ARM Exception Handling and Vectored
Interrupt Controller

Exceptions

An exception arises whenever the normal flow of
program has to be halted temporarily

*due to the occurrence of an event that needs the
immediate attention of the processor

Can be of two general types:

Interrupts due to the occurrence of events that are
usually asynchronous in nature, benign, and anticipated
(e.g., timer, push button)

*Occurrences of unexpected events that may be
problematic (e.g., memory access error), but can also
be mitigated by proper software design

ARM Exceptions

ARM defines seven possible types of exceptions that
can occur:

*Reset

*Interrupt request IRQ
*Fast interrupt request FIQ
*Software interrupt SWI
*Data abort

*Prefetch abort
*Undefined instruction

Exception Priority

Exceptions are prioritized in the event where multiple
exceptions occur simultaneously.

Highest Reset

Data Abort

FIQ

IRQ

Prefetch Abort

v SWI

Lowest Undefined Instruction

Reset Exception

The reset exception is most commonly encountered
during the application of power to the system.

*But may also be caused by manual application of the
reset signal to the processor pin.

The ARM® processor puts the value 0x00000000 on its
address bus to fetch the instruction code from this
memory location. This is called the RESET VECTOR
*Typically, a branch instruction is found in this location
and takes the processor to the boot-up routine.

Reset Exception (cont’d)

Any program that was running prior to occurrence of the
Reset exception will not be resumed.

*Hence, no saving of the register contents is needed.

On reset, processor operates in the 32-bit ARM state
and Supervisor mode

« allow the initialization of the processor hardware

Data Abort

The Data Abort exception is typically issued by the system memory
controllerin response to an invalid data access:

saccessing areserved area or a non-existing page
sexecuting an unaligned memory access

*writing to the ROM address space

Can be of the following:

*System origin: To support the virtual memory system

*Software origin: Improper C-structures, stray pointer, code ported
from a different processor architecture.

*Hardware origin: Improper memory system design, failure of
marginal hardware design or component.

Prefetch Abort

The Prefetch Abort exception occurs when the processor
tries to fetch an instruction from an invalid address.

For a system with the memory management unit (MMU), this
could be just a page fault.

*MMU will perform a page swap and the processor can retry
the access.

*i.e. a virtual memory system design

For a system without MMU, this should be considered a
fatal error since it cannot continue with no instruction.

Interrupt Request

The ARM core provides two interrupt lines that when
triggered, causes (hardware) interrupts to occur

1.nFIQ: fast interrupt request
2.nIRQ: normal lower priority interrupt request

These interrupts are usually of a non-error origin, most
likely issued by a peripheral that requests for immediate
attention. Examples include:

*network port receiving a data
«timer expired
sexternal signal source (like a push button)

nIRQ is used for a non critical event and of a lower
priority

SWi

A software interrupt (instead of hardware based) that is
generated by a program when executing the instruction

“SWI”_

*An intention interrupt that is associated with a specific
routine number.

Example:

Allow a user program to “call” the OS through System Call.

*When SWIs execute, the processor changes from the User
mode to the Supervisor mode (and disables IRQ interrupts).

*The exception handler then executes the task based on the
SWI number.

Undefined Instruction

The undefined code can be of genuine error (e.g. accidental
execution of data), or intentional design (e.g. to extend
the instruction set).

Example:

Floating-point instructions not supported by the ARM core will
trigger an undefined exception when encountered.

* An exception handler can emulate the floating-point
operation by executing a program routine and returning
the result to the main code.

Fast Interrupts Request

The FIQ has higher handling priority than the IRQ and is
designed to have much reduced interrupt latency.

This is achieved by:

1)assigning the vector address of FIQ to be at the top of the
exceptions’ vector table.

FIQ exception handler can be placed at the vector
address to remove the need to perform the branch.

2)providing more banked registers (R8_FIQ to R12_FIQ) to
further reduce the overhead that would otherwise be spent
saving the content of the registers.

Exception Vector Table

Each exception will cause the processorto branch to a specific

memory location — known collectively as the exception vector table.

Exception Vector Address
Reset - 0x00
Undefined Instruction - 0x04
SWI (or SVC) - 0x08
Prefetch Abort - 0x0C
Data Abort - 0x10
(Reserved) - 0x14
IRQ - 0x18
FIQ - 0x1C

Banked Registers

System and User Fla Supervisor Abort IRG Undefined
yi] r0 i r0 i 0
r r ri r ri r
2 r2 2 r2 2 2
] r3 3 r3 3]
rd rd i rd i i
s rs] rs] 5
ré ré i ré i]
7 7 7 7 7 7
B rB_fig i g i B
¢] ra_fig] a8]]
r10 r10_fig ro r10 alli] rd
r ri1_fig r1 rl r1 1
Mz r2_fig rz rz rz 2
r3 r13_fig r3_svec r13_abt r3_irg r13_und
r4 rid fig rd_svc r14_abt r4_irg ri4_und
r15 (PC) r15 (PC) r5 (PC) | r15 (PC) 5 (PC) 5 (PC)
ARM-state program status registers
| cPsR CPSR PSR | cPsR PSR CPSR
SPSR fig SPSR svc &P SR_abt SPSR i SPSR_und
= banked register

Exception Entrance

When an exception occurs, the processor will automatically perform
a sequence of events before jumping to the exception vector
address

*Copy CPSR to SPSR_<new-mode>
*Set appropriate bits in CPSR
Change to a new exception mode (bit O to bit 4)
Switch to the ARM state (bit 5)
Disable the IRQ interrupt
Disable FIQ if new-mode = Reset and FIQ
Store the return address in LR_<new-mode>
*Change the PC to the appropriate vector address
The processor then jumps to the vector address.

Exception Exit

When the handling routine completes its execution, the
processor will typically resume with the original main
program

sprovided the exception is not caused by an
irrecoverable system error (e.g., hardware failure).

The processor can exit the exception two ways:

suse of a data-processing instruction with the S-bit set,
and the PC as the destination

suse of the Load Multiple with Restore CPSR instruction
(LDM)

Exception Exit

Just before exiting the handler, the processor will

erestore the CPSR with value saved in
SPSR_<new-mode>

srestore the PC with value save in LR_<new-mode>

Depending on the exception type, the processor then
returns to either

* the instruction that caused the exception
or
* its next instruction

Vector Table Instruction

Because there are only 32 bits of memory space in
between the vector address

*it is not possible to have the actual handler code residing in
the vector table

sexcept for FIQ, which is located at the top of the vector table
Hence, only one 32-bit instruction code is allowed in
each vector location, which can be of the following type

*BRANCH: jump to the exception handler (located within the
32 MB range)

*LDR PC: nIRQ’s auto-vectoring to the ISR

Exception Handlers

When an exception occurs, the processor will branch to its

vector address, and eventually proceed to its exception
handler

«the actual code that is responsible to perform the necessary

operation for the particular exception

The handler will use its own set of banked registers

«and save the content of the other shared (non-banked)
registers on the stack

Depending on the exception type, the handler
scould be short and simple, or long and complicated
typically returns to the main code eventually
scompletely bypass using ‘auto-vectoring’

Reset Handler

This is typical due to power-up reset, and hence will
perform the various initializations as required.

Example:

*Set up the vector table

eInitialize the SP

eInitialize the SDRAM controller

eInitialize all critical registers and peripheral devices
*Enable interrupts

*Change the processor state and mode

20

Undefined Instruction Handler

An undefined instruction handler is most commonly
used to further ‘extend’ the instruction set of the
processor.

Example:

The undefined instruction could be that intended for a
coprocessor that is not integrated or functioning.

*The handler can execute the instruction in software,
hence emulating the hardware.

21

Abort Handler

When the abort exception is encountered, the handler
can either

-try to "fix" the error if possible, and return to re-execute
the instruction that caused the exception (E.g. for page
fault, MMU could swap in the correct page and the
processor will retry the access)

or

sreport the error and stop further program execution

22

SWI Handler

Software interrupt is commonly used by a program to
make a system call to the operating system.

*i.e. to request for service identified by the associated
service number

*The processor will be forced to enter the Supervisor
mode

The handler must extract the service number from the
SWI instruction.

*Use the effective address to calculate through the LR
(which contains the subsequent address following the
SWI code in the main program)

23

nFIQ Interrupt Handler

Fast Interrupt will disable the normal IRQ

« its handler should be placed immediately at the FIQ
vector table

« allows very fast entry to the handler

Seven banked registers are also made available in the
FIQ_mode

« the handler only needs to save the other general
purpose register as needed

24

nIRQ Interrupt Handler

The most commonly encountered type of exception

Typically trigged by peripherals and external signal
sources

The handler needs to further identify the source of

the interrupt
before it can execute the specific Interrupt Service Routine (ISR)

For a system that uses

chained-interrupt, the processor polls each of the interrupt
source

standard interrupt controller, the processor checks a device
bitmap registerin the controller

But it is more common to use a Vector Interrupt
Controller in a typical ARM system

25

Vector Interrupt Controller

Vector interrupt controllers can further perform the
following:

eprioritize the multiple interrupts sources

— enable nested interrupt implementation

«directly supply the address of the service routine (ISR)
for the specific interrupt directly to the processor

— typically through a specific register location

26

Case Study: AT91RM9200 Advanced
Interrupt (AIC)

27

Sharing of Interrupt Signals

ARM processor has defined seven exception vectors
*but only two are for interrupt signals: nFIQ and nIRQ

*have to be shared by peripherals and external sources that need
to interrupt the processor

In AT91RM9200, sharing is supported through a vector
interrupt controller

*Advanced Interrupt Controller (AIC)

AIC identifies and supplies the (vector) address of the
ISR to the processor upon the assertion of an interrupt

ssupports up to 32 individually maskable interrupt signals

28

AIC Block Diagram

FIQ 3 AIC
[F— ARM
IRQO-IRQN Processor
Up to
» Thirty-two »| nFIQ

Sources

nlRQ

\ 4

“.. Embedded [|*

Embedded J
Peripheral

Y

29

Interrupt Lines Connection

In AT91RM9200

* nFIQ is not shared
— used by the FIQ input only
* nIRQ is shared by 31 interrupt sources

— 24 for embedded peripherals (e.g., Timer/Counter,
USART)

— Seven for external interrupt sources
Each source is identified by a Peripheral ID

 that matches with the corresponding bit position in
the AIC 32-bit command registers

Example: Setting bit 6 of the AIC’s Interrupt Enable
command registeris equivalentto enabling the
interrupt for peripheral #6.

30

AT91RM9200’s Peripheral ID

The following table list the various peripheral IDs defined for AT91RM9200

Peripheral | Peripheral Peripheral External
ID Mnemonic Name Interrupt
Advanced Interrupt
0 AlC Controller FlQ
1 SYSIRQ System Timer, WDT
2-5 PIOA-PIOD | Parallel I/O Controller Ato D
6-9 US0-US3 USARTO0to 3
10 MCI Multimedia Card Interface
11 ubDP USB Device Port
31
H ’
Peripheral ID (cont’d)

Peripheral | Peripheral Peripheral External
ID Mnemonic Name Interrupt
12 TWI Two-Wire Interface
13 SPI Serial Peripheral Interface

Synchronous Serial
14-16 SSC0-SSC2 Controller 0 to 2
17-22 TCO-TC5 Timer/Counter 0 to 5
23 UHP USB Host Port
24 EMAC Ethernet MAC
Advanced Interrupt IRQO-
25-31 AlC Controller IRQ6

32

AIC Basic Operation

The AIC is preprogrammed with the address of each
enabled interrupt source.

stored in the corresponding source Vector Register (AIC_SVR)

On receiving an interrupt from one of the peripheral:

*The AIC will assertthe corresponding interrupt line of the ARM
processor:

— nFIQ for peripheral #0

— nlIRQ for peripherals #1 to #31
*The AIC also copies the ISR address of the asserted interrupt (in
the AIC_SVR) to its Interrupt Vector Register (AIC_IVR), located at
the fixed location OxFFFFF100.
nFIQ or nIRQ exception handler then
sreads AIC _IVR to retrieve the address of the ISR
sjumps to the ISR location and begins execution

33

Prioritization Support

» AIC contains an internal interrupt priority controller to
support interrupt prioritization

— handles the priority of the interrupt sources 1 to 31
(nF1Q has no priority setting since it is not shared)

— up to eight different programmable priority levels

* When the nIRQ is asserted and the processor is
reading AIC_IVR

— the priority controller checks all pending interrupts, and select
the one with highest priority to supply the ISR address

» For equal priority pending interrupts
— the peripheral with the lowest ID is selected first

34

AIC Interrupt Priority Controller

FIQ ARM
D_, N FIQ Fast Processor
Costlrooller External Source Interrupt >"Fe
Input Stage Controller
> IFIQO-IRQn: >|nira
IRQO-IRQN
PIOIRQ Interrupt 1
> riority
| Internal Source Controller Prgcs;for
Input Stage =
Embedded | [Power
Peripherals »| Management
Advanced Interrupt Controller Wake Controller
Up

35

Nested Interrupt Support

The AIC priority controller also supports interrupt
nesting

«allows higher priority interrupt to be handled during the
service of lower priority interrupt

This requires the ISR of the lower interrupt to re-enable
the nIRQ interrupt before it starts execution.

When a higher priority interrupt occurs

«the current interrupt number and its priority level are saved
in an embedded hardware stack

They are restored when the higher priority interrupt
servicing is finished

sindicated by the writing of the AIC’s End of Interrupt
Command Register (AIC_EOICR) by the exiting ISR

36

AIC Initialization

Operation of AIC involves the initializations of the
relevant registers

1.AIC Source Mode Register (AIC_SMRXx)
—32 of them; one for each peripheral.

—Use for setting the interrupt priority level and active state
(high/low level and +ve/-ve edge sensitive)

2.AIC Source Vector Register (AIC_SVRX)
— 31 of them; one for each peripheral.

— Store the (vector) address of the ISR of each
peripheral.

— nFIQ has its own vector register: AIC_FVR

37

AIC Initialization (cont’d)

3. AIC Interrupt Enable Command Register (AIC_IECR)
and AIC Interrupt Disable Command Register
(AIC_IDCR)

— Enable and Disable of individual interrupt source to support
the maskable interrupt

4. AIC Interrupt Clear Command Register (AIC_ICCR) and
AIC Interrupt Set Command Register (AIC_ISCR)

— Used only for edge-triggered interrupt

— After an edge-triggered interrupt has occurred, clearing is
needed to reset the hardware circuit and reactivate the
interrupt

— AIC performs an automatic clear function when the AIC_IVR is
read by the processor

38

Interrupt Auto-Vectoring

A branchin one single instruction to the ISR of the
interrupting source
scompletely bypasses the nIRQ exception handler

Operation principle:

*Put a ‘LDR PC’ instruction at the nIRQ vector address,
to directly load the Program Counter with the AIC _IVR
content, which cause a direct jump to the ISR in next
clock cycle.

*nIRQ vector address = 0x00000018

39

Interrupt Auto-Vectoring (cont’d)

A branchin one single instruction to the ISR of the
interrupting source
scompletely bypasses the nIRQ exception handler

Operation principle:
Put a ‘LDR PC’ instruction at the nIRQ vector
address

*which directly loads the Program Counter with the
AIC_IVR content

«and causes a direct jump to the ISR in the next clock
cycle.

40

Interrupt Auto-Vectoring Calculation

nIRQ vector address = 0x0000 0018
AIC_IVR address = OxFFFF F100
Instruction to use: LDR PC, [PC, #offset]

Offset calculation: Include processor pipeline (+0x08)
(0x00000018 + 0x08) + #offset = OxFFFFF100
(0x00000020) + #offset = OxFFFFF100

= #offset = OXFFFFFF30

But a 32-bit number exceeds the 12-bit operand storage
size of the LDR instruction. (Recall that ARM uses fixed
length 32-bit instructions when in the ARM state)

41

Interrupt Auto-Vectoring

OxFFFFF100 can be alternatively derived from
0x00000020 — O0xF20 = OxFFFFF100
= #Hoffset = —0xF20

Instruction to be placed at 0x00000018:
LDR PC, [PC, #-0xF20]

Auto-vectoring is usually not used for OS-based system
*The OS’s exception handler usually first check the
source of the interrupt before deciding whether to
executing the ISR

42

Case Study: AT91RM9200 Memory
Remapping

43

AT91RM9200 Booting

ARM processor

« always boots up at memory location 0x00000000
« the first 32 bytes contain the exception vectors of

the ARM processor Internal Memory Mapping
So where do these values POw0o Bootomary)
originate from? 030010 0000
« depend on the boot up ROM f MBytes
ren 0x0020 0000
Condltlon SRAM 1 MBytes
) 0x0030 0000
For the AT91RM9200, it can be from oS Hest | 1 MBytes
« external (Flash) memory 0x0040 0000
* internal ROM Undefined
« internal SRAM (Abort) 248 MBytes

OXOFFF FFFF
44

Boot Mode Selection

Booting up of the AT91RM9200 processoris
» determined by the Boot Mode Select (BMS)
option
» selection is made by the BMS pin sampled at Reset
— BMS =1
Boot program in on-chip ROM
— BMS=0

16-bit non-volatile memory (e.g., parallel Flash)
connected to external chip select zero (NCSO0)

(On the ARM9 board, these are done through the JP1
setting)

45

Program Execution

While it is possible to run a program from external
Flash memory directly

*it is more common to copy the program code to the
volatile RAM (SDRAM and SRAM)

*which is faster, and consumes less power
(with internal SRAM)

However, memory location 0x00000000 is needed
for the exception vector address

*is occupied by the Flash memory

46

Memory Remap

We need to ‘remove’the Flash memory from its
boot-up address space

*how is this possible without the use of hardware
circuitry?

Use the memory remapping concept:

*switch the Flash memory out of the boot-up address
space

*swap in the SRAM memory to the vector address
space

This is performed through software instruction.

47

AT91RM9200 Remapping

Before the execution of the Remap command,
immediately after power-up reset, the internal (boot)
memory Area 0 is mapped to

*external Flash memory (for BMS = 0) or
on-chip ROM (for BMS = 1)

After the execution of the Remap command

(@ MC_RCR)
sinternal SRAM (16 KB for AT91RM9200)

Before Remap After Remap \

BMS State 1 0 (X)

Internal Memory Area 0 Internal ROM External Memory Area 0 Internal SRAW

Before the remap, the SRAM must first be filled with the
proper exception vector address (see the laboratory
exercise on IRQ).

48

