Memory Stack

Stacks

» A stack is an area of memory which grows as new
data is “pushed” onto the “top” of it, and shrinks as
data is “popped” off the top - LIFO Queue

» Two pointers define the current limits of the stack.
— A base pointer
+ usedto pointto the “bottom” of the stack (the first location).
— A stack pointer
» usedto pointthe current “top” of the stack.

PUSH {1,2,3} POP
—_—
SP 5 3
Result of
& SPp > . pop = 3
1 1
e
SP BASE > BASE >

BASE

Stack Operation

Multiple-register transfer instructions are particularly useful for
stack operation.

Stack is used to save multiple-register content that may be affected
when performing a subroutine call.

Using one STM instruction can save several registers onto the
stack.

Example:
To save multiple-register content on a stack
STMDB sp!, {r4-r8}

This instruction ‘pushes’ the four-register content to the stack.

The corresponding instruction to ‘pop’ the content from the stack is
LDMIA sp!, {rd4-r8}

Stack Implementations

The option of using ‘DB’ or ‘DA’ for push operation (&
‘IA’ or ‘IR’ for corresponding pop operation) depends
on the way a stack is implemented.

Full stack: address pointed by sp is already used
Empty stack: address pointed by sp is still empty
Descending: stack grows down in memory address
Ascending: stack grows up in memory address

Discussion:
The earlier example uses STMDB and LDMIA to

manipulate the stack content. What type of stack is this?

Stack-Specific Instructions

To avoid using the wrong type of STM and L.DM

instructions when dealing with stack operation

» special suffixes are used instead to match the different
stack implementation

FD: for Fully Descending stack
FA: for Fully Ascending stack
ED: for Empty Descending stack
EA: for Empty Ascending stack

Example:
For the ARM processor that uses a fully descending
stack, the pair of stack instructions is STMFD and LDMFD.

Stack Operation

« Stack Usually Grows Down in Memory
— last “pushed” value is at the lowest address
 ARM also supports ascending stacks

— stack structure grows up through memory.

» The value of the stack pointer can either:
— Point to the last occupied address (Full stack)
* needs pre-decrementing (ie before the push)

— Point to the next occupied address (Empty stack)

* needs post-decrementing (ie after the push)

Stack Operation

« Stack Type to be used is given by the postfix

to the instruction:

- STMFD / LDMFD : Full Descending stack

STMFA / LDMFA : Full Ascending stack.

STMED / LDMED : Empty Descending stack

- STMEA / LDMEA : Empty Ascending stack

 ARM Compiler will always use a Full
descending stack

Stack Examples

STMED sp!,{r0O,rl,r3-r5} STMEA sp!,{r0,rl,r3-r5}

G~

old SP— [Old SP—> Old SP —>{ .~

7| old sP —>

STMFD sp!{r0,rl,r3-r5} STMFA sp!, {r0,rl,r3-r5}

0x418

0x400

] 0x3e8

Stacks and Subroutines

» Stacks can be Used to create temporary register
workspace for subroutines.

» Any registers that are needed can be pushed onto
the stack at the start of the subroutine and popped off
again at the

STMFD sp!, {rO-rl2, 1r} ; stack all registers
........ ; and the return address
LDMFD sp!, {r0-rl1l2, pc} ; load all the registers

; and return automatically

Functionality of Block Data Transfer

 When LDM / STM are not being used to implement
stacks, it is clearer to specify exactly what
functionality of the instruction is:

— i.e. specify whether to increment/ decrement the base
pointer, before or after the memory access.

* In order to do this, LDM / STM support a further syntax
in addition to the stack one:
- STMIA/LDMIA: Increment After
- STMIB/ LDMIB: Increment Before
- STMDA/ LDMDA : Decrement After

- STMDB/ LLDMDB : Decrement Before

Example: Block Copy

— Copy a block of memory, which is an exact multiple of 12 words
long from the location pointed to by r12 to the location pointed
to by r13. r14 points to the end of block to be copied.

; rl2 points to the start of the source data

; rl4 points to the end of the source data

; rl3 points to the start of the destination data r13 —>[nnnnnn
loop LDMIA rl2!, {rO-rll} ; load 48 bytes

rl4 —

STMIA r13!, {rO-rll} ; and store them Increasing
CMP rlz, rl4 ; check for the end Memory
BNE loop ; and loop until done

12— [

— This loop transfers 48 bytes in 31 cycles
— Over 50 Mbytes/sec at 33 MHz

Load and Stores - User Mode Privilege

* When using post-indexed addressing, there is a further
form of Load/Store Word/Byte:

<LDR|STR>{<cond>}{B}T Rd, <post indexed address>

* When used in a privileged mode, this does the
load/store with user mode privilege.

— Normally used by an exception handler that is emulating a
memory access instruction that would normally execute in user
mode.

Example Usage of Addressing Modes

« Imagine an array, the first element of which is pointed to by the

contents of r0.
» |f we want to access a particular element,

then we can use pre-indexed addressing: element

- rl is element we want.
- LDR r2, [r0, rl, LSL #2] :
3

Pointer to

» If we want to step through every start of array
: 1
element of the array, for instance .

to produce sum of elements in the

array, then we can use post-indexed addressing within a loop:

- rl is address of current element (initially equalto r0).
- LDR r2, [rl], #4

Use a further register to store the address of final element,

so that the loop can be correctly terminated.

Memory

Offset

Offsets for Halfword and Signed

Halfword / Byte Access

* The Load and Store Halfword and Load
Signed Byte or Halfword instructions can

make use of pre- and post-indexed

addressingin much the same way as the

basic load and store instructions.

» Howeverthe actual offset formats are more

constrained:

— The immediate value is limited to 8 bits (rather
than 12 bits) giving an offset of 0-255 bytes.

— The register form cannot have a shift applied to it.

Block Data Transfer

» The Load and Store Multiple instructions (LDM/ STM) allow
between 1 and 16 registers to be transferred to or from memory.
» The transferred registers can be either:
— Any subsetof the current bank of registers (default).

— Any subsetof the user mode bank of registers whenin a privileged
mode (postfix instruction with a ‘~’).

31 28 27 24 23 22 21 20 19 16 15 0
17 17 177171 -1 11711 1T T 17T T T T T TT
Cond |1 O O|JPJUISW L Rn Registerlist
', ! | L |]
Condition field Base register Each bit corresponclls to aparticular
. . ister. Forexample:
Up/Down bit Load/Store bit oS
ul e Y . « Bit 0 set causes 10 to be transferred.
(1) _ BOW:ézuggsgtt&f&:;cﬁom base (1) -]Sforg ;,0 memory « Bit 0 unset causes r0 not to be transferred.
P K]] ~Loaclrommemory At least one register must be transferred
Pre/Post indexingbit ———— ——— I Write- back bit as the list cannotbe empty.
0 =Post; add offset after transfer, 0=no write-back
1 =Pre ; add offset before transfer 1 =write address into base
PSR and force userbit

0=don’tload PSR orforce usermode
1 =load PSR or force usermode

Block Data Transfer

» Base register used to determine where memory
access should occuir.
— 4 different addressing modes allow increment and

decrementinclusive or exclusive of the base register
location.

— Base register can be optionally updated following the
transfer (by appending it with an ‘",

— Lowest register number is always transferred to/from lowest
memory location accessed.

» These instructions are very efficient for
— Saving and restoring context
* For this useful to view memory as a stack.
— Moving large blocks of data around memory

 For this useful to directly represent functionality of the
instructions.

Swap and Swap Byte Instructions

Atomic operation of a memory read followed by a memory write
which moves byte or word quantities between registers and
memory.

* Syntax:
SWP{<cond>}{B} Rd, Rm, [Rn]

: temp
I:I SRR« e e, Q, I:I

. Cy, - | \@
Memory Rd |:|

Thus to implement an actual swap of contents make Rd = Rm.
The compiler cannot produce this instruction.

Data Movement Instructions

ARM can only manipulate data within registers.

* so data has to be loaded from memory into
register(s) for data operation
« with results eventually stored back into memory

A lot of instructions in a running program involve data
movement.

« important to have efficient addressing mode and data
loading and storing instructions
» to optimize processor performance

MOV Format

General Form:

31 28 27 26 25 24 21 20 19 16 15

cond 0 0] 1 opcode S Rn Rd shifter_operand

Form with Immediate Operand:

31 28 27 26 25 24 2120 19 1615 12 1 8 7 0
cond 0 0|1 opcode S Rn Rd rotate_imm 8_bit_immediate

Condition Codes

All ARM Instructions utilize condition codes:

Cond Instruction Bitmap No
0000XXXX XXXXXXXX XXXXXXXX XXXXXXXX
0001XXXX XXXXXXXX XXXXXXXX XXXXXXXX
0010XXXX XXXXXXXX XXXXXXXX XXXXXXXX
0011XXXX XXXXXXXX XXXXXXXX XXXXXXXX
0100XXXX XXXXXXXX XXXXXXXX XXXXXXXX
0101XXXX XXXXXXXX XXXXXXXX XXXXXXXX
0110XXXX XXXXXXXX XXXXXXXX XXXXXXXX
0111XXXX XXXXXXXX XXXXXXXX XXXXXXXX
1000XXXX XXXXXXXX XXXXXXXX XXXXXXXX
1001XXXX XXXXXXXX XXXXXXXX XXXXXXXX
1010XXXX XXXXXXXX XXXXXXXX XXXXXXXX
1011XXXX XXXXXXXX XXXXXXXX XXXXXXXX
1100XXXX XXXXXXXX XXXXXXXX XXXXXXXX
1101XXXX XXXXXXXX XXXXXXXX XXXXXXXX
1110XXXX XXXXXXXX XXXXXXXX XXXXXXXX
1111XXXX XXXXXXXX XXXXXXXX XXXXXXXX

HEHODQEP Ol WN - O

Cond Code Executes if
EQ(Equal) Z
NE (Not Equal) ~7Z
CS(Carry Set) C
CC(Carry Clear) ~C
MI (MInus) N
PL(PLus) ~N
VS(oVerflow Set) \Y
VC(oVerflow Clear) ~V
HI(HIgher) C and ~Z
LS(Lower or Same) ~C and 2
GE (Greater or equal) N = V
LT (Less Than) N = ~V
GT (Greater Than) (N= V)and~2
LE(Less or equal) (N =~V)orz
AL(Always) True
NV (Never) False

20

Data Movement

* Operations are:
- MOV Rd <- operand2
- MVN Rd <- NOT operand2

* Syntax:
— <Operation>{<cond>}{S} Rd, Operand2

« Examples:
- MOV r0, rl ;r0 <= rl
- MOVS r2, #10 ;r0 <- #10
- MVNEQ rl1, #0 ;1if (Z==0) rl <-0xXFFFFFFFF

21

Loading full 32 bit constants

* If Instructions are 32 bits long (16
for thumb), how are 32-bit
Immediate values encoded into an
Instruction?

—USES LITERAL POOLS

MVNEQ rl, #0 Instruction useful since allows 0xFFFFFFFF to be used
as 32-bit "immediate" in 32-bit Instruction

22

Literal Pools

Literals Pools — Constant Data Areas Embedded in
the Code

— At end of modules, between functions

Although the MOV/MVN mechanism in combination
with shifts will load a large range of constants into a
register, sometimes this mechanism will not generate
the required constant.

Therefore, the assembler also provides a method
which will load ANY 32 bit constant:

- LDR rd, =numeric constant

23

Literal Pools

If the constant can be constructed using either a MOV or
MVN then this will be the instruction actually generated by

the assembler

Otherwise, the assembler will produce an LDR instruction
with a PC(r15)-relative address to read the constant from
a literal pool

Pseudo-instructions

- LDR r0,=0x42 ;generates MOV r0, #0x42
- LDR r0,=0x55555555 ;generate LDR r0, [pc, offset to 1lit pool]

As this mechanism will always generate the best
instruction for a given case, it is the recommended way
of loading constants.

24

Loading 32 bit constants

» To allow larger constants to be loaded, the assembler offers a pseudo-
instruction:

- LDR rd, =const
* This will either:

— Produce a MOV or MVN instruction to generate the value (if possible).

or

— Generate a LDR instruction with a PC-relative address to read the
constant from a literal pool (Constant data area embedded in the
code).

* Forexample
- LDR r0,=0xFF => MOV rO0, #0xFF
— LDR r0,=0x55555555 > ILDR r0, [PC,#Imml2]

DCD ®

* This is the recommended way of loading constar 0 a register

25

MOV Format
Assumeﬂtjisis/mmAOMFF\k
31 28 25 24 2120 19 16 *\?\\ 0
con 0 0] 1 opcode 5 Rn Rd rotate_imm 8_bit_immediate

mov r0, #O0OxFF, 8 ;r0 <— O0xFF000000

Last 12 bits of machine code are 0x4FF

Rotation Value is ALWAYS Multiplied by 2 in Machine Code:
(4*2=8) So Can Only Rotate by EVEN Values, ODD Value
causes Next Lower Even Rotate to Occur

8-bit Immediate is OxFF Can Only Use 0x01 thru OxFF

Value 8 Causes Immendiate to be Rotated to Right by 8 Bijs

MOV with Rotate Right Operand

31 28 27 26 25 24 21 20 19 16 15 12 1 8 7 0

cond 0 0] 1 opcode 5 Rn Rd rotate_imm 8_bit_immediate

mov r0, #O0xFF, <n>

n Value Operation
30 ;r0 <- 0x000003FC
28 ;r0 <- 0x0000O0FFO
26 ;r0 <- 0x00003FCO
24 ;r0 <-= 0x0000FFO0O
22 ;r0 <= 0x0003FCOO
8 ;r0 <= 0xFF00000O0
6 ;r0 <- 0xFC000003
4 ;r0 <- 0OxFOOOQOOOOQF
2 ;r0 <- 0xCOOOO003F 27

Using a Barrel Shifter:The 2nd Operand

Operand 1 Operand 2 ... Register, optionally with shift operation
“ — Shift value can be either be:
l + 5 bit unsigned integer
k + Specified in bottom byte of

Barrel :"-‘._ anotherregister.
Shifter % — Used for multiplication by

constant

Immediate value

— 8 bit number, with a range of 0-

255.
* Rotated right through number of
positions

Result — Allows increased range of 32-bit
constants to be loaded directly
into registers 28

Barrel Shifter

(a) Multiplexer implementation of a 32-bit left-shift barrel shifter

a[31:0]
0]y[31:0]
{a[15:0], 2 =
’ {b[23:0],
s[4] s[3] s[2] s[1] s[0]
shift by 16 shift by 8 shift by 4 shift by 2 shift by 1

module bshift 32bit (s, a, y);
input [4:0] s;
(b) Verilog implementation ~ input [31:0] a;
output [31:0] y;
assign y = a << s;

endmodule

29

Immediate constants

 No ARM instruction can contain a 32 bit immediate constant
— All ARM instructions are fixed as 32 bits long

« The data processing instruction format has 12 bits available
for operand?2

r| rotl8 |7 immed_8 0| ARM’S SCheme

x2

Shifter has in-line ROR

ROR

» 4 bit rotate value (0-15) is multiplied by two to give range O-
30 (in steps of 2 in Machine Code)

30

Immediate constants

Many Constants can be Generated by Using the In-Line Shifter
Not ALL Constants can However

For those that Can’t be Generated using the Shifter:
— Literal Pools with MOV Translated to LDR

« Examples:
mov rO0, #0xff ;r0 <— 255
mov rO, #0xff, 30 ;r0 <= 1020
mov rO, #0xff, 26 ;r0 <= 4090
add r0, r2, #0xf£000000 ;r0 <= r2 + 0xf£f000000
sub r2, r3, #0x8000 ;r2 <- r3 - 0x8000
rsb r8, r9, #0x8000 ;r8 <- 0x8000 - r9

(reverse sub)

31

Example

« Want to generate constant 4080 using byte rotation

. (4080),,=(1111 1111 0000),
mov r0, #0xff, 28 ;r0 <- 4080

* Want to shift FF 4-bits to Left
« ARM Only has Right Rotator

* Rotate Right by 28 is Equal to Left Shift by 4:
(32—-4)=28

32

MVN Instruction

* Moves One’s Complement Value into Register
* One’s Complementis bit-by-bit Complement

 Examples:
mvn r0, #0 ;What is in r0?

mvn r0, #0xFF, 8 ;What is in r0-?

33

MVN Instruction

* Moves One’s Complement Value into Register
* One’s Complementis bit-by-bit Complement
 Examples:
mvn r0, #0 ;What is in r0?
;r0 <- OXFFFFFFFF
mvn r0, #0xFF, 8 ;What is in r0?
;r0 <- OxOOFFFFFF

34

Pseudo-instruction Instruction

« Safest Way: You Don’t have to Think too hard
 Examples:

1dr <Rd>, =numeric constant

« Many Times Constants Loaded at Top of Code
SRAM BASE EQU 0x04000000

AREA example, CODE, READONLY
;Initialization section
ENTRY
mov r0, #SRAM BASE
mov rl, #0xFF000000

What if SRAM_BASE Changes to value that can’t be

generated with rotation scheme?

35

Pseudo-instruction Instruction

« Many Times Constants Loaded at Top of Code

SRAM BASE EQU 0x04000000

AREA example, CODE, READONLY
;Initialization section

ENTRY
; mov r0, #SRAM BASE
ldr r0, =SRAM BASE ;This will always work

ldr rl, =0xFF000000

Assembler will try to use a mov with rotate if it can
If it cannot, it will create a literal pool and use a 1dr
Default is Literal Pools Loaded after END Directive

Can Force Other Location with LTORG Directive 36

