
1

Intel Pentium processors

n IA-32 processors
w from 8086 to Pentium 4

n IA-32 Instruction Set Architecture
w registers
w addressing
w assembly language instructions
w x87 floating-point unit
w MMX, SSE and SSE2

n Pentium 4 microarchitecture
w the NetBurst microarchitecture
w hyper-threading microarchitecture

2

IA-32 processors

n 8086, 1978
w 8 MHz, no cache
w 16 bit architecture: 16 bit registers and data bus
w 20 bit addresses, 1 MB segmented address space

n Intel 286, 1982
w 12.5 MHz, no cache
w 16-bit registers, 24 bit addesses, 16 MB address space
w protected mode operation, support for segmented virtual memory

n Intel 386, 1985
w first 32-bit processor in the IA-32 family
w 20 MHz, no cache, 32-entry 4-way set associative TLB
w 32-bit addresses, 4 GB address space
w supports both a segmented and a flat memory model
w supports virtual memory through paging

3

Intel 386

n 386 was the first processor based on a micro-architecture
w instruction execution is separated from the ISA

n Bus interface unit
w accesses memory

n Code prefetch unit
w receives code from the bus unit into a 16-byte queue

n Instruction decode unit
w fetches instructions from prefetch buffer, decodes into microcode

n Execution unit
w executes microcode instructions

n Segment unit
w translates logical adresses to linear addresses, protection checking

n Paging unit
w translates linear addresses to physical addresses, protection, TLA

4

IA-32 processors (cont.)

n Intel 486, 1989
w 25 MHz, 8 KB L1 cache (write-through)
w 5-stage pipelined instruction execution
w integrated x87 FPU
w support for second level cache

n Intel Pentium, 1993
w 60 MHz, 8+8 KB L1 cache (write-back), 64-bit external bus
w superscalar design with 2 pipelines
w branch prediction with on-chip branch table

n Later Pentium processor introduced the MMX technology
w parallel operations on packed integers in 64-bit MMX registers
w added 47 new instructions to the instruction set

5

IA-32 processors (cont.)

n Pentium Pro, 1995
w introduces the P6 microarchitecture
w 200 MHz, 8+8 KB L1, 256 KB L2 cache
w dedicated 64-bit backside cache bus connecting CPU with cache
w 3-way superscalar design
w IA-32 instructios are decoded into micro-ops
w out-of-order execution with 5 parallel execution units
w retirement unit retires completed micro-ops in program order
w improved branch prediction
w improved cache performance

6

IA-32 processors (cont.)

n Pentium II, 1997
w 266 MHz, 16+16 KB L1, 256 KB L2 cache
w supports 256, 512 KB or 1 MB L2 cache
w adds MMX technology to the P6 micro-architecture
w Xeon and Celeron improved cache organization

n Pentium III, 1999
w 500 MHz, 16+16 KB L1, 256 or 512 KB L2 cache
w introduces Streaming SIMD Extension (SSE) technology
w parallel operations on packed 32-bit floating-point values in 128-bit

SSE registers
w Pentium III Xeon improved cache performance

7

IA-32 processors (cont.)
n Pentium 4, 2000
w based on the NetBurst microarchitecture
w 1.5 GHz, 8 KB L1 data cache, Execution Trace Cache, 256 KB L2

cache
w 400 MHz pipelined system bus
w SSE2 extension, parallel operations also on packed 64-bit floating-

point values
n Xeon, 2001
w based on the NetBurst microarchitecture
w introduced Hyper-Threading technology 2002

n Pentium M
w for mobile systems, advanced power management
w 32+32 KB L1 cache, write-back, 1 MB L2 cache
w 400 MHz system bus

8

IA-32 Instruction Set Architecture

n Desribes the basic execution environment of all IA-32
processors
w describes the facilities for processing instructions and storing data,

as seen by the assembly language programmer
w compatible with older 16-bit architectures

n IA-32 processors support three operating modes
w protected mode
ü the native state of the processor
ü all instructions and architectural features are available

w real-address mode
ü implements the programming environment of the 8086 processor

w system management mode
ü for use in operating systems
ü saves current context, switches to a separate address space

9

Registers

n 8 general-purpose registers, 32-bit
w can be used in instruction execution to store

operands and addresses
w ESP is used for stack pointer

n 6 segment registers, 16-bit
w used to hold segment selectors

n Status flags, 32-bit
w consists of status bits describing the current

 status of the processor

n Instruction pointer, 32-bit
w points to the next instruction to be executed

n 8 floating-point / MMX registers, 64-bit
n 8 XMM registers for SSE operations, 128-bit

EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP

CS
DS
SS
ES
FS
GS

EFLAGS

EIP

16 031

10

Use of general purpose registers

n Can refer to the lower 16-bit part of the registers with names
without the prefix E (AX, BX, CX, ...)
w can refer to the two lower bytes in the registers as AH, AL, ...

n Registers are used for special purouses in different
instructions
w EAX – Ackumulator for operands and results
w EBX – pointer to data in DS segment
w ECX – counter for string and loop operations
w EDX – I/O pointer
w ESI – source pointer for string operations, pointer to DS segment
w EDI – destination pointer for string operations, pointer to ES

segment
w ESP - stack pointer (in the SS segment)
w EBP - pointer to data on the stack

11

Memory organization

n The IA-32 ISA supports three memory models
n Flat memory
w linear address space
w single byte addressable memory
w contiguous addresses from 0 to 232-1

w can be used together with paging
n Segmented memory
w memory appears as a group of separate address spaces
w code, data and stack segments
w uses logical addresses consisting of a segment selector and an

offset
w can be used together with paging

n Real-address mode
w compatible with older IA-32 processors

Linear address

12

Segment registers

n Segment registers hold 16-bit segment selectors
w pointer that identifies a segment in memory
w CS – code segment
w DS – data segment
w SS – stack segment
w ES, FS, GS – used for additional data segments

n Segment selectors point to
segment descriptors
w data structure that describes

a segment

CS
DS
SS
ES
FS
GS

Code segment

Data segment

Stack segment

Data segment

Data segment

Data segment

13

Address translation

n Logical adresses consist of
w a 16-bit segment selector
w a 32-bit offset

n Two-level address translation
w logical to linear address

translation through segmentation
w linear to physical address translation

through paging

Descriptor table

Seg. descriptor

Seg. selector
015

Offset
031

+

Linear address
031

Logical address

Base address

14

Operand addressing

n IA-32 instructions operate on zero, one or two operands
w in general, one operand may be a memory reference

n Operands can be
w immediate
w a register
w a memory location

n Some operations (DIV and MUL) use quadword operands
w represented by register pairs, separated by a colon (EDX:EAX)

n Memory locations are specified by a segment selector and an
offset (a far pointer)
w segment selector are often implicit

(CS for instruction access, SS for stack push/pop, DS for data
references, ES for destination strings)
w can also be specified explicitely: mov ES:[EBX], EAX

15

Addressing modes

n The offset part of an operand address can be specified as
w a static value (a displacement)
w as an address computation of the form

offset = Base + (Index*2Scale) + Displacement
where
ü Base is one of the registers
ü Index is one of the registers
ü Scale is a constant value

1, 2 , 4 or 8
ü Displacement is a 8, 16 or

32-bit value

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
EBP
ESI
EDI

1
2
4
8

None
8-bit
16-bit
32-bit

+ * +

Base Index Scale Displ.

16

Addressing modes (cont)

n Displacement
w absolute address

n Base
w register indirect addressing

n Base + Displacement
w index into an array , fields of records

n Base + Index + Displacement
w access two-dimensional arrays

n (Index*scale) + Displacement
w index arrays with element sizes greater than 1

n Base + (Index*scale) + Displacement
w access two-dimensional arrays with an element size greater than 1

17

Instruction set

n Very large instruction set, over 300 instructions
w CISC-like instruction set

n Instructions can be divided into the following groups
w data transfer instructions (MOV)
w binary arithmetic (ADD, SUB)
w logical instructions (AND, OR)
w shift and rotate (ROR, SAR)
w bit and byte instructions (BTS, SETE)
w control transfer instructions (JMP, CALL, RET)
w string instructions (MOVS, SCAS)
w flag control instructions (STD, STC)
w segment register instructions (LDS)
w miscellaneous instructions (LEA, NOP, CPUID)

18

Data transfer instructions

n Move data memory–register or register–register
w MOV – unconditional move

n Conditional move MOVcc, move if a condition cc is true
w CMOVE – conditional move if equal
w CMOVLE – conditional move if less or equal

n Exchange
w XCHG – exchange register and memory (or register – register)

(atomic instruction, used to implement semaphors)
n Stack operations
w PUSH, POP
w PUSHA, POPA – push/pop all general purpose registers

n Conversion
w CBW – convert byte to word (by sign extension)

19

Binary arithmetic

n Addition, subtraction
w ADD, SUB
w also add with carry (ADC) and subtract with borrow (SBB)

n Multiplication, division
w MUL
ü EDX:EAX ¨ EAX * operand

w DIV
ü EDX:EAX ¨ EDX:EAX / operand (EAX quotient, EDX remainder)

w IMUL, IDIV
ü signed multiply and divide

n Compare
w CMP – set status flags for use in conditional jump

20

Logical, shift and rotate instructions

n Bitwise logical AND, OR, XOR
n Negation NOT
n Shift arithmetic right and left SAR, SAL
w shifts the destination the specified number of bits left/right
w bits are first shifted into the carry flag

and then discarded
w count is an immediate value or the CL register, masked to 5 bits

n Rotate right and left, ROL, ROR
w similar as shift, but rotates the bits

throug the carry flag
w no bits are lost

CF0

CF0

21

Bit and byte instructions

n Bit test, BT
n Bit Test and Set, BTS
n Bit Scan Forward, BSF
n Bit Scan Reverse, BSR
w scans the operand for a set bit, stores the index in destination

n SETcc – sets a byte to 0 or 1 depending on condition cc
w Set Byte If Equal, SETE
w Set Byte If Greater Or Equal, SETGE

n TEST – Logical compare
w does a logical AND of operands and sets status flags
w does not alter the operands

22

Control transfer instructions

n Unconditional control transfer
w JMP, CALL, RET
w CALL saves the current EIP on the stack, popped by RET

n Conditional control transfer
w Jcc – jump if condition cc is true
w JNE – Jump If Not Equal
w JGE – Jump If Greater Or Equal

n Loop instructions
w LOOP – conditional jump using ECX as a count

23

String instructions

n Operates on contiguos data structures in memory
w bytes, words or doublewords

n MOVS – Move String
w ESI contains source address
w EDI contains destination address

n CMPS – Compare String
n Can be used repeatedly with a count in ECX register

24

Flag control instructions

n Instructions to modify some of the flags in the EFLAGS
status register
n STC – Set Carry Flag
n CLC – Clear Carry Flag
n STD, CLD – Set Direction Flag, Clear Direction Flag
w controls direction in string operations, etc.

25

Miscellaneous instructions

n NOP – No-Operation
n LEA – Load Effective Address
w computes the effective address of

a source operand
w can be used for exaluating

expressions in the form of an
address computation

n CPUID – Processor Identification
w returns information about the type of processor
w can be used to find out the capabilities of the processor

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

1
2
4
8

None
8-bit
16-bit
32-bit

+ * +

Base Index Scale Displ.

26

Instruction format

n IA-32 instructions are decoded into opcodes of the following
format

w up to four prefix bytes
ü prefixes for lock/repeat, segment override / branch hint, operand size

override, address size override
w 1–2 opcode bytes
w 1 byte ModR/M and SIB (optional)
ü describes the addressing mode and register number

w 1, 2 or 4 bytes displacement
w 1, 2 or 4 bytes immediate

Prefixes Opcode ModR/M SIB Displacement Immediate

27

x87 Floating-Point Unit

n Conforms to the IEEE 754 standard
n The floating-point unit is independent of the basic execution

environment and of the SSE (and SSE2) execution
environment
w shares state with the MMX execution environment
w MMX registers are aliased to the floating-point registers

n 8 floating-point data registers, 80-bit
w 1 sign bit
w 15 bits exponent
w 63 bits significand

n Floating-point values are stored in
double extended precision (80 bits)
w automatically converted to double extended when loaded into a

register

R7
R6
R5
R4
R3
R2
R1
R0

079

28

FPU special-purpose registers

n The FPU has three 16-bit special purpouse registers
w control register
w status register
w tag register

n Control register contains
w precision control field
ü single, double or double extended precision
ü default is 64 bits precision for mantissa

w exception mask bits
ü when set, the FPU does not generate exceptions on underflow,

overflow, denormal value, divide by zero, ...
w rounding control field
ü selects one of the four rounding modes

Control

Status

Tag

015

29

FPU special-purpose registers (cont.)

n Status register contains
w condition code flags, indicating the result of FP compare and

arithmetic operations
w exception flags, indicating an exeption
w top-of-stack pointer (3 bits)

n Tag register contains two bits for each register, describing
the contents of each register
w valid number
w zero
w special (NaN, infinity, denormal)
w empty

n Two 48-bit pointers
w last instruction pointer and last data pointer

n Opcode of last FP instruction

30

Floating-point data registers

n The eight FPU data registers are treated as a stack
w references to FP registers are relative to the top of the stack

n The register number of the current top-of-stack is stored in
the TOP field in the status word register (3 bits)
w load operations decrement TOP with 1, modulo 8
w store operations increment TOP with 1, modulo 8

n Register references are relative to the top-of-stack
w ST(0) is the top-of-stack
w ST(1) is top-of-stack + 1

n Most FP instructions implicitely operate
on the top-of-stack
w two-operand instructions use ST(0) and ST(1)
w one-operand instructions use ST(0)

Top

7

ST(2) 6

ST(1) 5

ST(0) 4
3

2
1
0

31

Example: Inner product
/* Compute inner product */
double a, b, c, d, result;
result = a*b + c*d;

fld a /* Push a */
fmul b /* a*b */
fld c /* Push c */
fmul d /* c*d */
fadd st(1) /* a*b + c*d */
fstp result /* Pop result */

Top

0

7
6
5
4
3
2
1

Initially, TOP is 4

ST(0)

Load a

a

0

7
6
5
4
3
2
1

Multiply ST(0)
with b

a*bST(0)

0

7
6
5
4
3
2
1

Load c

a*b
cST(0)

ST(1)

0

7
6
5
4
3
2
1

Multiply ST(0)
with d

a*b
c*dST(0)

ST(1)

0

7
6
5
4
3
2
1

Add ST(0)
and ST(1)

a*b
a*b+c*dST(0)

ST(1)

0

7
6
5
4
3
2
1

32

Floating-point instructions

n Floating-point instructions can be divided into the following
groups
w data transfer instructions
w load constant instructions
w basic arithmetic instructions
w comparison instructions
w transcedental instructions
w FPU control instructions

n Most FP instructions have two operands
w FP register or memory
w ST(0) is often an implied operand
w no immediate operands

n Operands can be floating-point, integer or packed BCD

33

Data transfer instructions

n Load operands from memory into ST(0)
w FLD – Load Floating Point
w FILD – Load Integer

n Store the value in ST(0) into memory
w FST – Store Floating Point
w FIST – Store Integer
w FSTP – Store Floating Point and Pop

n Move values between FP register
w FXCH – Exchange Register Contents
w FCMOVcc – Conditional Move

34

Load constant instructions

n Instructions that push commonly used constant onto the top-
of-stack
w FLDZ – Load +0.0
w FLDPI – Load p
w FLDL2T – Load log2 10
w FLDL2E – Load log2 e
w FLDLG2 – Load log10 2
w FLDLN2 – Load loge 2

35

Basic arithmetic instructions

n FADD / FADDP – Add Floating-Point (and Pop)
n FIADD – Add Integer to Floating point
n FSUB / FSUBP – Subtract Floating-Point (and Pop)
w ST(0) ¨ ST(0)-ST(i)

n FSUBR – Reverse Subtract Floating Point
w ST(0) ¨ ST(i)-ST(0)

n FMUL / FMULP – Multiply Floating-Point (and Pop)
n FDIV / FDIVP – Divide Floating-Point (and Pop)
n FCHS – Change Sign
n FABS – Absolute Value
n FSQRT – Square Root
n FRNDINT – Round To Integral Value

36

Comparing floating-point values

n Two mechanisms for comparing floating-point values and
setting the status bits in EFLAGS register
w used by conditional branch and conditional move instructions

n The old mechanism
w floating-point compare instructions set the condition flags in the FP

status register
w the condition flags has to be copied into the status flags of the

EFLAGS register
w need three instructions for a comparison

n The new mechanism
w introduced in the P6 microarchitecture (Pentium Pro and newer)
w floating-point compare instructions directly set the condition flags in

the EFLAGS register
w need only one instruction for a comparison

37

Comparison instructions

n Old mechanism
w FCOM / FCOMP / FCOMPP – compare ST(0) with source operand

and set condition flags in FP status word (and Pop / Pop twice)
w FTST – compare ST(0) with 0.0 and set condition flags in FP status

word

x87 FPU Status Word
C
0

C
1

C
2

C
3

C
0

C
1

C
2

C
3

AX register
fcomp ST(0),ST(1) /* Compare values */
fstsw AX /* Copy flags to AX */
test 0x45,AH /* Mask out flags */
jne L1 /* Branch if not equal */

EFLAGS register
C
F1P

F
Z
F

071531

double a, b;
 . . .
if (a > b) {
 . . .
}

38

Comparison instructions (cont.)

n New mechanism
w FCOMI, FCOMIP – compare floating-point values and set EFLAGS

(and Pop)

n gcc uses the old mecanism for comparing floating-point
values

fcomi ST(0),ST(1) /* Compare values */
jne L1 /* Branch if not equal */

double a, b;
 . . .
if (a > b) {
 . . .
}

39

Transcedental instructions

n FSIN, FCOS – Sine, Cosine
n FPTAN, FPATAN – Tangent, Arctangent
n FYL2X – Logarithm
w computes ST(1) ¨ ST(1) * log2 (ST(0)) and pops the register stack

n F2XM1 – Exponential
w computes ST(0) ¨ 2ST(0)-1

n FSCALE – Scale ST(0) by ST(1)
w computes ST(0) ¨ ST(0)*2ST(1)

40

Control instructions

n FLDCW, FSTCW – Load / Store FPU Control Word
n FSAVE / FRSTOR – Save / Restore FPU State
n FINCSTP / FDECSTP – Increment / Decrement FPU

Register Stack Pointer
n FFREE – Free FPU Register
n FNOP – FPU No Operation

41

MMX, SSE and SSE2
n Extensions to the instruction set for parallel SIMD operations

on packed data
w SIMD – Single Instruction Stream Multiple Data stream

n MMX – Multimedia Extensions
w introduced in the Pentium processor

n SSE – Streaming SIMD Extension
w introduced in Pentium III

n SSE2 – Streaming SIMD Extension 2
w introduced in Pentium 4

n Designed to speed up multimedia and communication
applications
w graphics and image processing
w video and audio processing
w speech compression and recognition

42

MMX data types

n MMX instructions operate on 8, 16, 32 or 64-bit integer
values, packed into a 64-bit field
n 4 MMX data types
w packed byte

8 bytes packed into a 64-bit quantity
w packed word

4 16-bit words packed into a
64-bit quantity
w packed doubleword

2 32-bit doublewords packed into a
64-bit quantity
w quadword

one 64-bit quantity
n Operates on integer values only

b0b1b2b3b4b5b6b7
063

w0w1w2w3
063

dw0dw1

063

qw
063

43

MMX registers

n 8 64-bit MMX registers
w aliased to the x87 floating-point

registers
w no stack-organization

n The 32-bit general-purouse
registers (EAX, EBX, ...) can also
be used for operands and adresses
w MMX registers can not hold memory addresses

n MMX registers have two access modes
w 64-bit access mode
ü 64-bit memory access, transfer between MMX registers, most MMX

operations
w 32-bit access mode
ü 32-bit memory access, transfer between MMX and general-purpose

registers, some unpack operations

063

MM0
MM1
MM2
MM3
MM4
MM5
MM6
MM7

Floating-point registers

44

MMX operation

n SIMD execution
w performs the same operation in parallel on 2, 4 or 8 values
w arithmetic and logical operations executed in parallel on the bytes,

words or doublewords packed in a 64-bit MMX register

n Most MMX instructions have
 two operands
w op dest source
w destination is a MMX register
w source is a MMX register or

a memory location

X0X1X2X3Source 1

Y0Y1Y2Y3Source 2

X0 op Y0X1 op Y1X2 op Y2X3 op Y3Destination

opop op op

45

Saturation and wraparound arithmetic

n Operations may produce results that are out of range
w the result can not be represented in the format of the destination

n Example:
w add two packed unsigned byte integers 154+205=359
w the result can not be represented in 8 bits

nWraparound arithmetic
w the result is truncated to the N least significant bits
w carry or overflow bits are ignored
w example: 154+205=103

n Saturation arithmetic
w out of range results are limited to the smallest/largest value that can

be represented
w can have both signed and unsigned saturation
w example: 154+205=255

 10011010
+11001101

101100111

46

Data ranges for saturation

n Results smaller than the lower limit is saturated to the lower
limit
n Results larger than the upper limit is saturated to the upper

limit
n Natural way of

handling under/over-
flow in many
applications
w Example: color calculations, if a pixel becomes black, it remains

black

n MMX instructions do not generate over/underflow exceptions
or set over/underflow bits in the EFLAGS status register

Data type Bits Lower limit Upper limit
Signed byte 8 -128 127
Unsigned byte 8 0 255
Signed word 16 -32768 32767
Unsigned word 16 0 65535

47

MMX instructions

n MMX instructions have names composed of four fields
w a prefix P – stands for packed
w the operation, for example ADD, SUB or MUL
w 1-2 characters specifying unsigned or signed saturated arithmetic
ü US – Unsigned Saturation
ü S – Signed Saturation

w a suffix describing the data type
ü B – Packed Byte, 8 bytes
ü W – Packed Word, four 16-bit words
ü D – Packed Doubleword, two 32-bit double words
ü Q – Quadword, one single 64-bit quadword

n Example:
w PADDB – Add Packed Byte
w PADDSB – Add Packed Signed Byte Integers with Signed

Saturation

48

MMX instructions

n MMX instructions can be grouped into the following
categories:
w data transfer
w arithmetic
w comparison
w conversion
w unpacking
w logical
w shift
w empty MMX state instruction (EMMS)

49

Data transfer instructions

n MOVD – Move Doubleword
w copies 32 bits of packed data
ü from memory to a MMX register (and vice versa), or
ü from a general-purpose register to a MMX register (and vice versa)

w operates on the lower doubleword of a MMX register (bits 0-31)

n MOVQ – Move Quadword
w copies 64 bits of packed data
ü from meory to a MMX register (and vice versa), or
ü between two MMX registers

n MOVD/MOVQ implements
w register-to-register transfer
w load from memory
w store to memory

50

Arithmetic instructions

n Addition
w PADDB, PADDW, PADDD – Add Packed Integers with Wraparound

Arithmetic
w PADDSB, PADDSW – Add Packed Signed Integers with Signed

Saturation
w PADDUSB, PADDUSW – Add Packed Unsigned Integers with

Unsigned Saturation
n Subtraction
w PSUBB, PSUBW, PSUBD – Wraparound arithmetic
w PSUBSB, PSUBSW – Signed saturation
w PSUBUSB, PSUBUSW – Unsigned saturation

n Multiplication
w PMULHW – Multiply Packed Signed Integers and Store High Result
w PMULLW – Multiply Packed Signed Integers and Store Low Result

51

Arithmetic instructions (cont.)

n Multiply and add
w PMADDWD – Multiply And Add Packed Integers
w multiplies the signed word operands (16 bits)
w produces 4 intermediate 32-bit products
w the intermediate products are summed pairwise and produce two

32-bit doubleword results

X0X1X2X3

Y0Y1Y2Y3

X0*Y0X1*Y1X2*Y2X3*Y3

X1*Y1 + X0*Y0X3*Y3 + X2*Y2

52

Comparison instructions

n Compare Packed Data for Equal
w PCMPEQB, PCMPEQW, PCMPEQD

n Compare Packed Signed Integers for Greater Than
w PCMPGTPB, PCMPGTPW, PCMPGTPD

n Compare the corresponding packed values
w sets corresponding destination element to a mask of all ones (if

comparison matches) or zeroes (if comparison does not match)
w the masks can be used to implement conditional assignment

n Does not affect EFLAGS register
X0X1X2X3Source 1

Y0Y1Y2Y3Source 2

00000000111111111111111100000000Destination

> > > >

53

Conversion instruction

n PACKSSWB, PACKSSDW – Pack with Signed Saturation
n PACKUSWB – Pack with Unsigned Saturation
w converts words (16 bits) to bytes (8 bits) with saturation
w converts doublewords (32 bits) to words (16 bits) with saturation

A’B’C’D’

ABCD

Destination Source

Destination

54

Unpacking instructions

n PUNPCKHBW, PUNPCKHWD, PUNPCKHDQ – Unpack and
Interleave High Order Data
n PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ – Unpack and

Interleave Low Order Data

X0X1X2X3X4X5X6X7Y0Y1Y2Y3Y4Y5Y6Y7

Source Destination

X0Y0X1Y1X2Y2X3Y3

Destination

55

Logical instructions

n PAND – Bitwise AND
n PANDN – AND NOT
n POR – OR
n PXOR – Exclusive OR

n Operate on a 64-bit quadwords

56

Shift instructions

n PSLLW, PSLLD, PSLLQ - Shift Packed Data Left Logical
n PSRLW, PSRLD, PSRLQ – Shift Packed Data Right Logical
n PSRAW, PSRAD – Shift Packed Data Right Arithmetic
w shifts the destination elements the number of bits specified in the

count operand

57

EMMS instruction

n Empty MMX State
w sets all tags in the x87 FPU tag word to indicate empty registers

n Must be executed at the end of a MMX computation before
floating-point operations
n Not needed when mixing MMX and SSE/SSE2 instructions

58

SSE

n Streaming SIMD Extension
w introduced with the Pentium III processor
w designed to speed up performance of advanced 2D and 3D

graphics, motion video, videoconferencing, image processing,
speech recognition, ...

n Parallel operations on packed single precision floating-point
values
w 128-bit packed single precision floating point data type
w four IEEE 32-bit floating point values packed into a 128-bit field

n Introduces also some extensions to MMX
n Operand of SSE instructions must be aligned in memory on

16-byte boundaries

59

SSE instructions

n Adds 70 new instructions to the instruction set
w 50 for SIMD floating-point operations
w 12 for SIMD integer operations
w 8 for cache control

n Operates on packed and scalar single precision floating-point
instructions
w operations on packed 32-bit

floating-point values
w operations on a scalar 32-bit

floating-point value (the 32 LSB)

n 64-bit SIMD integer instructions
w extension to MMX
w operations on packed integer values stored in MMX registers

s0s1s2s3
0127

s0s1s2s3
0127

60

Packed and scalar operations

n SSE supports both packed and scalar operations on 32-bit
floating-point values

n Packed operations applies the
operation in parallel on all four
values in a 128-bit data item
w similar to MMX operation

n Scalar operations operates
only on the least significant
32 bits

Destination

X0X1X2X3Source 1

Y0Y1Y2Y3Source 2

X0 op Y0X1 op Y1X2 op Y2X3 op Y3

opop op op

X0X1X2X3Source 1

Y0Y1Y2Y3Source 2

X0 op Y0X1X2X3Destination

op

61

XMM registers

n The MMX technology introduces 8 new 128-bit registers
XMM0 – XMM7
w independent of the general purpose and

FPU/MMX registers
w can mix MMX and SSE instructions

n XMM registers can be accessed in 32-bit,
64-bit or 128-bit mode
w only for operations on data, not addresses

n MXCSR control and status register, 32 bit
w flag and mask bits for floating-point exceptions
w rounding control bits
w flush-to-zero bit
w denormals-are-zero bit

0127

XMM0
XMM1
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7

62

SSE instructions

n SSE instructions are divided into four types
n Packed and scalar single-precision floating point operations
w operates on 128-bit data entities

n 64-bit integer operations
w MMX operations

n State manegement intructions
w load and save state of the MXCSR control register

n Cache control, prefetch and memory ordering instructions
w instructions to control stores to / loads from memory
w support for streaming data to/from memory without storing it in cache

63

Temporal and non temporal data

n Temporal data
w data that will be used more than once in the program execution
w should be accessed through the cache to make use of the temporal

locality
n Non-temporal data
w data that will not be reused in the program execution
w if non-temporal data is accessed through the cache it will replace

temporal data – called cache pollution
w can be accessed from memory without going through the cache

using non-temporal prefetching and write-combining

n Media processing applications often have large amounts of
non-temporal data
w streaming data

64

Cacheability control and prefetching

n Data can be read into the cache in advance using a prefetch
operation
n Three levels of prefetch for temporal data
w PREFETCH0 – fetch data into all cache levels
w PREFETCH1 – fetch data into L2 cache (and higher)
w PREFETCH2 – fetch data into L3 cache

n Prefetching of non-temporal data with PREFETCHNTA
w fetch data into an internal buffer
w data is not stored in cache

n Non-temporal data can be written without going through the
cache
w uses write-combining: data is combined into larger blocks before

written to main memory
w gives less control of the order of writes to memory

65

SSE2

n Streaming SIMD Extension 2
w introduced in the Pentium 4 processor
w designed to speed up performance of advanced 3D graphics, video

encoding/decodeing, speech recognition, E-commerce and Internet,
scientific and engineering applications

n Extends MMX and SSE with support for
w 128-bit packed double precision floating point-values
w 128-bit packed integer values

n Adds over 70 new instructions to the instruction set
n Operates on 128-bit entities
w data must be aligned on 16-bit boundaries when stored in memory
w special instruction to access unaligned data

66

Compatibility with SSE and MMX operation

n The SSE2 extension is an enhancement of the SSE
extension
w no new registers or processor state
w new instructions which operate on a wider variety of packed

floating-point and integer data

n Same registers for SIMD operations as in SSE
w eight 128-bit registers, XMM0 – XMM7

n SSE2 instructions can be intermixed with SSE and
MMX/FPU instructions
w same registers for SSE and SSE2 execution
w separate set of registers for FPU/MMX instructions

67

SSE2 data types

n Packed double precision
floating point
w 2 IEEE double precision floating-point values

n Packed byte integer
w 16 byte integers (8 bits)

n Packed word integer
w 8 word integers (16 bits)

n Packed doubleword integer
w 4 doubleword integers (32 bits)

n Packed quadword integer
w 2 quadword integers (64 bits)

0127

FP value 1

0127

FP value 0

0127

0127

0127

68

SSE2 instructions

n Operations on packed double-precision data has the suffix PD
w examples: MOVAPD, ADDPD, MULPD, MAXPD, ANDPD

n Operations on scalar double-precision data has the suffix SD
w examples: MOVSD, ADDSD, MULSD, MINSD

n Conversion instructions
w between double precision and single precision floating-point
w between double precision floating-point and doubleword integer
w between single precision floating-point and doubleword integer

n Integer SIMD operations
w both 64-bit and 128-bit packed integer data
w 64-bit packed data uses the MMX register
w 128-bit data uses the XMM registers
w instructions to move data between MMX and XMM registers

69

Conversion between packed data types

70

Programming with MMX and SSE

n Automatic vectorization
w let the compiler do all the work, just turn on a compiler switch
w easy to program, no changes to the program code
w only loops are vectorize
w does not guarantee any performance improvement
ü has no effect if the compiler can not analyze the code and find

opportunities for SIMD operation
w requires a vectorizing compiler

n C++ class data types
w C++ classes that define an abstraction for the MMX/SSE datatypes
w easy to program, does not require in-depth konwledge of MMX/SSE
w guarantees a performance improvement
w can not access all possible instructions
w can not do explicit instruction scheduling

71

Programming with MMX and SSE (cont.)

n Compiler intrisincs
w functions that perform the same operations as the corresponding

assembly language instructions
w gives access to all MMX and SSE instructions
w can use variable names instead of registers
w requires a detailed knowledge of MMX/SSE operation

n Assembly language
w gives full control over the instruction execution
w very good possibilities to arrange instructions for efficient execution
w difficult to program, requires detailed knowledge of MMX/SSE

operations and assembly language programming

72

Example: summing an array of integers

n Simple function that sums all elements in an array of integer
values and returns the sum

n To compile for
automatic vectorization
with the Intel compiler
use the switch -QxW
w the compiler prints a message

about vectorized loops

program.cpp (42) : (col. 2) remark: LOOP WAS VECTORIZED

int SumArray(int *buf, int N)
{
 int i, sum=0;
 for (i=0; i<N; i++)
 sum += buf[i];
 return sum;
}

73

C++ class libraries for SIMD operation

n C++ classes defining MMX and SSE data types
w overloads the operations

+, -, *, / etc.
n Integer data types
w I8vec8, I8vec16
w I16vec4, I16vec8
w I32vec2, I32vec4
w I64vec1, I64vec2
w I128vec1

n Single precision floating-point data types
w F32vec1, F32vec4

n Double precision floating-point data types
w F64vec2

int SumArray(int *buf, int N)
{
 int i;
 I32vec4 *vec4 = (I32vec4 *)buf;
 I32vec4 sum(0,0,0,0);
 for (i=0; i<N/4; i++)
 sum += vec4[i];
 return sum[0]+sum[1]+sum[2]+sum[3];
}

74

C / C++ compiler intrisincs

n Functions or macros containing inline assembly code for
MMX/SSE operations
w allows the programmer to use C / C++ function calls and variables

n Defines a C function for each MMX/SSE instruction
w there are also intrisinc functions composed of several MMX/SSE

instructions

n Defines data types to represent packed integer and floating-
point values
w __m64 represents the contents of a 64-bit MMX register

 (8, 16 or 32 bit packed integers)
w __m128 represents 4 packed single precision floating-point values
w __m128d represents 2 packed double precision floating-point values
w __m128i represents packed integer values (8, 16, 32 or 64-bit)

75

C intrisincs

n The code specifies exactly which operations to use
w register allocation and instruction scheduling is left to the compiler

int SumArray(int *buf, int N)
{
 int i;
 __m128i *vec128 = (__m128i *)buf;
 __m128i sum;
 sum = _mm_sub_epi32(sum,sum); // Set to zero
 for (i=0; i<N/4; i++)
 sum = _mm_add_epi32(sum,vec128[i]);

 sum = _mm_add_epi32(sum, _mm_srli_si128(sum,8));
 sum = _mm_add_epi32(sum, _mm_srli_si128(sum,4));
 return _mmcvtsi128_si32(sum);
}

76

Assembly language

n Use inline assembly code
w for instance in a C program

n Can arrange instructions
to avoid stalls

int SumArray(int *buf, int N)
{
_asm{
 mov ecx, 0 ; loop counter
 mov esi, buf
 pxor xmm0,xmm0 ; zero sum
loop:
 paddd xmm0, [esi+ecx*4]
 add ecx, 4
 cmp ecx, N ; done ?
 jnz loop
 movdqa xmm1, xmm0
 psrldq xmm1, 8
 padd xmm0,xmm1
 movdqa xmm1,xmm0
 psrldq xmm0,xmm1
 movd eax, xmm0 ; store result
 }
}

77

Intel Pentium 4

n Based on the Intel NetBurst microarchitecture
w Pentium II and Pentium III are based on th P6 microarchitecture

n Decoupled CISC/RISC architecture
w IA-32 instruction set, CISC
w translated to RISC micro-operations (mops), which are executed by

the RISC core
n Deep pipeline
w designed to run at very high clock frequencies
ü introduced at 1.5 GHz
ü currently at 3.2 GHz

w different parts of the chip run at different clock frequencies
n Efficient execution of the most common instructions
n SSE2 extension

78

NetBurst microarchitecture

n Cache
w execution trace cache, 12K mops
w L1 data cache, 8 KB, 2 cycle latency
w L2 cache on-die, 512 KB

7 cycle latency
n 20-stage pipeline,

supports high clock
frequencies
w ALU runs twice the

processor clock
frequency
w quad-pumped system

bus interface

Retirement

Bus Unit

L2 Cache
On-die, 8-way

Fetch / Decode

L1 Cache
4-way

BTB / Branch Prediction

Execution
out-of-order core

Branch History Update

Front End

System Bus

Execution Trace
Cache

Microcode ROM

79

Pipeline organization

n The pipeline consists of three sections
w in-order issue front-end with a execution trace cache
w out-of-order superscalar exection core with a very deep out-of-order

speculative execution engine
w in-order retirement

Retirement

Cache subsystem

In-order back-endOut-of-order execution

Instruction
pool

Execution units

In-order front-end

Instruction prefetchFront-end BTB

Instruction decode

Trace cacheTrace cache BTB

mop queueMicro-code ROM

80

Front-end pipeline

n Designed to improve the instruction decoding capabilities
w improves the time to decode fetched instructions
w avoids problems with wasted decode bandwidth caused by

branches and branch targets in the middle of cache lines

n Basic functions of the front-end
w prefetch IA-32 instructions that are likely to be executed
w fetch instructions that have not been prefetched
w decode IA-32 instructions into mops
w generate microcode for complex instructions
w store decoded mops in the execution trace cache
w deliver decoded instructions from the execution trace cache to the

execution core
w predict branches

81

Prefetching

n Automatic data prefetch
w hardware that auomatically prefetchs data into L2 cache
w based on previous access patterns
w tries to fetch data 2 cache lines ahead of current access location

(but only within the same 4 KB page)
n Software prefetch
w prefetch instructions, only for data access
w hint to the hardware to bring in a cache line

n Instructions are automatically prefetced from the predicted
execution path into an instruction buffer
w fetched from L2 cache into a buffer in the instruction decoder

82

Instruction decoding

n IA-32 machine instructions are of variable length
w large number of options for most instructions

n Decoded to uniform-length micro-operations
w load/store architecture

n IA-32 instructions can be decoded into one or more mops
w if more than 4 mops are needed, the instruction is decoded from the

microcode ROM
n Decoded mops are stored in program order in the execution

trace cache
w do not need to be decoded the next time the same code is

executed

83

Execution trace cache

n Instruction cache storing decoded instructions
w 12K mops, 8-way set-associative

n Stores fetched and decoded instructions
w built into sequences of mops called traces, six mops per trace line
w contains mops generated from the predicted execution path
w instructions that are branched over in the execution will not be in

the trace cache

BR BR BR

BR BR BR

Executed instructions

Instructions in trace cache

84

Execution trace cache (cont.)

n The trace cache can deliver 3 instructions each clock tick to
the out-of-order execution logic
n Most instructions are fetched and executed from the trace

cache
w only when there is a trace cache miss does the instructions have to

be fetched from L2 cache
w reduces the amount of work for the instruction decoder

n The trace cache has an own branch predictor
w predicts branches within the trace cache

85

Branch prediction

n Branch target buffer, 4K entries
w contains both branch history and branch target addresses

n Return address stack, 16-entries
w contains return addresses for procedure calls

n Trace cache and instruction translation have co-operating
branch prediction
w branch targets are predicted based on information in BTB, RAS or

using static prediction
w branch target code is fetched from trace cache if it is there,

otherwise from the memory hierarchy
n “Highly advanced branch prediction algorithm”
w 33% less misprediction compared to the P6 mictoarchitecture

86

Branch prediction (cont.)

n Branch hints
w prefix to conditional branch instructions
w used to help the branch prediction and decoder to build traces
w overrides static prediction, but not dynamic

n Branch hints have no effect on decoded instructions that
already are in the trace cache
w only assist the branch prediction and the decodeer to build correct

traces

n Typical delay for a mispredicted branch is the depth of the
pipeline
w 20 clock ticks

87

Execution core

n Up to 126 instructions, 48 loads and 24 stores can be in
fligtht at the same time
n Can dispatch up to 6 mops per cycle
w exceeds the capacity of the decoder and retirement unit

n Basic integer (ALU) operations execute in 1/2 clock cycle
n Many floating-point instructions can start every 2 cycles
n Floating-point divide and square root are not pipelined
w Example: FP double precision divide

latency = throughput = 38 clock cycles
n mops are issued through four ports to 7 functional units
w some ports can issue 2 mops per clock cycle

88

Register renaming

n Renames the eight logical IA-32 registers to a 128-entry
physical register file
w uses a Register Alias Table (RAT) to store the renaming

n Similar register renaming for both
integer and FP/MMX/SSE registers
n RAT points to the entry in the register

file holding the current version of each
register
w the status stores information about the

completion of the mop

n Load and stores are renamed similarly
w uses a load/store buffer instead of a register

EAX
EBX
ECX
EDX
ESI
EDI
ESP
EBP

EAX
EBX
ECX
EDX
ESI
EDI
ESP
EBP

Frontend RAT

Retirement RAT

Register
file Status

89

mop scheduling

n The mop shedulers determine when an operation is ready to
be executed
w when all its input operands are ready and a suitable execution unit

is available

n The scedulers are connected to four dispatch ports
w two execution unit ports
w one load port
w one store port

n The scedulers dispatch mops to one of the ports depending
on the type of the operation
w can dispatch up to 6 mops in a clock cycle
w some ports can dispatch two operations in one clock cycle,

operate on double clock cycle

90

Dispatch ports and execution units
w Port 0 can issue
ü 1 FP move or 1 integer ALU mop
ü +1 integer ALU mop

w Port 1 can issue
ü 1 FP mop or 1 integer mop or 1 integer ALU mop
ü +1 integer ALU mop

w Port 2 can issue 1 load mop
w Port 3 can issue 1 store adress mop

ALU 0
Double speed

FP Move

Port 0

Add/Sub
Logic
Store data
Branch

FP/SSE move
FP/SSE store data
FXCH

ALU 1
Double speed

Integer
Operation

Port 1

FP
Execute

Add/Sub Shift /
Rotate

FP/SSE Add
FP/SSE ulL
FP/SSE Div
FP MISC
MMX

Memory
Load

Port 2

Load
LEA
SW Prefetch

Memory
Store

Port 3

Store
Address

91

Loads and stores

n Out-of-order memory operations
w loads can be executed speculatively
w stores are always executed in program order

n Separate rename registers for memory access
w 48 load buffers and 24 store buffers
w hold the load/store mop and address information
w one load and one store can be issued every clock cycle

n Store forwarding
w a load from a memory location that is waiting to be stored does not

have to wait for the memory operation to complete
w data is forwarded from the store buffer to the load buffer

nWrite combining
w multiple stores to the same cache line are combined into one unit
w 6 write-combine buffers

92

Retirement

n Receives result of executed mops and updates the processor
state in program order
w original program order is stored in the reorder buffer
w up to 3 mops may be retired per clock cycle

n Sends updated branch target information to the branch target
buffer
w result of conditional branches are not known before the instruction

is retired
w recovers from branch misprediction

93

Cache organization

n Execution trace cache
w 12 K ops, 8-way set associative

n L1 data cache, 8 KB, 4-way set associative, write through
w fast, 2 clock cycle latency
w 64 byte cache line size

n Unified L2 cache, 256 or 512 KB, 8-way set associative, write
back
w cache interface is 32 bytes = 256 bits
w transfers data on each clock cycle
w 128 byte cache line size (two 64 byte sectors)
w latency 7 clock cycles, can start next transfer after 2 clock cycles
w hardware prefetch
ü fetches data 256 bytes ahead of the current data access location

n Also support for L3 cache

94

Latency and throughput

n Latency
w the number of clock cycles required for the execution core to

complete the execution of an IA-32 instruction

n Throughput
w the number of clock cycles the execution core has to wait before an

issue port is ready to accept the same instruction again

n If throughput is less than latency than the execution unit is
pipelined
w can accept the following instruction before the previous one has

completed

n Different instructions have different latency and throughtput

95

Instruction latency and throughput

n Integer operations
w latency 0.5–4, throuhput 0.5–2
w mul, div has latency 15–70, throughput 5–40

n Floating-point operations
w latency 2–7, throughput 1–2
w division and square root have latency 23–43, throughput 23–43
w sin, cos, tan, arctan have latency 150–250, throughput 130–170

n MMX operations
w latency 2–6, throughput 1

n Integer SSE instructions
w latency 2–8, throughput 1–2

n Single-precision floating-point SSE instructions
w latency 4–10, throughput 2–4
w div, square root has latency 32, throuhput 32

96

Instruction latency and throughput (cont.)

n Integer SSE2 instructions
w latency 2–10, throughput 1–2

n Single-precision floating-point SSE2 instructions
w latency 4-10, throughput 2–4
w packed division has latency 39, throughput 18
w packed square root has latency 39, throughput 29

n Double-precision floating-point SSE2 instructions
w latency 4–10, throughput 2–4
w packed division has latency 69, throughput 32
w packed square root has latency 69, throughput 58

97

Hyper-threading microarchitecture

n Hyper-threading
w simultaneous multi-threading
w a single processor appears as two logical processors
w both logical processors share the same physical

execution resources
w the architectural state is duplicated

(register, program counter,status flags, ...)
n Can scedule two simultaneously executing threads on the

processor
w instructions from both threads execute simultaneously
w if one thread has to wait, the other can proceed

n Makes more efficient use of the physical execution resources
w uses task-level parallelism to increase the utilization of the

execution resources

Processor
execution
resources

State State

98

Pipeline organization

n Small dia area cost for implementing HT
w about 5% of the total die area
w most resources are shared, only a few are duplicated

nWhen one thread is stalled, the other can continue
executing
w one thread can not reserve all execution resources
w shared resources are either partitioned between the

threads or there is a limit on the amount of resources
one logical process can use

n If only one thread is running it has full access to
all execution resources
w runs with the same speed as on a processor

without HT

Fetch

Q Q

Decode

Q Q

Trace cache

Q Q

Rename/allocate

Q Q

Schedule/execute

Q Q

Retire

99

Processor resources

n Replicated resources
w the resources needed to store information about the state of the

two logical processors
ü registers, instruction pointer, control registers, register renaming

tables, interrupt controllers
w some resources are also replicated for efficiency reasons
ü instruction translation lookaside buffer, streaming instruction buffers,

return address stack
n Partitioned resources
w shared, but the use is limited to half of the entries
w the instruction buffers between major pipeline stages:

the queue after the trace cache, queues after register renaming,
reorder buffers, load- and store buffers

n Shared resources
w most resources are shared
w execution units, branch prediction, caches, bus interface, ...

100

Instruction fetch

n Two sets of instruction pointers, one for each logical process
w instruction fetch alternates between the logical processors each

clock cycle, one cache line at a time
w if one of the logical processes is stalled, the other gets full

instruction fetch bandwidth

n If the next instruction is not in the trace cache it is fetched
from L2 cache
w the hardware resources for fetching data and instructions from L2

cache are duplicated
w fetched instructions are placed in a streaming buffer, one for each

logical processor
w decoded and placed in the trace cache

101

Instruction decode

n Both logical procesors share the same decoding logic
w alternates accesses for instructions to decode between the two

streaming buffers
w decodes several instructions for each logical processor before

switching to the other

n Both logical processors share the microcode ROM
w one pointer into microcode ROM for each logical process
w alternates accesses to the microcode ROM each clock cycle

n If only one logical processor needs the decode logic it gets
the full decode bandwidth

102

Trace cache

n The execution trace cache is shared between the two logical
processors
w access alternates every clock cycle
w the trace cache entries also include information about to which

thread it belongs

n One logical processor can have more entries in the trace
cache than the other
w if one thread is stalled for a long time, the other can fill the whole

trace cache
n Decoded instructions are placed in a mop queue
w decouples the front-end from the out-of-order execution engine
w the mop queue is partitioned: each logical processor has half of the

entries

103

Branch prediction

n Branch history buffer is partitioned between both logical
processors
w entries are tagged with the logical processor ID

n The global branch pattern history array is shared
n Return stack buffer is duplicated
w 16 enties per logical processor

104

Allocation

n The allocation stage takes mops from the queue and
allocates the resources needed to execute the mop
w register reorder buffers
w integer- and floating point physical registers
w load- and store buffers

n Each logical processor can use at most half of the register
reorder buffers, load- and store buffers
n The allocator alternates between mops from the logical

processors every clock cycle
w if one logical processors has used its full limit of some resource, it is

stalled
w if there are only mops from only one logical processor it has to

execute using only half of the available resources

105

Register renaming

n Register renaming is done at the same time as the resource
allocation
n One Register Alias Table for each logical processor
w stores the current mapping of the 8 architectural registers to the

128 physical registers
n After resource allocation and register renaming the mops are

placed in one of two queues for sceduling
w memory instruction queue for loads and stores
w general instruction queue for all other operations

n Both queues are partitioned so that each logical processor
can use at most half of the entries

106

Instruction scheduling

n The memory instruction queue and the general instruction
queue sends mops to the scedulers
w alternates between mops from the logical processors every clock

cycle
n The schedulers dispatches mops to the different execution

units when the inputs are ready and a suitable unit is free
w selects mops to dispatch from queues of 8–12 mops
w number of entries in each queue for a logical processor is limited
w dispatches ready mops regardless of which logical processor they

belong to
n At most six mops dispatched each clock cycle
w can for instance dispatch two mops from one logical processor and

two mops from the othe logical processor in the same clock cycle

107

Execution and retirement

n The execution units do not need to know to which logical
processor a mop belongs
w source and destination registers have already been renamed
w the mops access the physical register file, which is shared
w results are written back to the physical register file

n Executed mops are placed in the re-order buffer
w re-order buffer is partitioned so that each logical processor can use

at most half of the entries
n Executed mops are retired in program order for each logical

processor
w alternates between the two logical processors

108

Single-task and multi-task modes

n A processor with hyper-threading can execute in two modes:
w Single-Task mode (ST)
w Multi-Task mode (MT)

n In MT mode there are two active logical processors
w some execution resources are partitioned as decribed

n In ST mode one of the two logical processors are active and
the other one is inactive
w resources that were partitioned in MT mode are recombined

n Transition from MT mode to ST mode by executing a HALT
instruction on one of the logical processors
w an interrupt sent to the halted logical processor resumes its

execution and places the processor in MT mode
w the operating system is responsible for controlling transitions

between ST and MT mode

