Data Operation Instructions

Data Operation

ARM can only perform data operations on registers.

All data operation instructions can be extended by
adding a suffix to the instructions.

« execute conditionally by adding the conditional suffix.
 alter the status flags by appending the ‘S’ suffix.

When both are used
» the conditional suffix has the first priority.

Types of Data Operation

Data processing operations include the following
instruction types:

* Bit shifting

* Register movement

* Arithmetic

* Multiply

* Logical boolean

» Status flag operation

Instruction Format

Most data operation instructions use one destination
register plus two operands, where the first operand is
always a register Rn (when itis available).

Basic syntax: <OPERATION> Rd, Rn, Op2

The second operand Op2 can be:

* an immediate value

* aregqister

* a register shifted by an immediate value
» aregister shifted by a register

Bit-Shifting Operation

Bit shifting is achieved by the Barrel Shifter

* a hardware circuit that performs the bit shifting within the same
instruction cycle time

Implements four types of shift Rn Rm

operation
. . Barrel shifter
« LSL:logical left shift

« LSR:logical right shift v
« ASR: arithmetic right shift \Arithmetic logic uniy
« ROR: rotate right

Rd
Bit shifting increases the power and flexibility of many
data processing instructions, as shall be seen.

Register Move Instruction

MOV instructions do not use first operands. These instructions simply
move the second operands to the destination register Rd.

Examples:
Copy from one register to another register
MOV rl, r2 ;s rl = r2

Copy an immediate value to a register
MOV rl, #0x32 ; rl = 0x32

MVN r0, rl ; r0O = ~rl
; inversion of the rl content

But the following will not work
MOV rl, #0x504f0000 ; rl = 0x504£f0000 is desired

Constant is larger than 255!!!!

Restricted Use of the Immediate Value

The ARM instruction is of a 32-bit fixed length.

Typical instruction encoding for the immediate operand:
* 4 bits for the condition code

» 3 bits for the class code (i.e., a data processing class)
4 bits for the opcode

1 bit for the set status flag

4 bits for the destination register (i.e., Rd)

4 bits for the first operand register (i.e., Rn)

12 bits left for storing the immediate value in most
arithmetic/logic instructions, which implies that only up to
4096 distinct bit patterns, 8 bits for immediate and 4 bits
for shift.

ARM Approach

Instead of using the whole 12 bits for a single integer, the 12 bits
are split onto two parts, which extend the range but reduce the
precision.

* an 8-bit immediate number (n), giving the number a range
between 0 to 255

* a 4-bit rotation field (r), operated using the Barrel Shifter

The full immediate value is calculated by rotating the number n to
the right by 2r:

value = n ror 2r
Examples: 200 is coded as n =200, value=0, r=0
0x06000000iscoded as n=6, value=4, r=2

Restricted Numbers

But only numbers whose bit pattern can fit into one byte can be
generated.

Examples:

a) 0x08200000 is valid as it can be generated using n = 0x82 (and
then rotate it by 12 positions)

b) 0x08210000 is invalid as its ‘821’ hex bit pattern stretches over
12 bits and hence cannot be specified by the 8-bit n field

Invalid numbers can be generated in multiple instructions, but more
conveniently, loaded from memory (accessed using PC-relative
addressing)

Pseudo-Instruction LDR

Instead of letting the programmer check whether a number is
‘constructible’

» a special form of the LDR instruction is available
LDR Rd,=num
» a Load immediate instruction, replacing ‘# with ‘=".

The assembler will check the number

» use MOV if the number can be generated

» store the invalid number into memory (somewhere
nearby the instruction), and load it using PC-relative L.DR

The space that the number needs will be created automatically by
the assembler — the literal pool.

Examples

Data value 511 = 0x0000 01FF

O0x1FF = 0b0001 1111 1111, where the non ‘0’ bit pattern spreads
over nine bits

So the following is an invalid instruction
MOV rl, #511 ; lllegal instruction

Possible alternatives:
(1) MOV rl,#1, 24 ;256 =(1ror24),i.e., constructible
ADD rl, #255 : 256+255 = 511

(ii) LDR rl, 1p0 ;loadfrom memory
1p0: .word 511 ;declaredwith Ox1FF

(iii) LDR rl, =511 ; letthe assemblerdo the work

MOV Variations

(i) Usage of the bit-shifting operation with the MOV instruction

(@) Performs very fast multiplication and division
Left shift = multiply by 2
Right shift = divide by 2
Example:
MOV rl, r2, 1lsl #2 ; rl r2 << 2

4 x r2

(b) Convenientway to perform bit masking
Example:
MOV rl, #0x1, 1sl 15 ; rl = 0x00000001 << 15
0x00008000

; i.e. set bit 15
(i) Addingan ‘S’ suffix on a data processing instruction will also

update the corresponding flags in the CPSR.
Example:
MOVS rl, r2, LSL #1 ; rl= (r2<<1)

Arithmetic Instructions

Program Status Registers

1 20 Z7 4 PAl

1015

o U 0) 4 U

NzZCvVvVQ J U n d e £

i

n e

d

IFT mode

£ s

» Condition code flags
— N = Negative result from ALU
— Z = Zero result from ALU
— C =ALU operation Carried out
— V = ALU operation oVerflowed

+ Sticky Overflow flag - Q flag
— Architecture 5TE/J only
— Indicates if saturation has occurred

e Jbit
— Architecture 5TEJ only
— J=1: Processorin Jazelle state

X

Interrupt Disable bits.

| =1: Disables the IRQ.
F = 1: Disables the FIQ.

T Bit

Architecture xT only
T = 0: Processor in ARM state

T = 1: Processor in Thumb state

Mode bits

Specify the processor mode

Status Flag Operation

« Can only be Set/Reset by:
— Appending an ‘S’ to end of Instruction Mnemonic (eg. EORS)
— Executing Special Instructions Made to Set/Reset Flags

* N Flag — Checks for a Negative results by Checking
MSb of Value

* V Flag — Signed Overflow (XOR of carry-in and carry-
out of MSb)

« Z Flag — Zero flag, set when result is all ‘O’s

C Flag — Set when:

— Addition result greater than or equal to 232

— Result of subtraction is positive

— result of inline barrel shifter operation in MOV or logic
instruction

Logical Instructions

Logical instructions perform the boolean operation on the pair of
operands, and are useful for bit masking purposes.

(E.g., clear status bit or change interrupt masks in CPSR)

and: Logical bitwise AND

orr: Logical bitwise inclusive OR

eor: Logical bitwise exclusive OR

bic: Logical bit clear [bitwise AND(op1, NOT(op2))]

Examples: LSB mask, single bit clear, multiple bit clear

and rO0, rl, #0xff ; rO0O <- lowest byte of rl
bic r0, rl, #0x10 ; clear bit 5, result in r0
bic r0, rl, #0x5 ; clear bits 0 and 2

Comparison Instructions

These four instructions set the status bits/flags (N, Z, C, V) in the
PSR according to the results of their operations.

CMP: compare, using subtraction

CMN: compare negated, using addition

TEQ: test for equality, using XOR — does not affect V flag
TST: test bit(s), using AND — does not affect V flag

Example:
CMP r0, #2 ; execute rO - 2 and set N,Z%Z,C,V
; flag bits accordingly

; do not store r0-2 anywhere

Equivalent of Compare

Equivalent functionalities can also be done using regular
instructions with the ‘S’ suffix.

Example:
SUBS can be used in place of CMP

The difference is no registeris used to hold the result when using
the CMP status operation.

These instructions are typically used to implement flow control with
the Branch instructions.

CMN Instruction

Inverse of CMP instruction — adds values instead of subtracting

Negates second operand, then subtracts (so effectively adds)

Example: decimal
cmn r0, #-20 ;—20=0xffffffec

same as
hexadecimal
cmp r0, #0x14 ;+20=0x00000014

TEQ and TST Instructions

Does not affect V Flag

TST is Useful to determine if one or more bits are set (or clear)

TST is often used with a constant called a “MASK”

TEQ is useful for determining if the content of two registers contains

identical values

20

31

28 27

NzZCV

PSR access

24 23 19 16 15 10 9 8 7 6 5 4 0
de GE[3:0]| IT cond abc|E A|JI F mode

£

| s % | c |

+ MRS and MSR allow contents of CPSR / SPSR to be transferred to / from a
general purpose register or take an immediate value
- MSR allows the whole status register, or just parts of it to be updated

* Interrupts can be enable/disabled and modes changed, by writing to the CPSR
— Typically a read/modify/write strategy should be used:

MRS r0,CPSR ; copy CPSR into r0
BIC r0,r0,#0x80 ; clear bit 7 to enable IRQ
MSR CPSR c,r0 ; write modified wvalue to ‘c’ byte only

* In User Mode, all bits can be read but only the condition flags (f) can be
modified
* (Note: These instructions clear the IRQ bit in CPSR, which enables the IRQ
interrupt.)

21

Logic Instructions

Perform Boolean algebra operations on operands

*movn.

* and:

*Orr.

*cor.

*bic:

Example:
and
orr
eor
bic

copy value and negate

logical AND operation (bit-by-bit)

logical (inclusive) OR operation (bit-by-bit)
logical (exclusive) OR operation (bit-by-bit)
bit clear operation

rl, r2, r3;rl <- r2 AND r3

rl, r2, r3;rl <- r2 OR r3

rl, r2, r3;rl <- r2 EOR r3

rl, r2, r3;rl <- r2 AND (NOT r3)

To clear upper byte of r3:

bic

r2, r3, #0xff000000 2

Shifts and Rotates

Operand 1

|

Internal Datapath

Operand2 * Unique Feature of ARM

» Before we saw this for

» Two Types of Shifts:

— logical (unsigned data)

|

Result

does Same Thing

Constants and Literals

— arithmetic (signed data)

* No Rotate Left since Same
as Rotate (32-n) Right

* No ASL Since Regular LSL

23

Shifts and Rotates

LSL

LSR

ASR

ROR

RRX

logical left n-bit shift — mult by 27

by 27

4

logical right n-bit shift — unsigned div.
0 — 00
arithmetic right n-bit shift — signed div. by 2"
— 00
rotate right by n bits — 32-bit rotate
- 00

[o] ’_L_‘

rotate right extended by 1 bit — 33-bit rotate

{

24

Shift and Rotate Examples

mov r4, ro, LSL #4 ;rd <- r6 << 4 Dbits
mov r4, r6, LSL r3 ;rd <- ro << # 1in r3

mov r4, ro, ROR #12;r4 <- r6 rotated
;left by 20 bits

« All shifts take one clock cycle EXCEPT register specified

* Register specified take 2 since only two read ports on
register file

« Shift count is either unsigned 5-bit value OR LSB in register

25

Moving Byte in Reg to Another Reg

mov r0, r2, LSR #24 ;LSB of r0<-MSB of r2

orr r3, r0, r3, LSL #8 ;shift up r3 and

;insert r0
» Above Sequence Moves MSB byte in r2 to LSB of r3

» Sequence Requires 2 clock cycles - only two read
ports on register file

EXAMPLE

before instr sequence
*rQ: Oxffffffff, r2: Oxaaeeeeee, r3: 0x55555555

after instr sequence
*r0<-0x000000aa, r2: Oxaaeeeeee, r3<-0x55555baa

26

Adding and Subtracting

Perform addition and subtraction of 32-bit signed and unsigned values.

« ADD: Addition

« ADC: Addition with Carry — Useful for Multiword Arith (need S flag)
* SUB: Subtract

* SBC: Subtract with Carry — Useful for Multiword Arith (need S flag)
* RSB: Reverse Subtract— Useful for Arithmetic

*RSC: Reverse Subtract with Carry

Example:

SUB r0, rl, r2 ;r0 <= rl - r2

SUB r0, #0, rl ;r0 <= #0 - rl = -rl (negate a number)
RSB r0, rl, #0 ;r0 <— #0 - rl = -rl (negate a number)

Used for loop counting
SUBS r0, r0, #1 ;r0 <= r0 - 1, 8 suffix to set Zero flag
; when r0 <- zero

27

Adding and Subtracting

Perform addition and subtraction of 32-bit signed and unsigned values.
add rl, r2, r3 ;rl <— r2+r3 C=1 when carry

adc rl, r2, r3 ;rl <- r2+r3+Ck////mmw&CkOomQWSe
sub rl, r2, r3 ;rl <- r2-r3

sbc rl, r2, r3 ;rl <—- ((r2-r3)+C)-1

rsb rl, r2, r3 ;rl <- r3-r2

rsc rl, r2, r3 ;rl <= ((r3-r2)+C)-1 C=0when borrow

occurs, C=1 otherwise

Example: Add 64-bit value in r3:r2 with 64-bit value in r1:r0 result in r5:r4
adds r4, r0, r2 ;rd <- r0 + r2, set flags
add r5, rl, r3 ;r0 <= #0 - r1 = -rl (negate a number)

Subtract r3:r2 from r1:r0 with difference in r5:r4
subs r4d, r0, r2 ;rd <- r0 - r2, set flags
sbc r5, rl, r3 ;r5 <= (rl - r3)+(C-1)

28

adc rl, r2, r3 ;rl<-(r2-r3)+C

* Example: add one 8-bit value from another

1111 1101
+1101 1110
1101 1011
* Now Assume Two 4-bit Registers
1101 1111
1110 +1101
1011 1100
Carry-out so C=1 1

1101 2

Add two 32-bit Integers

rl r0
+ r3 r2
rb r4

adds r4, r0, r2;r4<-(r0+r2) & set flags
adc rb5, rl, r3;r5<-(rl+r3)+ C
& don't set flags

30

sbc rl, r2, r3 ;rl<-((r2-r3)+C)-1

* Example: Subtract one 8-bit value from another

1111 0001
-1101 0010
0001 1111
* Now Assume Two 4-bit Registers
0001 1111
0010 -1101
1111 0010
Need Borrow-in so C=0 —— 1

0001 ¥

Subtract two 96-bit Integers

r8 r7 ro
- rll rl10 r9
rb r4 r3

subs r3, r6, r9;r3<-(r6-r9) & set flags
sbcs r4, r7, rl0 ;rd4<-(r7-rl10)+(C-1)
& set flags
sbc r5, r8, rll ;r5<—-(r8-rll)+ (C-1)
; & don't set flags

32

Bit-Shifting Arithmetic

Bit shifting by the barrel shifter, when coupled with the
Arithmetic instruction, provide powerful flexibility to the
ARM instruction set.

Examples:

add r0, rl, rl, 1sl #3 ; r0O <- rl+(rl<<3)
; = rl*9

rsb r0, rl, rl, 1sl #4 ; r0 <- (rl<<4)-rl
; = rl1*15

33

Bit-Shifting Arithmetic

Bit shifting by the barrel shifter, when coupled with the
Arithmetic instruction, provide powerful flexibility to the
ARM instruction set.

Examples: Subtraction is NOT commutative

sub r0, r2, r3, 1lsl #2 ; r0 <- r2-(4*r3)
;diff (r0)<-subtrahend (r2) -minuend(4*r3)

rsb r0, r3, r2, 1lsl #2 ; r0O <- (4*r2)-r3
;diff (r0)<-subtrahend (4*r2)-minuend (r3)

Barrell Shifter on last operand side of ALU
so rsb allows its use in subtrahend

operand
34

Absolute Value (2's Comp)

Set flags then use Condition form of rbs (1t suffix-less
than)

Example: 1t suffix conditionally executes rbs
cmp rl, #0 ;set/reset N flag
;N=1 1if rl is negative
rsblt r0, rl, #0 ,; three cases:
;nop 1if r1=0x0 (N=0)
;r0 <- 0x0 - rl if N=1
;nop 1if r0>0x0 (N=0)

35

Absolute Value (Signed Mag)

Clear MSb of r0

Example: Clear MSb of r0 and place result in r0
bic r0, r0, 0x2, 1sl #30 ;clear MSb of r0

36

Multiply Instructions

These instructions multiply the contents of a pair of registers, with
support for 32-bit operand and LSW 32-bit product

For 32-bit multiplication:
mul: multiply - unsigned

mla: multiply and accumulate — unsigned

Example: Unsigned multiply and multiply/accumulate

mul rl, r2, r3 ;rl <- r2 x r3
mla r0, rl, r2, r3 ;r0 <= (rl x r2) + r3
mla r3, rl, r2, r3 ;r3 <- (rl x r2) + r3

Only the lower 32 bits (LSW) of the 64-bit results are stored

37

Multiply Instructions (cont)

These instructions multiply the contents of a pair of registers, with
support for 16-bit operands and 32-bit product. Specify which halfword
of operand registers to use with <x> and <y> setto "o" (LSHW) or "t"
(MSHW)

For 16-bit multiplication
smul<x><y>:multiply - signed
smla<x><y>:multiply and accumulate — signed

Example: Unsigned multiply and multiply/accumulate
smulbt rl1, r2, r3 ; rl<- LSHW(r2)x MSHW (r3)

smlatt r0, rl, r2, r3 ; r0<- MSHW(rl)x MSHW (r2)+r3
smlatt r3, rl, r2, r3 ; r3<- MSHW(rl)x MSHW (r2)+r3

38

Multiply Instructions (cont)

These instructions multiply the contents of a pair of registers, with
support for 32-bit operand with 16-bit operand and 32-bit product.
Specify which halfword of operand register to use with <y> set to "b"
(LSHW) or "t" (MSHW)

For 16-bit multiplication
smulw<y>: multiply - signed
smlaw<y>: multiply and accumulate — signed

Example: Unsigned multiply and multiply/accumulate
smulwt rl, r2, r3 ; rl = r2 x MSHW(r3)

smlawb r0, rl, r2, r3 ; rO0O = rl x LSHW(r2)+zr3
smlawb r3, rl, r2, r3 ; r3 = rl x LSHW(r2)-+zr3

39

Multiply Instructions (cont)

These instructions multiply the contents of a pair of registers, with
support for 32-bit operands with 64-bit product.

For 64-bit multiplication
smull:signed multiply long

umull:unsigned multiply long MSW Product is r1 1!

Example:
smull r0,rl4étT2,r3 ; (rl:r0)<-sign(r2) x sign(r3)

Note that Multiply instructions do not support the immediate values!

A constant value has to be loaded into the register first.

40

Multiply Instructions (cont)

These instructions multiply/accum the contents of a pair of registers, with
support for 32-bit operands with 64-bit product.

For 64-bit multiply and accumulate
smlal:signed multiply and accumulate long

umlal:unsigned multiply accumulate long

Example:
smlal rO,rl,r2,r3 ; (rl:r0)<-sign(r2)x sign(r3)+(rl:r0)

4

Multiply Instructions (cont)

These are DUAL multiply instructions that use 16-bit operands with 32-bit
result.

For dual 16-bit multiply and add/subtract products

smuad: signed dual multiply and add products together. Multiplies LSHW
16-bits of two operand regs and also mulitplies MSHW 16-bits of two
operands then adds the two products together and stores 32-bit result

smusd: signed dual multiply and subtract products. Multiplies LSHW 16-
bits of two operand regs and also mulitplies MSHW 16-bits of two operands
then subtracts the two products and stores 32-bit result

Example:

smusd rl,r2,r3 ;r1<-[signed (LSHW (r2)xLSHW (r3))]
; - [signed (MSHW (r2) xMSHW (r3))]

Note: MSW products Subtracted from LSW products!!!

Multiply Instructions (cont)

These are DUAL multiply and accumulate instructions that use 16-bit
operands with 32-bit result.

For dual 16-bit multiply and add/subtract products

smlad: signed dual multiply and add products together. Multiplies LSHW
16-bits of two operand regs and also mulitplies MSHW 16-bits of two
operands then adds the two products together and accumulates with 32-bit
result

smlsd: signed dual multiply and subtract products. Multiplies LSHW 16-
bits of two operand regs and also mulitplies MSHW 16-bits of two operands
then subtracts the two products and accumulates with 32-bit result
Example:
smlsd rl,r2,r3 ;r1<-[signed(LSHW (r2)xLSHW (r3))]

; - [signed (MSHW (r2)xMSHW (r3))] + rl

Note: MSW products Subtracted from LSW products!!!

Multiply Instructions (cont)

32 Multiply with MS 32-bits of Product
For 32-bit multiply and MS 32-bits Product:

smmul { r}: Keeps MSW of Product only, Optional "r" causes rounding,
otherwise truncated result.

Example:

smmul rl,r2,r3 ;rl<-truncated[MSW (r2xr3)]
smmulr rl,r2,r3 ;rl<-rounded [MSW (r2xr3)]

44

Multiply Instructions (cont)

32 Multiply with MS 32-bits of Product with 32-bit Accumulation
For dual 32-bit multiply and MS 32-bits Product:

smmla{r}:Keeps MSW of Product only, Optional "r" causes rounding,
otherwise truncated result and accumulates.

smmls{r}:Keeps MSW of Product only, Optional "r" causes rounding,
otherwise truncated result and subtracts from destination.

Example:
smmla rl,r2,r3 ;rl<- rl + truncated[MSW (r2xr3)]
smmlsr rl,r2,r3 ;rl<- rl - rounded[MSW(r2xr3)]

45

Multiply Instructions (cont)

Dual 16-bit signed multiply with addition or subtraction of products and 64-bit
accumulation

smlald{x}:Dual multiply of halfwords of operands and adds them
together. Optional "x" exchanges LS and MS words of second operand before
multiplication. Accumulatesthe sum of products.

smlsld{r}:Dual multiply of halfwords of operands and adds them
together. Optional "x" exchanges LS and MS words of second operand before
multiplication. Accumulates the difference of products.

Example:
smlald rl,r2,r3,r4 ; (r2:rl)<-signed[LS (r3)xLS(r4)]
; + signed[MS (r3)xMS(r4)]+(r2:rl)
smlaldx «rl,r2,r3,r4 ;(r2:rl)<-signed[LS(r3)xMS(r4)]
; + signed[MS (r3)xLS(r4d)]+(r2:rl)

46

Multiply Instructions (cont)

Unsigned mulitply/accumulate for long operands

umaal: Multiplies 32-bits in r3 and r4, adds the two valuesin r1 and r2,
and stores the resultin r1 and r2.

Example:
umaal rl,r2,r3,r4 ;(r2,rl)<-(r2,rl) +unsigned (r3xr4)

47

Multiply Instructions (cont)

Some ARM processors have special purpose Internal Accumulators named
acc<x>.<x>is anintegerfrom 1 to n, and n differs for various processors.

This internal Accumulatoris 40-bits in length.

mia: Multiplies 32-bitsin r1 and r2, accumulates productin internal
acc<x>

miaph : Multiply packed halfwords (16-bits) and accumulate. Multiplies
signed halfwords from LS of r1 and r2, and also multiplies MS signed
halfwords of r1 and r2. Then accumulates both 32-bit products in internal
40-bit acc<x>

mia<x><y>: Multiplies signed 16-bit value from selected half of r1 with
that of selected half of r2. Then accumulates the 32-bit resultin acc<x>.
<x>and <y> can be either "b" or "t" for bottom or top.

Example:

mia accO,rl,r2 ;acclO0<-accO0 + signed(rlxr2)
48

Multiply and Divide Summary

There are several classes of multiply - producing 32-bit and 64-bit results
32-bit versions on an ARM7TDMIwill executein 2 - 5 cycles (RISC??77?)

- mul r0, rl, r2 ; r0 <= rl * r2

- mla rO0, rl, r2, r3 ; rO <- (rl * r2) + r3

64-bit multiply instructions offer both signed and unsigned versions
— Fortheseinstruction there are 2 destination registers

- [uls]mull r4, r5, r2, r3 ; r5:r4d <- r2 * r3
- [uls]mlal r4, r5, r2, r3 ; r5:rd4d <- (r2 * r3) + rb:r4
Most ARM cores do not offer integer divide instructions

— Division operations will be performed by C library routines or inline shifts
— Cortex-M3 does have division circuitry

49

mul r0, rl, r2
mla r0, rl, r2, r3
muls r7, r8, r9

smull r4, r8, r2, r3

Multiply Examples

; r0 <- rl * r2

; r0O <= (rl * r2) + r3

; r7 <- r8*r9, set flags

; r4d <- LSW of sign(r2*r3)
; r8 <- MSW of sign(r2*r3)
; signed arithmetic

umull r6, r8, r0O, rl ; r8:r6 <- rO*rl (uns. arith)

smlal r4, r8, r2, r3 ; r8:r4 <- (LSW of r2*r3 +

umlal r5 r8, r0, rl

; MSW of r28r3) + r8:r4

; signed arithmetic

; r8:r5 <= (rO0*rl)+(r8:rb)
; unsigned arithmetic

50

More Examples

Let r0 contain A, r1 contain B, and r2 contain C

mov

add

rsb

sub

add

rl,

ro,

r0,

ro,

r0,

r0,

rl,

r2,

r0,

r0,

LSL

rl,

r2,

rl,

rl,

#2

LSL

LSL

LSL

LSL

#2

#3

#4

#7

B

51

More Examples

Let r0 contain A, r1 contain B, and r2 contain C

mov

add

rsb

sub

add

rl,

ro,

r0,

ro,

r0,

r0,

rl,

r2,

r2,

r2,

LSL #2

rl,

r2,

rl,

rl,

LSL

LSL

LSL

LSL

#2

#3

#4

#7

B

= 4A

= 5A

= 7C

= C - 16B
= 128B+C

52

Another Example

r1 contains A, What does r0 Contain after instructions:
add r0, rl, rl, LSL #1 ; r0 <= 7

sub r0, r0O, rl, LSL #4 ; r0 <= ?
add r0, r0, rl, LSL #7 ; r0 <- ?

53

Another Example

r1 contains A, What does r0 Contain after instructions:
add r0, rl, rl, LSL #1 ; r0 <- 3A

sub r0, r0O, rl, LSL #4 ; r0 <- 3A - 16A = -13A
add r0, rO, rl, LSL #7 ; r0 <- -13A + 128A = 115A

54

