
SOC Consortium Course Material

ARM Processor ArchitectureARM Processor Architecture

Some Slides are Adopted from NCTU
IP Core Design

Some Slides are Adopted from NTU
Digital SIP Design Project

2SOC Consortium Course Material

Outline

ARM Core Family
ARM Processor Core
Introduction to Several ARM processors
Memory Hierarchy
Software Development
Summary

3SOC Consortium Course Material

ARM Core Family

4SOC Consortium Course Material

ARM Core Family

Application Cores Embedded Cores Secure Cores
ARM Cortex-A8
ARM Cortex-A9 MPCore
ARM Cortex-A9 Single Core
ARM11 MPCore
ARM1136J(F)-S
ARM1176JZ(F)-S
ARM720T
ARM920T
ARM922T
ARM926EJ-S

ARM968E-S
ARM996HS

SecurCore SC100ARM Cortex-M10
ARM Cortex-M1
ARM Cortex-M3
ARM Cortex-R4(F)
ARM1156T2(F)-S
ARM7EJ-S
ARM7TDMI
ARM7TDMI-S
ARM946E-S

SecurCore SC110
SecurCore SC200
SecurCore SC210

ARM966E-S

5SOC Consortium Course Material

Product Code Demystified

T: Thumb
D: On-chip debug support
M: Enhanced multiplier
I: Embedded ICE hardware
T2: Thumb-2
S: Synthesizable code
E: Enhanced DSP instruction set
J: JAVA support, Jazelle
Z: Should be TrustZone?
F: Floating point unit
H: Handshake, clockless design for synchronous or
asynchronous design

6SOC Consortium Course Material

ARM Processor Cores (1/4)

ARM processor core + cache + MMU
→ ARM CPU cores
ARM6 → ARM7
– 3-stage pipeline
– Keep its instructions and data in the same memory system
– Thumb 16-bit compressed instruction set
– On-chip Debug support, enabling the processor to halt in

response to a debug request
– Enhanced Multiplier, 64-bit result
– Embedded ICE hardware, give on-chip breakpoint and

watchpoint support

7SOC Consortium Course Material

ARM Processor Cores (2/4)

ARM8 → ARM9
→ ARM10

ARM9
– 5-stage pipeline (130 MHz or 200MHz)
– Using separate instruction and data memory ports

ARM 10 (1998. Oct.)
– High performance, 300 MHz
– Multimedia digital consumer applications
– Optional vector floating-point unit

8SOC Consortium Course Material

ARM Processor Cores (3/4)
ARM11 (2002 Q4)

• 8-stage pipeline
• Addresses a broad range of applications in the wireless,

consumer, networking and automotive segments
• Support media accelerating extension instructions
• Can achieve 1GHz
• Support AXI

SecurCore Family
– Smart card and secure IC development

9SOC Consortium Course Material

ARM Processor Cores (4/4)
Cortex Family
– Provides a large range of solutions optimized around

specific market applications across the full performance
spectrum

– ARM Cortex-A Series, applications processors for
complex OS and user applications.

• Supports the ARM, Thumb and Thumb-2 instruction sets
– ARM Cortex-R Series, embedded processors for real-time

systems.
• Supports the ARM, Thumb, and Thumb-2 instruction sets

– ARM Cortex-M Series, deeply embedded processors
optimized for cost sensitive applications.

• Supports the Thumb-2 instruction set only

10SOC Consortium Course Material

ARM Processor Core

11SOC Consortium Course Material

ARM Architecture Version (1/6)
Version 1
– The first ARM processor, developed at Acorn Computers Limited

1983-1985
– 26-bit address, no multiply or coprocessor support

Version 2
– Sold in volume in the Acorn Archimedes and A3000 products
– 26-bit addressing, including 32-bit result multiply and

coprocessor

Version 2a
– Coprocessor 15 as the system control coprocessor to manage

cache
– Add the atomic load store (SWP) instruction

12SOC Consortium Course Material

ARM Architecture Version (2/6)
Version 3
– First ARM processor designed by ARM Limited (1990)
– ARM6 (macro cell)

ARM60 (stand-alone processor)
ARM600 (an integrated CPU with on-chip cache, MMU, write
buffer)
ARM610 (used in Apple Newton)

– 32-bit addressing, separate CPSR and SPSRs
– Add the undefined and abort modes to allow coprocessor

emulation and virtual memory support in supervisor mode

Version 3M
– Introduce the signed and unsigned multiply and multiply-

accumulate instructions that generate the full 64-bit result

13SOC Consortium Course Material

ARM Architecture Version (3/6)

Version 4
– Add the signed, unsigned half-word and signed byte load and store

instructions
– Reserve some of SWI space for architecturally defined operation
– System mode is introduced

Version 4T
– 16-bit Thumb compressed form of the instruction set is introduced

Version 5T
– Introduced recently, a superset of version 4T adding the BLX, CLZ and

BRK instructions

Version 5TE
– Add the signal processing instruction set extension

14SOC Consortium Course Material

ARM Architecture Version (4/6)
Version 6
– Media processing extensions (SIMD)

• 2x faster MPEG4 encode/decode
• 2x faster audio DSP

– Improved cache architecture
• Physically addressed caches
• Reduction in cache flush/refill
• Reduced overhead in context switches

– Improved exception and interrupt handling
• Important for improving performance in real-time tasks

– Unaligned and mixed-endian data support
• Simpler data sharing, application porting and saves memory

15SOC Consortium Course Material

ARM Architecture Version (5/6)

16SOC Consortium Course Material

ARM Architecture Version (6/6)

Core Architecture

ARM1 v1

ARM2 v2

ARM2as, ARM3 v2a

ARM7, ARM700, ARM710 v3

ARM9E-S, ARM10TDMI, ARM1020E v5TE

ARM10TDMI, ARM1020E v5TE

ARM11 MPCore, ARM1136J(F)-S, ARM1176JZ(F)-S v6

Cortex-A/R/M v7

ARM6, ARM600, ARM610 v3

ARM7TDMI, ARM710T, ARM720T, ARM740T v4T

StrongARM, ARM8, ARM810 v4

ARM9TDMI, ARM920T, ARM940T V4T

17SOC Consortium Course Material

3-Stage Pipeline ARM Organization

Register Bank
– 2 read ports, 1 write ports, access

any register
– 1 additional read port, 1 additional

write port for r15 (PC)

Barrel Shifter
– Shift or rotate the operand by any

number of bits

ALU
Address register and
incrementer
Data Registers
– Hold data passing to and from

memory

Instruction Decoder and
Control

multiply

data out register

instruction

decode

&

control

incrementer

register
bank

address register

barrel
shifter

A[31:0]

D[31:0]

data in register

ALU

control

P
C

PC

A
L
U

b
u
s

A

b
u
s

B

b
u
s

register

18SOC Consortium Course Material

3-Stage Pipeline (1/2)

Fetch
– The instruction is fetched from memory and placed in the instruction pipeline

Decode
– The instruction is decoded and the datapath control signals prepared for the

next cycle

Execute
– The register bank is read, an operand shifted, the ALU result generated and

written back into destination register

19SOC Consortium Course Material

3-Stage Pipeline (2/2)

At any time slice, 3 different instructions may
occupy each of these stages, so the hardware in
each stage has to be capable of independent
operations
When the processor is executing data processing
instructions , the latency = 3 cycles and the
throughput = 1 instruction/cycle

20SOC Consortium Course Material

Multi-Cycle Instruction

Memory access (fetch, data transfer) in every cycle
Datapath used in every cycle (execute, address calculation,
data transfer)
Decode logic generates the control signals for the data path
use in next cycle (decode, address calculation)

21SOC Consortium Course Material

Data Processing Instruction

address register

increment

registers
Rd

Rn

PC

as ins.

as instruction

mult

data out data in i. pipe

[7:0]

(b) register - immediate operations

address register

increment

registers
Rd

Rn

PC

Rm

as ins.

as instruction

mult

data out data in i. pipe

(a) register - register operations

All operations take place in a single clock cycle

22SOC Consortium Course Material

Data Transfer Instructions

address register

increment

registers
Rn

PC

lsl #0

= A / A + B / A - B

mult

data out data in i. pipe

[11:0]

(a) 1st cycle - compute address

address register

increment

registers
Rn

Rd

shifter

= A + B / A - B

mult

PC

byte? data in i. pipe

(b) 2nd cycle - store data & auto-index

Computes a memory address similar to a data processing instruction
Load instruction follows a similar pattern except that the data from
memory only gets as far as the ‘data in’ register on the 2nd cycle and a
3rd cycle is needed to transfer the data from there to the destination
register

23SOC Consortium Course Material

Branch Instructions

address register

increment

registers
R14

PC

shifter

= A

mult

data out data in i. pipe

(b) 2nd cycle - save return address

address register

increment

registers
PC

lsl #2

= A + B

mult

data out data in i. pipe

[23:0]

(a) 1st cycle - compute branch target

The third cycle, which is required to complete the pipeline refilling, is also
used to mark the small correction to the value stored in the link register
in order that is points directly at the instruction which follows the branch

24SOC Consortium Course Material

Branch Pipeline Example

Breaking the pipeline
Note that the core is executing in the ARM
state

25SOC Consortium Course Material

5-Stage Pipeline ARM Organization

Tprog = Ninst * CPI / fclk
– Tprog: the time that executes a given program
– Ninst: the number of ARM instructions executed in the

program => compiler dependent
– CPI: average number of clock cycles per instructions =>

hazard causes pipeline stalls
– fclk: frequency

Separate instruction and data memories => 5 stage
pipeline
Used in ARM9TDMI

26SOC Consortium Course Material

5-Stage Pipeline Organization (1/2)

Fetch
– The instruction is fetched from

memory and placed in the instruction
pipeline

Decode
– The instruction is decoded and

register operands read from the
register files. There are 3 operand
read ports in the register file so most
ARM instructions can source all their
operands in one cycle

Execute
– An operand is shifted and the ALU

result generated. If the instruction is
a load or store, the memory address
is computed in the ALU

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

27SOC Consortium Course Material

5-Stage Pipeline Organization (2/2)

Buffer/Data
– Data memory is accessed if required.

Otherwise the ALU result is simply
buffered for one cycle

Write back
– The result generated by the

instruction are written back to the
register file, including any data
loaded from memory

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

28SOC Consortium Course Material

Pipeline Hazards
There are situations, called hazards, that prevent the next
instruction in the instruction stream from being executing
during its designated clock cycle. Hazards reduce the
performance from the ideal speedup gained by pipelining.
There are three classes of hazards:
– Structural Hazards

• They arise from resource conflicts when the hardware cannot support all
possible combinations of instructions in simultaneous overlapped
execution.

– Data Hazards
• They arise when an instruction depends on the result of a previous

instruction in a way that is exposed by the overlapping of instructions in
the pipeline.

– Control Hazards
• They arise from the pipelining of branches and other instructions that

change the PC

29SOC Consortium Course Material

Structural Hazards

When a machine is pipelined, the overlapped
execution of instructions requires pipelining of
functional units and duplication of resources to
allow all possible combinations of instructions in
the pipeline.
If some combination of instructions cannot be
accommodated because of a resource conflict, the
machine is said to have a structural hazard.

30SOC Consortium Course Material

Example

A machine has shared a single-memory pipeline
for data and instructions. As a result, when an
instruction contains a data-memory reference
(load), it will conflict with the instruction reference
for a later instruction (instr 3):

Clock cycle number
instr 1 2 3 4 5 6 7 8
load IF ID EX MEM WB
Instr 1 IF ID EX MEM WB
Instr 2 IF ID EX MEM WB
Instr 3 IF ID EX MEM WB

31SOC Consortium Course Material

Solution (1/2)

To resolve this, we stall the pipeline for one clock
cycle when a data-memory access occurs. The
effect of the stall is actually to occupy the
resources for that instruction slot. The following
table shows how the stalls are actually
implemented.

Clock cycle number
instr 1 2 3 4 5 6 7 8 9
load IF ID EX MEM WB

WB

Instr 1 IF ID EX MEM WB
Instr 2 IF ID EX MEM WB
Instr 3 stall IF ID EX MEM

32SOC Consortium Course Material

Solution (2/2)

Another solution is to use separate instruction and
data memories.
ARM belongs to the Harvard architecture, so it does
not suffer from this hazard

33SOC Consortium Course Material

Data Hazards

Data hazards occur when the pipeline changes the
order of read/write accesses to operands so that the
order differs from the order seen by sequentially
executing instructions on the unpipelined machine.

Clock cycle number

1 2 3 4 5 6 7 8 9

ADD R1,R2,R3

R4,R5,R1

R6,R1,R7

R8,R1,R9

IF ID EX MEM WB

R10,R1,R11

SUB IF IDsub EX MEM WB

XOR IF IDxor EX MEM

AND IF IDand EX MEM WB

OR IF IDor EX MEM WB
WB

34SOC Consortium Course Material

Forwarding

The problem with data hazards, introduced by this
sequence of instructions can be solved with a
simple hardware technique called forwarding.

Clock cycle number

1 2 3 4 5 6 7

ADD R1,R2,R3
R4,R5,R1

R6,R1,R7

IF ID EX MEM WB
SUB IF IDsub EX MEM WB

AND IF IDand EX MEM WB

35SOC Consortium Course Material

Forwarding Architecture

Forwarding works as
follows:
– The ALU result from the

EX/MEM register is always fed
back to the ALU input latches.

– If the forwarding hardware
detects that the previous ALU
operation has written the
register corresponding to the
source for the current ALU
operation, control logic selects
the forwarded result as the ALU
input rather than the value read
from the register file.

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

forwarding paths

36SOC Consortium Course Material

Forward Data

Clock cycle number

1 2 3 4 5 6 7

ADD R1,R2,R3
R4,R5,R1
R6,R1,R7

IF ID EXadd MEMadd WB
SUB IF ID EXsub MEM WB
AND IF ID EXand MEM WB

The first forwarding is for value of R1 from EXadd to EXsub.
The second forwarding is also for value of R1 from MEMadd to EXand.
This code now can be executed without stalls.
Forwarding can be generalized to include passing the result directly
to the functional unit that requires it: a result is forwarded from the
output of one unit to the input of another, rather than just from the
result of a unit to the input of the same unit.

37SOC Consortium Course Material

Without Forward

Clock cycle number

1 2 3 4 5 6 7 8 9

WB
WB
MEM

R1,R2,R3

R4,R5,R1
R6,R1,R7

ADD IF ID EX MEM WB

SUB IF stall stall IDsub EX MEM
AND stall stall IF IDand EX

38SOC Consortium Course Material

Data Forwarding

Data dependency arises when an instruction needs to use
the result of one of its predecessors before the result has
returned to the register file => pipeline hazards
Forwarding paths allow results to be passed between stages
as soon as they are available
5-stage pipeline requires each of the three source operands
to be forwarded from any of the intermediate result registers
Still one load stall
LDR rN, […]
ADD r2,r1,rN ;use rN immediately
– One stall
– Compiler rescheduling

39SOC Consortium Course Material

Stalls are Required

1 2 3 4 5 6 7 8

R1,@(R2)

OR R8,R1,R9 IF ID EXE MEM WB

R4,R1,R5
R6,R1,R7

LDR IF ID EX MEM WB
SUB IF ID EXsub MEM WB
AND IF ID EXand MEM WB

The load instruction has a delay or latency that cannot be
eliminated by forwarding alone.

40SOC Consortium Course Material

The Pipeline with one Stall

1 2 3 4 5 6 7 8 9

WB
WB

OR R8,R1,R9 stall IF ID EX MEM

R1,@(R2)
R4,R1,R5
R6,R1,R7

LDR IF ID EX MEM WB
SUB IF ID stall EXsub MEM WB
AND IF stall ID EX MEM

The only necessary forwarding is done for R1 from MEM to
EXsub.

41SOC Consortium Course Material

LDR Interlock

In this example, it takes 7 clock cycles to execute 6
instructions, CPI of 1.2
The LDR instruction immediately followed by a data
operation using the same register cause an interlock

42SOC Consortium Course Material

Optimal Pipelining

In this example, it takes 6 clock cycles to execute 6
instructions, CPI of 1
The LDR instruction does not cause the pipeline to interlock

43SOC Consortium Course Material

LDM Interlock (1/2)

In this example, it takes 8 clock cycles to execute 5
instructions, CPI of 1.6
During the LDM there are parallel memory and writeback
cycles

44SOC Consortium Course Material

LDM Interlock (2/2)

In this example, it takes 9 clock cycles to execute 5
instructions, CPI of 1.8
The SUB incurs a further cycle of interlock due to it using the
highest specified register in the LDM instruction

45SOC Consortium Course Material

8-Stage Pipeline (v6 Architecture)

8-stage pipeline
Data forwarding and branch prediction

– Dynamic/static branch prediction
Improved memory access

– Non-blocking
– Hit-under-miss

Pipeline parallism
– ALU/MAC, LSU
– LS instruction won’t stall the pipeline
– Out-of-order completion

46SOC Consortium Course Material

Comparison

Feature ARM9E™ ARM10E™ Intel® XScale™ ARM11TM

Architecture ARMv5TE(J) ARMv5TE(J) ARMv5TE ARMv6

Pipeline Length 5 6 7 8

Java Decode (ARM926EJ) (ARM1026EJ) No Yes

V6 SIMD Instructions No No No Yes

MIA Instructions No No Yes Available as
coprocessor

Branch Prediction No Static Dynamic Dynamic

Independent Load-
Store Unit

No Yes Yes Yes

Instruction Issue Scalar, in-order Scalar, in-order Scalar, in-order Scalar, in-order

Concurrency None ALU/MAC, LSU ALU, MAC, LSU ALU/MAC, LSU

Out-of-order
completion

No Yes Yes Yes

Target
Implementation

Synthesizable Synthesizable Custom chip Synthesizable and
Hard macro

47SOC Consortium Course Material

Introduction to Several ARM processors

48SOC Consortium Course Material

ARM7TDMI Processor Core
Current low-end ARM core for applications like
digital mobile phones
TDMI
– T: Thumb, 16-bit compressed instruction set
– D: on-chip Debug support, enabling the processor to halt

in response to a debug request
– M: enhanced Multiplier, yield a full 64-bit result, high

performance
– I: Embedded ICE hardware

Von Neumann architecture
3-stage pipeline, CPI ~ 1.9

49SOC Consortium Course Material

ARM7TDMI Block Diagram

JTAG TAP
controller

Embedded

processor
core

TCK TMSTRST TDI TDO

D[31:0]

A[31:0]

opc, r/w,
mreq, trans,
mas[1:0]

other
signals

scan chain 0

scan chain 2

scan chain 1

extern0
extern1 ICE

bus
splitter

Din[31:0]

Dout[31:0]

50SOC Consortium Course Material

ARM7TDMI Core Diagram

51SOC Consortium Course Material

ARM7TDMI Interface Signals (1/4)

mreq
seq
lock

Dout[31:0]

D[31:0]

r/w
mas[1:0]

mode[4:0]
trans

abort

opc
cpi

cpa
cpb

memory
interface

MMU
interface

coprocessor
interface

mclk
wait
eclk

isync

bigend

enin

irq
¼q

reset

enout

abe

Vdd
Vss

clock
control

configuration

interrupts

initialization

bus
control

power

ale
ape
dbe

dbgrq
breakpt
dbgack

debug

exec
extern1
extern0
dbgen

bl[3:0]

TRST
TCK
TMS
TDI

JTAG
controls

TDO

Tbit statetbe

rangeout0
rangeout1

dbgrqi
commrx
commtx

enouti

highz
busdis

ecapclk

busen

Din[31:0]

A[31:0]

ARM7TDMI

core

tapsm[3:0]
ir[3:0]
tdoen
tck1
tck2
screg[3:0]

TAP
information

drivebs
ecapclkbs
icapclkbs
highz
pclkbs
rstclkbs
sdinbs
sdoutbs
shclkbs
shclk2bs

boundary
scan
extension

52SOC Consortium Course Material

ARM7TDMI Interface Signals (2/4)
Clock control
– All state change within the processor are controlled by mclk, the

memory clock
– Internal clock = mclk AND \wait
– eclk clock output reflects the clock used by the core

Memory interface
– 32-bit address A[31:0], bidirectional data bus D[31:0], separate data

out Dout[31:0], data in Din[31:0]
– \mreq indicates that the memory address will be sequential to that

used in the previous cycle

mreq s eq Cycl e Us e
0 0 N Non-sequential memory access
0 1 S Sequential memory access
1 0 I Internal cycle – bus and memory inactive
1 1 C Coprocessor register transfer – memory inactive

53SOC Consortium Course Material

ARM7TDMI Interface Signals (3/4)
– Lock indicates that the processor should keep the bus to ensure the

atomicity of the read and write phase of a SWAP instruction
– \r/w, read or write
– mas[1:0], encode memory access size – byte, half–word or word
– bl[3:0], externally controlled enables on latches on each of the 4 bytes

on the data input bus
MMU interface
– \trans (translation control), 0: user mode, 1: privileged mode
– \mode[4:0], bottom 5 bits of the CPSR (inverted)
– Abort, disallow access

State
– T bit, whether the processor is currently executing ARM or Thumb

instructions
Configuration
– Bigend, big-endian or little-endian

54SOC Consortium Course Material

ARM7TDMI Interface Signals (4/4)

Interrupt
– \fiq, fast interrupt request, higher priority
– \irq, normal interrupt request
– isync, allow the interrupt synchronizer to be passed

Initialization
– \reset, starts the processor from a known state, executing from

address 0000000016

ARM7TDMI characteristics

Process 0.35 um Transistors 74,209 MIPS 60
Metal layers 3 Core area 2.1 mm

2 Power 87 mW
Vdd 3.3 V Clock 0 to 66 MHz MIPS/W 690

55SOC Consortium Course Material

Memory Access

The ARM7 is a Von Neumann, load/store
architecture, i.e.,
– Only 32 bit data bus for both instr. and data.
– Only the load/store instr. (and SWP) access

memory.
Memory is addressed as a 32 bit address
space
Data type can be 8 bit bytes, 16 bit half-words
or 32 bit words, and may be seen as a byte
line folded into 4-byte words
Words must be aligned to 4 byte boundaries,
and half-words to 2 byte boundaries.
Always ensure that memory controller
supports all three access sizes

56SOC Consortium Course Material

ARM Memory Interface

Sequential (S cycle)
– (nMREQ, SEQ) = (0, 1)
– The ARM core requests a transfer to or from an address which is either the

same, or one word or one-half-word greater than the preceding address.
Non-sequential (N cycle)
– (nMREQ, SEQ) = (0, 0)
– The ARM core requests a transfer to or from an address which is unrelated to

the address used in the preceding address.
Internal (I cycle)
– (nMREQ, SEQ) = (1, 0)
– The ARM core does not require a transfer, as it performing an internal

function, and no useful prefetching can be performed at the same time
Coprocessor register transfer (C cycle)
– (nMREQ, SEQ) = (1, 1)
– The ARM core wished to use the data bus to communicate with a

coprocessor, but does no require any action by the memory system.

57SOC Consortium Course Material

Cached ARM7TDMI Macrocells

ARM710T
– 8K unified write through cache
– Full memory management unit

supporting virtual memory
– Write buffer

ARM720T
– As ARM 710T but with WinCE

support

ARM 740T
– 8K unified write through cache
– Memory protection unit
– Write buffer

58SOC Consortium Course Material

ARM8

Higher performance than ARM7
– By increasing the clock rate
– By reducing the CPI

• Higher memory bandwidth, 64-bit wide memory
• Separate memories for instruction and data accesses

memory
(double-

bandwidth)

prefetch
unit

integer
unit

coprocessor(s)

write data

read data

addresses

 instructionsPC

CPdataCPinst.

Core Organization
– The prefetch unit is responsible for

fetching instructions from memory and
buffering them (exploiting the double
bandwidth memory)

– It is also responsible for branch prediction
and use static prediction based on the
branch prediction (backward: predicted
‘taken’; forward: predicted ‘not taken’)

ARM8 ARM9TDMI
ARM10TDMI

59SOC Consortium Course Material

Pipeline Organization

5-stage, prefetch unit occupies the 1st stage,
integer unit occupies the remainder

(1) Instruction prefetch

(2) Instruction decode and register read

(3) Execute (shift and ALU)

(4) Data memory access

(5) Write back results

Prefetch Unit

Integer Unit

60SOC Consortium Course Material

Integer Unit Organization

inst. decode

register write

+4

write
pipeline

multiplier

register read

mux

ALU/shifter

rot/sgn ex

PC+8instructions
coprocessor
instructions

coproc
data

forwarding
paths

write
data

address
read
data

decode

execute

memory

write

61SOC Consortium Course Material

ARM8 Macrocell

8 Kbyte cache
(double-

bandwidth)

prefetch
unit

ARM8 integer
unit

CP15

write data

read data

virtual address

 instructionsPC

CPdataCPinst.

write buffer MMU

address buffer
physical address

data outdata in address

copy-back tag

JTAG

copy-back data

ARM810
– 8Kbyte unified instruction

and data cache
– Copy-back
– Double-bandwidth
– MMU
– Coprocessor
– Write buffer

62SOC Consortium Course Material

ARM9TDMI

Harvard architecture
– Increases available memory bandwidth

• Instruction memory interface
• Data memory interface

– Simultaneous accesses to instruction and data memory
can be achieved

5-stage pipeline
Changes implemented to
– Improve CPI to ~1.5
– Improve maximum clock frequency

63SOC Consortium Course Material

ARM9TDMI Organization

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

64SOC Consortium Course Material

ARM9TDMI Pipeline Operations (1/2)

instruction
fetch

instruction
fetch

Thumb
decompress

ARM
decode

reg
read

reg
writeshift/ALU

reg
writeshift/ALU

r. read

decode

data memory
access

Fetch Decode Execute

Memory WriteFetch Decode Execute

ARM9TDMI:

ARM7TDMI:

Not sufficient slack time to translate Thumb instructions into ARM instructions and
then decode, instead the hardware decode both ARM and Thumb instructions
directly

65SOC Consortium Course Material

ARM9TDMI Pipeline Operations (2/2)
Coprocessor support
– Coprocessors: floating-point, digital signal processing, special-

purpose hardware accelerator

On-chip debugger
– Additional features compared to ARM7TDMI

• Hardware single stepping
• Breakpoint can be set on exceptions

ARM9TDMI characteristics

Process 0.25 um Transistors 110,000 MIPS 220
Metal layers 3 Core area 2.1 mm

2 Power 150 mW
Vdd 2.5 V Clock 0 to 200 MHz MIPS/W 1500

66SOC Consortium Course Material

ARM9TDMI Macrocells (1/2)

ARM920T
– 2 × 16K caches
– Full memory

management unit
supporting virtual
addressing and
memory protection

– Write buffer

AMBA
address

AMBA
data

vir
tu

al
 IA

write
buffer

data
MMU

physical IA

vi
rtu

al
 D

A

instructions

physical
address tag

ph
ys

ic
al

 D
A

copy-back DA

data

ARM9TDMI

EmbeddedICE
& JTAG

CP15

external
coprocessor

interfaceinstruction
cache

instruction
MMU

data
cache

AMBA interface

67SOC Consortium Course Material

ARM9TDMI Macrocells (2/2)

ARM 940T
– 2 × 4K caches
– Memory protection

Unit
– Write buffer

AMBA
address

AMBA
data

in
st

ru
ct

io
ns

da
ta

da
ta

 a
dd

re
ss

I a
dd

re
ss

Protection Unit
data

cache

write
bufferAMBA interface

instruction
cache

external
coprocessor

interface

ARM9TDMI

EmbeddedICE
& JTAG

68SOC Consortium Course Material

ARM9E-S Family Overview
ARM9E-S is based on an ARM9TDMI with the following
extensions:
– Single cycle 32*6 multiplier implementation
– EmbeddedICE logic RT
– Improved ARM/Thumb interworking
– New 32*16 and 16*16 multiply instructions
– New count leading zero instruction
– New saturated math instructions

ARM946E-S
– ARM9E-S core
– Instruction and data caches, selectable sizes
– Instruction and data RAMs, selectable sizes
– Protection unit
– AHB bus interface

Architecture v5TE

69SOC Consortium Course Material

ARM926EJ-S

ARMv5TEJ architecture (ARMv5TEJ)
32-bit ARM instruction and 16-bit Thumb
instruction set
DSP instruction extensions and single cycle
MAC
ARM Jazelle technology
MMU which supports operating systems
including Symbian OS, Windows CE, Linux
Flexible instruction and data cache sizes
Instruction and data TCM interfaces with
wait state support
EmbeddedICE-RT logic for real-time debug
Industry standard AMBA bus AHB
interfaces
ETM interface for Real-time trace capability
with ETM9
Optional MOVE Coprocessor delivers video
encoding performance

70SOC Consortium Course Material

ARM926EJ-S Performance Characteristics
0.13um 0.18um

Area with cache (mm²) 3.2 8.3

Area w/o cache (mm²) 1.68 4.0

Frequency (MHz) 266 200-180

Typical mW/MHz with cache 0.45 1.40

Typical mW/MHz w/o cache 0.30 1.00

71SOC Consortium Course Material

ARM10TDMI (1/2)
Current high-end ARM processor core
Performance on the same IC process

ARM10TDMI ARM9TDMI ARM7TDMI
×2×2

300MHz, 0.25µm CMOS
Increase clock rate

ARM10TDMI

branch
prediction

reg
write

r. read
decode

data memory
access

Memory WriteFetch Decode Execute

decode

Issue

multiplier
partials add

instruction
fetch

data
write

shift/ALU

addr.
calc.

multiply

72SOC Consortium Course Material

ARM10TDMI (2/2)

Reduce CPI
– Branch prediction
– Non-blocking load and store execution
– 64-bit data memory → transfer 2 registers in each cycle

73SOC Consortium Course Material

ARM1020T Overview
Architecture v5T
– ARM1020E will be v5TE

CPI ~ 1.3
6-stage pipeline
Static branch prediction
32KB instruction and 32KB data caches
– ‘hit under miss’ support

64 bits per cycle LDM/STM operations
Embedded ICE Logic RT-II
Support for new VFPv1 architecture
ARM10200 test chip
– ARM1020T
– VFP10
– SDRAM memory interface
– PLL

74SOC Consortium Course Material

ARM1176JZ(F)-S
Powerful ARMv6 instruction set architecture
– Thumb, Jazelle, DSP extensions
– SIMD (Single Instruction Multiple Data) media processing extensions deliver

up to 2x performance for video processing
Energy-saving power-down modes
– Reduce static leakage currents when processor is not in use

High performance integer processor
– 8-stage integer pipeline delivers high clock frequency
– Separate load-store and arithmetic pipelines
– Branch Prediction and Return Stack
– Up to 660 Dhrystone 2.1 MIPS in 0.13µ process

High performance memory system
– Supports 4-64k cache sizes
– Optional tightly coupled memories with DMA for multi-media applications
– Multi-ported AMBA 2.0 AHB bus interface speeds instruction and data

access
– ARMv6 memory system architecture accelerates OS context-switch

75SOC Consortium Course Material

ARM1176JZ(F)-S
Vectored interrupt interface and low-interrupt-latency
mode speeds interrupt response and real-time
performance
Optional Vector Floating Point coprocessor
(ARM1136JF-S)
– Powerful acceleration for embedded 3D-graphics

76SOC Consortium Course Material

ARM1176JZ(F)-S Performance Characteristics

0.13um

Area with cache (mm²) 5.55

Area w/o cache (mm²) 2.85

Frequency (MHz) 333-550

Typical mW/MHz with cache 0.8

Typical mW/MHz w/o cache 0.6

77SOC Consortium Course Material

ARM11 MPCore
Highly configurable
– Flexibility of total available performance from

implementations using between 1 and 4 processors.
– Sizing of both data and instruction cache between 16K

and 64K bytes across each processor.
– Either dual or single 64-bit AMBA 3 AXI system bus

connection allowing rapid and flexibility during SoC
design

– Optional integrated vector floating point (VFP) unit
– Sizing on the number of hardware interrupts up to a total

of 255 independent sources

78SOC Consortium Course Material

ARM11 MPCore

79SOC Consortium Course Material

ARM Cortex-A8
Used for applications
including mobile
phones, set-up boxes,
gaming consoles, and
automotive
navigation/entertainme
nt systems
High performance with
low power consumption

80SOC Consortium Course Material

ARM Cortex-A8
Architecture features
– Thumb-2 instruction

• Add 130 additional instructions to Thumb
• High density, high performance

– NEON media and signal processing technology
• For audio, video, and 3D graphics
• Decode MPEG-4 VGA 30fps @ 275MHz and H.264 video @

350MHz

– TrustZone technology
– VFPv3

81SOC Consortium Course Material

ARM Cortex-A8
Superscalar pipeline
– Dual issue, in-order, statically scheduled ARM integer

pipeline

82SOC Consortium Course Material

ARM Cortex-A8
NEON media engine (1/2)

83SOC Consortium Course Material

ARM Cortex-A8
NEON media engine (2/2)

84SOC Consortium Course Material

ARM Cortex-A8

Process 65nm (LP) 65nm (GP)

Frequency 650+ 1100+

Area with cache (mm²) <4 <4

Area without cache (mm²) <3 <3

Power with cache (mW/MHz) <0.59 <0.45

85SOC Consortium Course Material

ARM Cortex-A9

86SOC Consortium Course Material

Memory Hierarchy

87SOC Consortium Course Material

Memory Size and Speed

On-chip cache memory

registers

2nd-level off chip cache

Main memory

Hard disk
Access

timecapacity

Slow

Fast

Large

Small Expensive

Cheap

Cost

88SOC Consortium Course Material

Caches (1/2)

A cache memory is a small, very fast memory that
retains copies of recently used memory values.
It usually implemented on the same chip as the
processor.
Caches work because programs normally display
the property of locality, which means that at any
particular time they tend to execute the same
instruction many times on the same areas of data.
An access to an item which is in the cache is called
a hit, and an access to an item which is not in the
cache is a miss.

89SOC Consortium Course Material

Caches (2/2)

A processor can have one of the following two
organizations:
– A unified cache

• This is a single cache for both instructions and data

– Separate instruction and data caches
• This organization is sometimes called a modified Harvard

architectures

90SOC Consortium Course Material

Unified Instruction and Data Cache

address

instructions
cache memory

copies of

instructions

data

00..0016

FF..FF16

instructions

copies of
data

registers

processor

instructionsaddress

and data

and data

91SOC Consortium Course Material

Separate Data and Instruction Caches

address

data
cache

00..0016

FF..FF16

copies of
data

registers

processor

dataaddress

address

instructionsaddress

cache

copies of
instructions

instructions

memory

instructions

data

92SOC Consortium Course Material

The Direct-Mapped Cache

The index address bits are
used to access the cache
entry
The top address bit are
then compared with the
stored tag
If they are equal, the item is
in the cache
The lowest address bit can
be used to access the
desired item with in the line.

data RAMtag RAM

compare mux

datahit

tagaddress: index

93SOC Consortium Course Material

Example

data RAMtag RAM

compare mux

datahit

tagaddress: index

The 8Kbytes of data in
16-byte lines. There
would therefore be 512
lines
A 32-bit address:

– 4 bits to address bytes
within the line

– 9 bits to select the line
– 19-bit tag

19 9 4

line

512

lines

94SOC Consortium Course Material

The Set-Associative Cache

data RAMtag RAM

compare mux

tag

data RAMtag RAM

compare mux

datahit

address
:

index A 2-way set-associative
cache
This form of cache is
effectively two direct-
mapped caches operating
in parallel.

95SOC Consortium Course Material

Example

data RAMtag RAM

compare mux

tag

data RAMtag RAM

compare mux

datahit

address
:

index

20 8 4

line

256

lines

256

lines

The 8Kbytes of data in
16-byte lines. There
would therefore be 256
lines in each half of the
cache
A 32-bit address:

– 4 bits to address bytes
within the line

– 8 bits to select the line
– 20-bit tag

96SOC Consortium Course Material

Fully Associative Cache

A CAM (Content Addressed
Memory) cell is a RAM cell with
an inbuilt comparator, so a CAM
based tag store can perform a
parallel search to locate an
address in any location
The address bit are compared
with the stored tag
If they are equal, the item is in
the cache
The lowest address bit can be
used to access the desired item
with in the line.

data RAMtag CAM

mux

datahit

address

97SOC Consortium Course Material

Example

data RAMtag CAM

mux

datahit

address

28 4

line

512

lines

The 8Kbytes of data in
16-byte lines. There
would therefore be 512
lines
A 32-bit address:

– 4 bits to address bytes
within the line

– 28-bit tag

98SOC Consortium Course Material

Write Strategies

Write-through
– All write operations are passed to main memory

Write-through with buffered write
– All write operations are still passed to main memory and

the cache updated as appropriate, but instead of slowing
the processor down to main memory speed the write
address and data are stored in a write buffer which can
accept the write information at high speed.

Copy-back (write-back)
– No kept coherent with main memory

99SOC Consortium Course Material

Software Development

100SOC Consortium Course Material

ARM Tools

assemblerC compiler

C source asm source

.aof

C libraries

linker

.aif

ARMsd

debug

ARMulator development

system model

board

object
libraries

aof: ARM object format

aif: ARM image format

ARM software development – ADS
ARM system development – ICE and trace
ARM-based SoC development – modeling, tools, design flow

101SOC Consortium Course Material

ARM Development Suite (ADS),
ARM Software Development Toolkit (SDT) (1/3)

Develop and debug C/C++ or assembly language
program
armcc ARM C compiler
armcpp ARM C++ compiler
tcc Thumb C compiler
tcpp Thumb C++ compiler
armasm ARM and Thumb assembler
armlinkARM linker
armsd ARM and Thumb symbolic debugger

102SOC Consortium Course Material

ARM Development Suite (ADS),
ARM Software Development Toolkit (SDT) (2/3)

.aof ARM object format file

.aif ARM image format file
The .aif file can be built to include the debug tables
– ARM symbolic debugger, ARMsd

ARMsd can load, run and debug programs either on
hardware such as the ARM development board or
using the software emulation of the ARM
AXD (ARM eXtended Debugger)
– ARM debugger for Windows and Unix with graphics user interface
– Debug C, C++, and assembly language source

CodeWarrior IDE
– Project management tool for windows

103SOC Consortium Course Material

ARM Development Suite (ADS),
ARM Software Development Toolkit (SDT) (3/3)

Utilities
armprof ARM profiler
Flash downloader download binary images to Flash

memory on a development board
Supporting software
– ARMulator ARM core simulator

• Provide instruction accurate simulation of ARM processors and
enable ARM and Thumb executable programs to be run on non-
native hardware

• Integrated with the ARM debugger

– Angle ARM debug monitor
• Run on target development hardware and enable you to develop

and debug applications on ARM-based hardware

104SOC Consortium Course Material

ARM C Compiler

Compiler is compliant with the ANSI standard for C
Supported by the appropriate library of functions
Use ARM Procedure Call Standard, APCS for all
external functions
– For procedure entry and exit

May produce assembly source output
– Can be inspected, hand optimized and then assembled

sequentially
Can also produce Thumb codes

105SOC Consortium Course Material

Linker

Take one or more object files and combine them
Resolve symbolic references between the object
files and extract the object modules from libraries
Normally the linker includes debug tables in the
output file

106SOC Consortium Course Material

ARM Symbolic Debugger
A front-end interface to debug program running
either under emulator (on the ARMulator) or
remotely on a ARM development board (via a serial
line or through JTAG test interface)
ARMsd allows an executable program to be loaded
into the ARMulator or a development board and run.
It allows the setting of
– Breakpoints, addresses in the code
– Watchpoints, memory address if accessed as data

address
• Cause exception to halt so that the processor state can be

examined

107SOC Consortium Course Material

ARM Emulator (1/2)
ARMulator is a suite of programs that models the
behavior of various ARM processor cores in
software on a host system
It operates at various levels of accuracy
– Instruction accuracy
– Cycle accuracy
– Timing accuracy

• Instruction count or number of cycles can be measured for a
program

• Performance analysis

Timing accuracy model is used for cache, memory
management unit analysis, and so on

108SOC Consortium Course Material

ARM Emulator (2/2)

ARMulator supports a C library to allow complete C
programs to run on the simulated system
To run software on ARMulator, through ARM
symbolic debugger or ARM GUI debuggers, AXD
It includes
– Processor core models which can emulate any ARM core
– A memory interface which allows the characteristics of the

target memory system to be modeled
– A coprocessor interface that supports custom

coprocessor models
– An OS interface that allows individual system calls to be

handled

109SOC Consortium Course Material

ARM Development Board

A circuit board including an ARM core (e.g.
ARM7TDMI), memory component, I/O and
electrically programmable devices
It can support both hardware and software
development before the final application-specific
hardware is available

110SOC Consortium Course Material

Summary (1/2)
ARM7TDMI
– Von Neumann architecture
– 3-stage pipeline
– CPI ~ 1.9

ARM9TDMI, ARM9E-S
– Harvard architecture
– 5-stage pipeline
– CPI ~ 1.5

ARM10TDMI
– Harvard architecture
– 6-stage pipeline
– CPI ~ 1.3

111SOC Consortium Course Material

Summary (2/2)
Cache
– Direct-mapped cache
– Set-associative cache
– Fully associative cache

Software Development
– CodeWarrior
– AXD

112SOC Consortium Course Material

References
[1] http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html
[2] http://video.ee.ntu.edu.tw/~dip/slide.html
[2] ARM System-on-Chip Architecture by S.Furber, Addison

Wesley Longman: ISBN 0-201-67519-6.
[3] www.arm.com

	ARM Processor Architecture
	Outline
	ARM Core Family
	ARM Core Family
	Product Code Demystified
	ARM Processor Cores (1/4)
	ARM Processor Cores (2/4)
	ARM Processor Cores (3/4)
	ARM Processor Cores (4/4)
	ARM Processor Core
	ARM Architecture Version (1/6)
	ARM Architecture Version (2/6)
	ARM Architecture Version (3/6)
	ARM Architecture Version (4/6)
	ARM Architecture Version (5/6)
	ARM Architecture Version (6/6)
	3-Stage Pipeline ARM Organization
	3-Stage Pipeline (1/2)
	3-Stage Pipeline (2/2)
	Multi-Cycle Instruction
	Data Processing Instruction
	Data Transfer Instructions
	Branch Instructions
	Branch Pipeline Example
	5-Stage Pipeline ARM Organization
	5-Stage Pipeline Organization (1/2)
	5-Stage Pipeline Organization (2/2)
	Pipeline Hazards
	Structural Hazards
	Example
	Solution (1/2)
	Solution (2/2)
	Data Hazards
	Forwarding
	Forwarding Architecture
	Forward Data
	Without Forward
	Data Forwarding
	Stalls are Required
	The Pipeline with one Stall
	LDR Interlock
	Optimal Pipelining
	LDM Interlock (1/2)
	LDM Interlock (2/2)
	8-Stage Pipeline (v6 Architecture)
	Comparison
	Introduction to Several ARM processors
	ARM7TDMI Processor Core
	ARM7TDMI Block Diagram
	ARM7TDMI Core Diagram
	ARM7TDMI Interface Signals (1/4)
	ARM7TDMI Interface Signals (2/4)
	ARM7TDMI Interface Signals (3/4)
	ARM7TDMI Interface Signals (4/4)
	Memory Access
	ARM Memory Interface
	Cached ARM7TDMI Macrocells
	ARM8
	Pipeline Organization
	Integer Unit Organization
	ARM8 Macrocell
	ARM9TDMI
	ARM9TDMI Organization
	ARM9TDMI Pipeline Operations (1/2)
	ARM9TDMI Pipeline Operations (2/2)
	ARM9TDMI Macrocells (1/2)
	ARM9TDMI Macrocells (2/2)
	ARM9E-S Family Overview
	ARM926EJ-S
	ARM926EJ-S Performance Characteristics
	ARM10TDMI (1/2)
	ARM10TDMI (2/2)
	ARM1020T Overview
	ARM1176JZ(F)-S
	ARM1176JZ(F)-S
	ARM1176JZ(F)-S Performance Characteristics
	ARM11 MPCore
	ARM11 MPCore
	ARM Cortex-A8
	ARM Cortex-A8
	ARM Cortex-A8
	ARM Cortex-A8
	ARM Cortex-A8
	ARM Cortex-A8
	ARM Cortex-A9
	Memory Hierarchy
	Memory Size and Speed
	Caches (1/2)
	Caches (2/2)
	Unified Instruction and Data Cache
	Separate Data and Instruction Caches
	The Direct-Mapped Cache
	Example
	The Set-Associative Cache
	Example
	Fully Associative Cache
	Example
	Write Strategies
	Software Development
	ARM Tools
	ARM Development Suite (ADS),ARM Software Development Toolkit (SDT) (1/3)
	ARM Development Suite (ADS),ARM Software Development Toolkit (SDT) (2/3)
	ARM Development Suite (ADS),ARM Software Development Toolkit (SDT) (3/3)
	ARM C Compiler
	Linker
	ARM Symbolic Debugger
	ARM Emulator (1/2)
	ARM Emulator (2/2)
	ARM Development Board
	Summary (1/2)
	Summary (2/2)
	References

