ARM® Memory System

ARM Architecture Design

ARMY7 RISC architecture:

 32-bit data, but data can be accessed as 8-bit byte,
16-bit half-word, or 32-bit word

* Only the load, store, and swap instructions can be
used to access data from the memory

» Each instruction has an execution latency of three
clock cycles, i.e., one instruction per three clock cycles

Fetch Decode | Execute Fetch Decode | Execute

— AN _
~ ~
1st 2nd

ARMY7 Pipeline

Uses the 3-stage pipeline for instruction executions.

« Typical pipeline stages:
Fetch > Decode = Execute

* Pipeline design allows effective throughputincrease to one
instruction per clock cycle

» Allows the next instruction to be fetched while still decoding or
executing the previous instructions

1st Fetch | Decode | Execute
2nd Fetch Decode | Execute
3rd Fetch Decode | Execute

f T T T T T time

Pipeline Memory Access

With pipeline:

 Memory access can occur at every clock cycle

— i.e., each stage can be completed in one processor
clock cycle (denoted as MCLK for the ARM processor)

» Fetch instruction opcodes (for example, from Flash)
» Read or write data to the memory (SRAM or DRAM)

Pipeline Memory Access (cont’d)

Implications:

 Memory (and peripherals) must have access time
that is compatible to the clock cycle of the processor
(MCLK)

* A moderate MCLK of 50 MHz requires memory
access time in the order of 20 nsec!

» Therefore, either use a very fast memory device (i.e.,
a very fast SRAM),

» or operate the processor at a low frequency

ARMY7 Processor Clock

All state changes within the ARMY7 are controlled by two
signals:

« MCLK memory clock signal

* NWAIT control signal

Logical AND of these two signals:

* produces the internal clock cycle that ‘powers up’ the
core.

« allows the processor to ‘slow down’ (momentarily)
without using a lower processor clock signal

— by skipping clock cycle(s) (for example, in order to
match the slower memory access speed).

— skipping clock cycles sometmes known as "wait states"

ARMY7 Clock Timing

ARM design allows the internal processor clock to be varied
during operations.

* Typically, P1 of the internal clock cycle can be ‘stretched’ to make
the processor skip one or more of the external MCLK clock cycles
(for example, to ‘wait’ for a slower peripheral access).

Logical AND of MCLK and WAIT#

MCLKﬁ\P1 ’PZ \P1 /P2 \P1 ,PZ \P1 ’PZ\

nWAIT /
Internal
clockﬁ\P1 ,PZ \P1 ’PZ \ P1 , PZN

(eclk)

Longerclockcycle

Memory Interface Signals

Memory interface signals of the ARM7 core:
» A[31:0]: 32-bit address bus

» D[31:0]: 32-bit bidirectional data bus
Dout[31:0]: for separate data out bus
Din[31:0]: for separate data in bus

 r#/w: Read (active low)/Write control signal

* mas[1:0]: Memory Access Size
— 00 = Byte; 01 = Half-word; 10 = Word; 11 = Reserved

Memory Interface Signals (cont’d)

« mreq#: Memory request

— Indicates that the next instruction cycle involves a
memory access

» seq: Sequential Addressed Access

— Indicates that the address used in the next cycle
will be either the same or one operand (i.e., word)
greater than the current address

— this is a form of pipelining (memory pipelining)

— some architectures also refer to this as a "burst
mode" such as Intel Pentium

Memory Interface Signals (cont’d)

ARM7 memory interface signals

clock A[31:0]
control Din[31:0]
Dout[31:0]

configuration C bigend —»]

Eq_ —
interrupts [fig —»]
isync —— |

D[31:0] memory
bi[3:0] interface

r/w
mas[1:0]
mreq
seq

lock

initialization (reset —]
enin — pf
enout «——
enouti «—|
abe —
ale — »

trans MMU

bus sk ?b°od:[4=°] interface
control dbe — 5

tbe —»
busen —»-
highz «—{ARM7TDMIE
busdis «—
ecapclk <«—— core

Memory Controller

ARMY core:

» Provides various control signals that can be used for memory
interface

* Needs a separate memory controller to perform the actual
memory access control functions

— Forexample,address decoding, wait state generation, DRAM
refresh cycle, etc.

D[31:0]
<
ARM7 A[31:0]
Core
(Abort) ‘| Memory
Controller
Control
Signals

mreqg# and seq Timing

Memory controller can also make use of the
mreq# and seq signals.

 To decide the best method to handle the memory
access in the next cycle

» These signals are issued more than half a cycle
before the actual cycle

* Hence, the memory controller can start the
memory access ‘preparation’ before the actual
cycle commences

mreq# and seq Timing (cont’d)

Actual Cycle
'd A N\
| | |
mreg#.seq —(:X Cycle Type } } }
| | |
| | |
A[31:0] I {x Address |)—
| | |
NRW, MAS[1:0] : {X A.,;c,,, Type :)_
| | |
D[31:0] : {X | Dota | }_
| | |
Bus Cycle Types (N, S, I, C)
Four possible bus cycle types:
mreq# seq| Cycle | Type
0 0 N | Nonsequential Memory Access
0 1 S | Sequential Memory Access
1 0 I Internal Cycle
(Bus & Memory inactive)
1 1 C | Coprocessor register transfer
(Memory inactive)

Nonsequential Cycle (N-Cycle)

Nonsequential cycle:
» The simplest form of bus cycle

» Occurs when the processor requests a transfer to or
from an address that is unrelated to the address used
in the preceding cycle

« The memory controller will initiate a memory access
to satisfy this request

Sequential Cycle (S-Cycle)

The sequential cycle is indicated by the seq signal.

During a sequential cycle:

» the ARM7 processor will request for a memory
location that is part of a sequential burst.

The first address can be the same if the previous
cycle is the internal cycle.

» Otherwise, the address is incremented from the
previous cycle:
— For a burst of word accesses, the address is
incremented by four bytes.
— For a burst of half-word accesses, the address is
incremented by two bytes.

S-Cycle and DRAM

The sequential cycles are used to perform burst
transfers on the bus.

« Can be used to optimize the design of a memory
controllerinterfacing to a burst-optimized memory
device, like SDRAM.

SDRAM (Synchronous DRAM):

 Don't Confuse this with SRAM (Static RAM)

« Specially designed to respond fasterto a
sequential access

» Requires a shorter access time comparedto a
random (i.e., nonsequential) access

Memory Controller

Memory controller for DRAM interfacing:

< D[31:0]
A[31:0]
ARM7
mclk
Core [, :
mreq | Memory
rw | Controller
mas[1:0] .
<« Wait]

Typical S-Cycle Usage

If an S-cycle is to follow an N-cycle:

=next address = current address + four bytes

» The memory controller can prepare the memory for
fast access.

* For example, to check if the current address is at the
end of the row of the DRAM.

* If not, issue Page mode access to the DRAM (which is
found to occur in 75% of the memory access).

Typical S-Cycle Usage (cont’d)

If an S-cycle follows an I-cycle or C-cycle:

The next addressis already the current address on
the memory bus (because the I-cycle and
C-cycle do not use the memory bus).

*Hence, the memory controller can start the memory
access immediately.

20

N-S Cycles

N-S cycles for DRAM access:

Detect that the next address
will be sequential

L L Lr LT L

| |
AB1:0] X1 A | /i X1 Afa X1 A8 X
| | /¢ | ¥ | |
B e — I~] J S——
nwait _I__I/ i f I |
nRAS _:_\ AN l —
NCAS | U aan U an U an
. | | LM Y
D[31:0] . . —/ A\ J\D‘
<+— Noycle—— | Scycle S cycle
| | '
i S I N e

I-S Cycles

I-S cycles for the DRAM access:

Memory cycle can start earlier,
during the I-cycle or C-cycle S-cycle

/ Address-is ready
mclk | | I
| Vv

AB1:0] X | X1 A< L XIAd X
I I [| < I
seq |/ L/ / | S SO R
t I I I I
o I \ | | T
nRAS | | \ A | /_
nCAS I | T\

lorCcycle Scycle S cycle

22

Generation of the seq Signal

The seq signal is automatically asserted whenever a
memory address is obtained from the incrementer.

address to memory , S€d signal

(address + 4)

address mux

from ALU

incrementer

v

from/to PC in register bank

exception
vector

23

Basic ARM Memory System

Typical Memory system Configuration:

* ROM (Flash, EEPROM, or EPROM) to store the
firmware (needed for boot-up and subsequent
execution)

+ SRAM/SDRAM for program execution and data
storage (for example, shadowing of the ROM after boot-
up)
» Four standard byte-wide Flash memory devices are
used to form a 32-bit bank

— Data is always accessed in 32-bit word

— m bits Address lines PeovAto vv Address space = 2™

24

Basic ARM Memory System (cont’d)

Memory system specifications for the ARM system:

* Four byte-wide SRAM/SDRAM devices are used to
form a 32-bit bank

— Data can be read in 32-bit word size

— Data must be able to be written in 8-bit byte size,
16-bit half-word, or 32-bit word as required

— i.e., a low-order interleaved memory design

— n bits Address lines PeouvAto vv Address space =
2n

25

A Simple Memory System

ROMOe

RAMwe3 RAMwe2 RAMwe1 RAMwe0

]
An+2:2]) | |AIn+2:2)) Aln+2:2]) Aln+2:2]] %

AEH WELE
< <

SRAM SRAM

not used

D[31:0] D[31:24]] D[23:16)) D[15:8])

26

D[7:0] D[7:0] A0 & A1 are

Memory Interface

Note the lowest two bits of the Address Bus A[0] and A[1]

* Not connected to either the ROM or RAM address lines
— Butis used for the SRAM/SDRAM byte selection

« SRAM can be write-access as byte, half-word, or word
— Controlled by the individual RAMwe# signals
— Generated based on the values of A[1] and A[0] bits

« SRAM is also always read-access in 32-bit word
— Controlled by the RAMoe# signal

« ROM is always accessed (read-only) in 32-bit word
— Controlled by the ROMoe# signal

27

ROM and RAM Address Space

Since ARM has a flat memory:
+ The ROM and SRAM reside in the same address space

» Actual size depends on the size of the address bus (values of
‘m’ and ‘n’) of the ROM and RAM memory devices

* Forexample;
— m =20 PeovAito v 220 =1 M of the ROM address space
— n=19 PeovAto v 219 = 512 k of the RAM address space

 The ROM must be in the lower half of the address space
— Reset vectoris at 00000000h

* A simple design will use A[31] to select between the ROM and
RAM

« A[1:0] will be used to enable the byte access of the SRAM

28

Address Space

Partial decoding based on A[31]
*Use only bit 31 to select either ROM or SRAM
*Can cause memory duplication between SRAM and ROM

ffff ffffh :
; ! ! I €000 0000h
SRAM For I c000 0000h
L I (e.g., n = 29)
A a000 0000h
8000 0000h _ 8000 0000h
7££f ffffh T '
P 4000 0000h
ROM
- (e.g., m] 30)
0000 0000h 0000 0000h
4 —p

32-bit

29

Memory Controller Logic

Input signals needed by the memory controller:

A[31] to select between the ROM and SRAM

mas[0] and mas[1] to indicate the data size to be
accessed

A[0] and A[1] to select the byte(s) within a word,
based on the values of mas[1] and mas][0]

r#/w to indicate a read or write access

MCLK clock to synchronize the generation of the
control signals with the processor clock

30

Memory Controller Logic (cont’d)

Output signals generated by the memory controller:
« RAM and ROM enable signals: RAMoe and ROMoe#

* Four RAM-byte write enables signals: RAMwe*#

31

Memory Controller Logic (cont’d)

Implementation example:

QA[] wreessemerasmas s ,

Output
signals to

] RAM and
1) ROM

32

Access Speed of Memory Devices

Apart from generating the control signals,

» signaltimings also need to be considered, i.e., largely depend
on the access speed of the memory devices used

» ‘Simplistic’ approach:
I. Use memory devices with very fast access speed
II. Reducethe MCLK clock frequency

» In practice, ROM will be much slower than RAM which normally
has the access time of high tens of nsec

* Reducing the MCLK frequency will reduce the overall
performance of the entire system

33

Use of Wait States

ARM has the provision to temporarily skip a few of the MCLK clock
cycles.

*When accessing slower peripherals

*Can be achieved by asserting the WAIT# input signal of the
processor core

*i.e., ‘injecting’ Wait states into the processor cycles to slow down
the processor

*As ROM is typically much slower than SRAM
— Use SRAM with an access speed that is compatible with the
processor clock cycles

— Introduce Wait states when the system is trying to access
the ROM

34

ROM Wait State Transition

Transition diagram for the ARM memory controller:

*Assume that the ROM access requires the introduction of
four wait states to the processor cycles.

*The RAM access can be carried out in one MCLK cycle.

2) w
1

ROM

1

2) B YV

35

Circuit Implementation

One possible implementation of the Wait state generation:

mclk

A

= B v
t _/ DQ—J

s

#
V

D_D’*D Q ROM3
wait

ROM 0—‘

- |

r/w en ——
wait1

A[31] D Q ROMoe

36

ROM Wait State Timing

Timing Diagram with Wait states during ROM access:

melk |_
|
|
|

|
o) X | | X
e |

/ |
| | | |
waitt - | /|
wait2 | I\ | | |/
ROWMOe | [| | ¥a

fast ' ROMI ' ROM2 ' ROM3
) 4 MCLK clock cycles]

37

Practical Memory System

More practical memory system design for ARM system:

* An 8-bit ROM (Flash) to store the firmware for boot-
up

A 16-bit off-chip SRAM to execute Thumb®
instructions (i.e., the firmware is transferred from the

ROM to a 16-bit RAM after boot-up for faster
execution)

* An on-chip 32-bit SRAM to execute full 32-bit ARM
instructions

Reference for more details:
ARM Application Note 29 — Interfacing a Memory System to the
ARM7TDM Without Using AMBA

38

Practical Memory System (cont’d)

ASIC/ASSP
16-Bit 32-Bit .
SRAM SRAM Peripherals
A[27:0] | AB1o)
D16:0] D[31:0]
>0
8-Bit © B
ROM £ S | | ARM7TDMI Core
= O
@)
39
Summary

The ARM architecture design:

« The pipeline designincreases the effective
throughput.

« Use wait signals to extend the processor cycle
when interfacing with slower memory devices
and peripherals.

« Use seq and mreg# signals to provide bus cycle
information.

— Allow more sophisticated operations that permit
fast sequential memory access.

40

