the register/memory location (s)
that store the operand(s), or the operand itself.

33

Instruction Opcode Types

General categories of instruction operations:

 Data transfer
E.g. move, load, and store

« Data manipulation
E.g. add, subtract, logical operation

* Program control
E.g. branch, subroutine call

34

Operand Addressing Types

Immediate addressing

« operandis given in the instruction
Register addressing

« operandis stored in a register
Direct addressing

« operand is stored in memory, with the address givenin the
instruction

Indirect (Index) addressing

« operand is stored in memory, with the address givenin a
register (address adds with an offset given in the instruction)

Implied addressing
« implicitlocation like stack and program counter

35

Instruction Execution

Multiple stages are involved in executing an instruction.
Example:

1) Fetching the instruction code

2) Decoding the instruction code

3) Executing the instruction code

Hence multiple processor clock cycles are needed to execute one
single instruction.

Ist 2nd

A

A

—

—~

N

Fetch
Instruction

Decode
Instruction

Execute
Instruction

Fetch
Instruction

Decode
Instruction

Execute
Instruction

»

>

time

36

Instruction Pipeline

Pipeline allows concurrent execution of multiple different

instructions

« execution of different stages of multiple instructions at the
same time

During a normal operation

* while one instruction is being executed

* the next instruction is being decoded

 and a third instruction is being fetched from memory

« allows effective throughput to increase to one instruction
per clock cycle

37

Pipelined Architecture

Longerpipeline can also be used to further break down the operation
carried out in the individual stage

*simpler logic for each stage to increase system clock

Parallel
execution of
multiple
instructions

4

Fetch Example: A 5-stage instruction
Instruction pipeline
Decode Fetch
Instruction Instruction
Fetch Decode Fetch 4 th
Operand Instruction Instruction
Execute Fetch Decode Fetch 5th
Instruction Operand Instruction Instruction
Store Execute Fetch Decode Fetch
Result Instruction Operand Instruction Instruction
Store Execute Fetch Decode
Ist Result Instruction Operand Instruction
Store Execute Fetch
Result Instruction Operand
2nd P
Store Execute
3rd Result Instruction
Store

Result

time

38

ARM Pipelined Architecture

ARMY7 and ARMS pipelined architecture

ARM7TDMI Pipeline

Instruction Thumb—ARM| ARM decode Reg Reg

Fetch decompress Reg Select Read | Shift ALU | write

FETCH DECODE EXECUTE

ARMY9TDMI Pipeline

. ARM or Thumb
Instruction Inst Decode Shift Memory Reg
Fetch Reg Reg + ALU Access Write

Decode | Read
FETCH DECODE EXECUTE MEMORY WRITE

39

Pipeline Interlocks

Pipeline interlocks occur when the data required for an instruction
is not available (a “bubble”)

* due to incomplete execution of an earlier instruction thatis to
supply the data.

When an interlock occurs, the hardware stalls the execution of an
instruction until the data is ready.

The number of interlocks can be reduced by re-arranging the order
of instructions and meticulous choice of registers usage

* e.g., achieved through handcraft assembly language
programming OR a very good optimizing compiler

40

