Flow Control Instructions

Program Flow

Flow control instructions are used to divert the flow of the program.

These instructions are used to implement loops and subroutine
calls.

The basic instruction is the Branch.

Conditional affixes can be added to the Branch instructions to
enable choices.

Allow conditional execution of codes when coupled with the status
bit operation instructions.

Branch Instructions

Branch instructions change the flow of a program

« by modifying the program counter (registerr15)

The most basic branch instruction is
B: Branch
Example:

B _Label0O ; branch to labelO

_Label0O: MOV rl, r2

The branch becomes more flexible when it is used together with the
conditional codes.

Branches on ARM 7TDMI

b: Branch typically used with Condition Codes, b<cond code>

SPECIAL FORMS OF BRANCH:

bx: Branch and Exchange: Direct branch with registered value
AND Switches from 32-bit ARM to 16-bit THUMB
Instructions

bl: Branch and Link: r14 (or 1r) the Link Register holds a
Return Address after Branch Instruction.
Used with subroutines
- Return Address (after b1 Inst)isin r14 (or 1r) (proc stores)
-Valueof r14 (or 1r) placedinto r15 (or pc) at end of
subroutine (programmer must do this)

Condition Codes

Conditional codes (16 altogether) are used as affixes with the
branch to enable choices depending on the settings of the various
CPSR’s status bits/flags (Z, N, C, V).

Some commonly used examples:

CHECK MEANING
EQ Z=1 equal to Zero
NE Z=0 not equal (Zero)
GE N=V greater than or equal to (signed)
LT NI=V less than (signed)
GT Z=0 & N=V greater than (signed)
LE Z=1 | N!=V less than or equal to (signed)
CS C=1 carry set
cC C=0 carry clear

Conditional Branch

A conditional branch is constructed by adding the conditional suffix
to the basic branch instruction.
The branch will take effect if the condition is met.

Examples:

BEQ Branch on equal

BNE Branch on not equal

BGE Branch when greater or equal to (signed)
BLT Branch when less than (signed)

To use these instructions, they have to be preceded with the
appropriate data processing instructions that set the respective
status flags.

More Condition Codes

EQ Z=1

NE Z=0

GE N>=V

LT N!=V

GT Z=0 & N=V
LE Z=1 | N!=V
CS/HS C=1
CC/LO C=0

MI N=1

PL N=0

VS V=1

vC V=0

HI C=1&Z=0
LS C=0|Z=1
AL always

equal to Zero

not Zero

greater or equal to (signed)

less than (signed)

greater than (signed)

less or equal to (signed)

carry set (unsigned higher or equal)
carry clear (unsigned lower)
Negative

Positive or Zero

Overflow

No Overflow

Unsigned >

Unsigned <=

Default ;

Conditional Branch Example

Preceding the conditional branch with the status flag setting

operating instructions.

Example:
CMP r0, #0
BEQ label0

_labelO: LDR rl, [r2]

Equivalent code:

SUBS r0, rl,
BEQ label0

_labelO: LDR rl, [r2]

; rO = 0? set/reset Z

; 1f equal (Z2=1), branch

; execute for rO0 = 0

#0 ; r0O =rl -0

; 1if 2z = 1, branch

; execute for rO =0

Branch and Link

This instruction is used for executing a subroutine/function call,
where the program has to return to the code after the branch
instruction.

BL:

Branch and link

The link register (LR, which is r14) saves the address of the next
instruction after BL. before executing the branch.

When the function completes its execution, it loads its PC with the
LR register value to effect the return.

Subroutine Call

Example (use of BL)

BL

MOV

_subr:
MOV
MOV

_subr; branch to subroutine, lr holds

; address

rl, r4

r4, #rslt
pc, 1lr

of next instr. (mov)

; get the value in r4 into rl

; subroutine starts here

; store return result in r4
; load PC with 1r
; cause a jump to the mov

; instruction above

Branch and Exchange

This branch instruction provides the mechanism for the processor
to change between the 32-bit ARM state and the 16-bit Thumb®
state. (see more later)

It also takes a register as its argument (instead of a label as in the
case of B and BL).

Example:
BX rld : load the PC with the contentof r14 & branch

It is usually also used to return from function when changing states,
in place of the instruction MOV pc, lr

Subroutine Call

Example (use of BX)

MOV rl, r2 ; get value of r2 into rl

BL _subr; branch to subroutine, 1lr holds

; address of next instr. (MOV)

MOV rl, r4 ; get the value in r4 into rl
_subr: ; subroutine starts here

CMP rl, #0 ; test rl = 07

BXEQ 1r ; 1f zero, change state & return

MOV r4, #rslt ; store return result in r4

BX 1r ; load PC with lr & branch

; & change state

b And bl Formats

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 1 0 1| L Address Offset

\ L=0 Indicates Direct Branch (b)
L=1 Indicates Branch and Link (b1)

» After Instruction is Decoded, bits 23:0 are Added to
the pc (r15)

» Before Adding, bits 23:0 are Left Shifted by 2 bits
(Instructions are Aligned in Memory)

« Jump Ranges is then +/- 225

» Offset is Signed — 26 bits since MSb is Sign bit

* What if Farther Jump is Required?

Jumps Farther than 32k

« What if Farther Jump is Required?
e r15 can be Treated as General Purpose Register

ldr pc, =0xbe000000
OR
mov pc, #0x04000000
OR
ldr r3, =0x055000aa
bx r3 ;rl5 <- r3 & change state

for Loop

for (j=0; Jj<10; j++) {instructions}

mov rl, #0 ;] <=0
LOOP cmp rl, #10 ;<10 2
bge DONE

; inner loop instructions here
add rl, rl, #1 ;increment j (j++)

b LOOP
DONE

Instructions with Condition Codes

Branch Penalties due to Control Hazards
- Can Cost Many Clock Cycles

ARM’s Conditional Instructions with Suffixes
Can Reduce Frequent Pipeline Flushing

When Condition not met, a nop is Executed
Resulting ina Single Cycle

No Need to Flush Instruction Pipeline

Control Hazards in the Pipeline

» Why Architects DON'T LIKE “jumps”
« ARM7TDMI 3-stage Instruction Pipeline in Datapath

0x8000 bl | FETCH ||DBKDE||EXBXHE|LWKRE‘”AD&BT
0x8004 eor | Fercr || pecooe | | Not
0x8008 and | FetcH | I Executed
0x8Ffec add FETCH ”DHmDE|Emmum|
0x8ff0 sub | Ferch || pecop || Execute|
0x8ff4 mov |iEmH || pEcop |
0x8££8 mov
Branch
Penalty =2
17
for Loop
; for (j=0; j<10; j++) {instructions}
mov rl, #0 ;] <=0
LOOP cmp rl, #10 ;<10 2
bge DONE

loop instructions here

;increment 7 (j++)

DONE

POTENTIAL CONTROL HAZARDS HERE

for Loop — Better Way

LOOP

DONE

for (j=0; Jj<10; j++) {instructions}

mov rl, #10 ;J <= 10

; inner loop instructions here
subs rl, rl, #1 ;decrement j
bne LOOP

NOW ONLY HAVE A SINGLE BRANCH INSTRUCTION

Another Example of Loop

BASE

LOOP

DONE

arrayb

for (i=0; i<8; 1i++)

{

ali]l = bl7-1];
t
AREA Prog8b, CODE, READONLY
EQU 0x8000
ENTRY
mov r0, #0 ;i <- 0
adr rl, arrayb ;load address of array (pseudo-inst)
mov r2, #BASE ;ali] starts here
cmp r0, #8 ;1=8 2
bge DONE ;if i<8, proceed
rsb r3, r0, #7 ;index <- 7-1
ldrb r5, [rl, r3] ;load b[7-1]
strb r5, [r2, 0] ;store into afli]
add r0, r0, #1 ;increment 1
b LOOP
b DONE
ALIGN
DCB OxA, 0x9, 0x8, 0x7, 0x6, 0x5, 0x4, 0x3

END

20

Another Example of Loop

sum = 0;

for (i=0; 1i<6; i++)
{
sum += al[i];

}

AREA Prog8c, CODE, READONLY

ENTRY
mov r0, #0 ;sum <- 0
mov rl, #5 ;# of elements - 1
adr rl, arraya ;load address of array
LOOP 1ldr r3, [r2, rl, LSL #2] ;load value from memory
add r0, r3, r0 ;sum += ali]
subs rl, rl, #1 ;1<- 1 -1
bge LOOP
DONE b DONE
ALIGN
arrayb DCB -1, -2, -3, -4, -5, -6
END

21

Euclid’s Algorithm

- Method for Finding Greatest Common Divisor
(GCD) of Two Values

» Key Element of Many Encryption and Other
Arithmetic Algorithms

» GCD is Largest Value that Divides Two

Numbers with a Zero-valued Remainder

« Example:

GCD(9,12)=3
GCD(252,105)=21

22

Euclid’s Algorithm

- Idea is to Determine Largest of Two Values

and Subtract Smaller from Larger

» Repeat Until One of the Values Becomes Zero
(OR two arguments are equal)

* Example:

GCD(252,105)=GCD[(252-105),105]
=GCD(147,105)=GCD[(147-105),105)
=GCD(42,105)=GCD[(105-42),42]
=GCD(63,42)=GCD][(63-42),42]
=GCD(21,42)=GCD[(42-21),21]
=GCD(21,21)=GCD[(21-21),21]
=GCD(21,0)=21

23

Do While Example — Euclid’s Alg

while (a !'= b) {
if (a>b) a = a - b;
else b = b - a;

}

GCD cmp r0, rl ;a > b ?
beqg DONE ;if a=b, done
blt LESS ;load address of array
sub r0, r0, rl ;a <- a - b
b GCD ;loop again
LESS sub rl, rl, rO0 ;b <- b - a
b GCD
DONE b DONE

« This Code has Many Branches and Delay
Penalties

24

Do While Example — Euclid’s Alg

while (a !'= b) {
if (a>b) a = a - b;
else b = b - a;

}

GCD cmp r0, rl ;a > b 2
subgt r0, r0, rl ;a <- a-b if a>b
sublt rl, rl, r0 ;b <- b-a if a<b
bne GCD ;loop if a !'= Db

* This Code Only has the Loop Branch !I!!

25

Conditional Example

; if (char == ‘!’ || char == '?') found++;
teq rO, #'!7/ ;1f {r0=N!"} Z=1
tegqne r0, #’'?’ ;1f Z=0, check for

{rO0=Y2"}

addeq rl, rl, #1 ;if Z=1, rl <- rl1+1
* First Instruc XORs bit-by-bit, Sets Z

» Second Instruc Only Executes if Z=0
» Third Instruction Increments only if Found

26

Loop Unrolling

mov rl, #3 ;J=3

LOOP mla r3, r2, r4, r5 ;r3 <- r2*r4 + r5
subs rl, rl, #1 ;J<-j-1 & set flags
bne LOOP ;if 7Zz=0, branch

 aka Straight-Line Coding
* To Avoid Control Hazards

mla r3, r2, r4, r5 ;r3 <= r2*r4d 4+ r5
sub rl, rl, #1 ;iteration 1
mla r3, r2, r4, r5 ;r3 <—- r2*r4d 4+ r5
sub rl, rl, #1 ;iteration 2
mla r3, r2, r4, r5 ;r3 <— r2*r4d 4+ r5
sub rl, rl, #1 ;iteration 3

27

Normalization Example

Many Arithmetic Operations Require the MSb
in a Registerto be “1” for maximum precision

Floating Point Mantissa is Example — Allows
for Maximizing Quantity Resolution

ARM Instruction Set Incorporates a Special
Instruction for this Purpose, c1z in Version

S5Te
Not Presentin Version4 (ARM7TDMI)

Must Write a Program to Perform this
Operation

28

Normalization Example

AREA Prog8a, CODE, READONLY
ENTRY

Main mov rd4, #0 ;clear shift count

cmp r3, #0 ;orig value <=07?

ble Finish ;if yes, Finish
Loop movs_r3, r3, LSL #1 ;shift 1 bit

add rd, #1 ;incr. shift count

;branch if N=0

bpl Loop

Finish Db Finish ;processing complete

END

ii POTENTIAL CONTROL HAZARDS HERE

29

Normalization Example

Rewrite Normalization Code
with Loop Unrolling

First Check 8 MSbs
Then Check 4 MSbs
Then Check 2 MSbs
Then Check 1 MSb

30

Normalization Example

ENTRY

sgal ; Normalization on ARM7TDMI, Argument in r0
; Shift count returned in rl
St L SHIFT RN r0 ;alias for r0
e X RN rl ;alias for rl
AREA Prog8d, CODE, READONLY
ENTRY
mov SHIFT, #0 ; SHIFT=0
cmp X, #1<<16 ;check (X-(1<<16))
movce X, X, LSL#16 ; {X<-X<<1l6 1f C=0;
addcc SHIFT, SHIFT, #16 ;SHIFT +=16 if C=0; }
“f;;fz tst X, #0xff000000 ;1f (X< (1<<24))
moveq X, X, LSL#8 s { X<-X<<8 1if 7=1;
¢ addeq SHIFT, SHIFT, #8 ;SHIFT+=8 if Z=1; }
%%igm tst X, #0xf0000000 ;1 (X< (1<<28))
moveq X, X, LSL#4 s { X<-X<<4 1if Z=1;
addeq SHIFT, SHIFT, #4 ;SHIFT+=4 if 7=1; }
tst X, #0xc0000000 ;1 (X< (1<<30))
moveq X, X, LSL#2 s X<=X<<2 1f Z=1;
addeq SHIFT, SHIFT, #2 ;SHIFT+=2 if 7=1; 1}
RETURN
POINT 31
Normalization Example (cont)
ENTRY
POINT
Shift CNT

=0
=0

J*

Shift Left
1 Bit

v

Shifc

CNT

+
]
—

RETURN
POINT

; Normalization on ARM7TDMI, Argument in rO

; Shift count returned in rl

tst X, #0x80000000 ;1f (X< (1<<31))

addeq SHIFT, SHIFT, #1 ; {SHIFT+=1 if z=1;

moveqs X, X, LSL#1 ;X <=1 1if 7Z=1;

moveq SHIFT, #32 ;1f (X==0)SHIFT<-32 if Z7z=1;}
DONE b DONE

END

32

