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Intel Pentium processors

n IA-32 processors
w from 8086 to Pentium 4

n IA-32 Instruction Set Architecture
w registers
w addressing
w assembly language instructions
w x87 floating-point unit
w MMX, SSE and SSE2

n Pentium 4 microarchitecture
w the NetBurst microarchitecture
w hyper-threading microarchitecture
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IA-32 processors

n 8086, 1978
w 8 MHz, no cache
w 16 bit architecture: 16 bit registers and data bus
w 20 bit addresses, 1 MB segmented address space

n Intel 286, 1982
w 12.5 MHz, no cache
w 16-bit registers, 24 bit addesses, 16 MB address space
w protected mode operation, support for segmented virtual memory

n Intel 386, 1985
w first 32-bit processor in the IA-32 family
w 20 MHz, no cache, 32-entry 4-way set associative TLB
w 32-bit addresses, 4 GB address space
w supports both a segmented and a flat memory model
w supports virtual memory through paging



3

Intel 386

n 386 was the first processor based on a micro-architecture
w instruction execution is separated from the ISA

n Bus interface unit
w accesses memory

n Code prefetch unit
w receives code from the bus unit into a 16-byte queue

n Instruction decode unit
w fetches instructions from prefetch buffer, decodes into microcode

n Execution unit
w executes microcode instructions

n Segment unit
w translates logical adresses to linear addresses, protection checking

n Paging unit
w translates linear addresses to physical addresses, protection, TLA
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IA-32 processors (cont.)

n Intel 486, 1989
w 25 MHz, 8 KB L1 cache (write-through)
w 5-stage pipelined instruction execution
w integrated x87 FPU
w support for second level cache

n Intel Pentium, 1993
w 60 MHz, 8+8 KB L1 cache (write-back), 64-bit external bus
w superscalar design with 2 pipelines
w branch prediction with on-chip branch table

n Later Pentium processor introduced the MMX technology
w parallel operations on packed integers in 64-bit MMX registers
w added 47 new instructions to the instruction set
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IA-32 processors (cont.)

n Pentium Pro, 1995
w introduces the P6 microarchitecture
w 200 MHz, 8+8 KB L1,  256 KB L2 cache
w dedicated 64-bit backside cache bus connecting CPU with cache
w 3-way superscalar design
w IA-32 instructios are decoded into micro-ops
w out-of-order execution with 5 parallel execution units
w retirement unit retires completed micro-ops in program order
w improved branch prediction
w improved cache performance
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IA-32 processors (cont.)

n Pentium II, 1997
w 266 MHz, 16+16 KB L1, 256 KB L2 cache
w supports 256, 512 KB or 1 MB L2 cache
w adds MMX technology to the P6 micro-architecture
w Xeon and Celeron improved cache organization

n Pentium III, 1999
w 500 MHz, 16+16 KB L1, 256 or 512 KB L2 cache
w introduces Streaming SIMD Extension (SSE) technology
w parallel operations on packed 32-bit floating-point values in 128-bit

SSE registers
w Pentium III Xeon improved cache performance
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IA-32 processors (cont.)
n Pentium 4, 2000
w based on the NetBurst microarchitecture
w 1.5 GHz, 8 KB L1 data cache, Execution Trace Cache, 256 KB L2

cache
w 400 MHz pipelined system bus
w SSE2 extension, parallel operations also on packed 64-bit floating-

point values
n Xeon, 2001
w based on the NetBurst microarchitecture
w introduced Hyper-Threading technology 2002

n Pentium M
w for mobile systems, advanced power management
w 32+32 KB L1 cache, write-back, 1 MB L2 cache
w 400 MHz system bus
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IA-32 Instruction Set Architecture

n Desribes the basic execution environment of all IA-32
processors
w describes the facilities for processing instructions and storing data,

as seen by the assembly language programmer
w compatible with older 16-bit architectures

n IA-32 processors support three operating modes
w protected mode
ü the native state of the processor
ü all instructions and architectural features are available

w real-address mode
ü implements the programming environment of the 8086 processor

w system management mode
ü for use in operating systems
ü saves current context, switches to a separate address space



9

Registers

n 8 general-purpose registers, 32-bit
w can be used in instruction execution to store

operands and addresses
w ESP is used for stack pointer

n 6 segment registers, 16-bit
w used to hold segment selectors

n Status flags, 32-bit
w consists of status bits describing the current

 status of the processor

n Instruction pointer, 32-bit
w points to the next instruction to be executed

n 8 floating-point / MMX registers, 64-bit
n 8 XMM registers for SSE operations, 128-bit

EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP

CS
DS
SS
ES
FS
GS

EFLAGS

EIP

16 031
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Use of general purpose registers

n Can refer to the lower 16-bit part of the registers with names
without the prefix E  (AX, BX, CX, ...)
w can refer to the two lower bytes in the registers as AH, AL, ...

n Registers are used for special purouses in different
instructions
w EAX – Ackumulator for operands and results
w EBX – pointer to data in DS segment
w ECX – counter for string and loop operations
w EDX – I/O pointer
w ESI – source pointer for string operations, pointer to DS segment
w EDI – destination pointer for string operations, pointer to ES

segment
w ESP - stack pointer (in the SS segment)
w EBP - pointer to data on the stack
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Memory organization

n The IA-32 ISA supports three memory models
n Flat memory
w linear address space
w single byte addressable memory
w contiguous addresses from 0 to 232-1

w can be used together with paging
n Segmented memory
w memory appears as a group of separate address spaces
w code, data and stack segments
w uses logical addresses consisting of a segment selector and an

offset
w can be used together with paging

n Real-address mode
w compatible with older IA-32 processors

Linear address
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Segment registers

n Segment registers hold 16-bit segment selectors
w pointer that identifies a segment in memory
w CS – code segment
w DS – data segment
w SS – stack segment
w ES, FS, GS – used for additional data segments

n Segment selectors point to
segment descriptors
w data structure that describes

a segment

CS
DS
SS
ES
FS
GS

Code segment

Data segment

Stack segment

Data segment

Data segment

Data segment
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Address translation

n Logical adresses consist of
w a 16-bit segment selector
w a 32-bit offset

n Two-level address translation
w logical to linear address

translation through segmentation
w linear to physical address translation

through paging

Descriptor table

Seg. descriptor

Seg. selector
015

Offset
031

+

Linear address
031

Logical address

Base address
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Operand addressing

n IA-32 instructions operate on zero, one or two operands
w in general, one operand may be a memory reference

n Operands can be
w immediate
w a register
w a memory location

n Some operations (DIV and MUL) use quadword operands
w represented by register pairs, separated by a colon (EDX:EAX)

n Memory locations are specified by a segment selector and an
offset (a far pointer)
w segment selector are often implicit

(CS for instruction access, SS for stack push/pop, DS for data
references, ES for destination strings)
w can also be specified explicitely: mov ES:[EBX], EAX
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Addressing modes

n The offset part of an operand address can be specified as
w a static value (a displacement)
w as an address computation of the form

offset = Base + (Index*2Scale) + Displacement
where
ü Base is one of the registers
ü Index is one of the registers
ü Scale is a constant value

1, 2 , 4 or 8
ü Displacement is a 8, 16 or

32-bit value

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
EBP
ESI
EDI

1
2
4
8

None
8-bit
16-bit
32-bit

+ * +

Base Index Scale Displ.
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Addressing modes (cont)

n Displacement
w absolute address

n Base
w register indirect addressing

n Base + Displacement
w index into an array , fields of records

n Base + Index + Displacement
w access two-dimensional arrays

n (Index*scale) + Displacement
w index arrays with element sizes greater than 1

n Base + (Index*scale) + Displacement
w access two-dimensional arrays with an element size greater than 1
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Instruction set

n Very large instruction set, over 300 instructions
w CISC-like instruction set

n Instructions can be divided into the following groups
w data transfer instructions (MOV)
w binary arithmetic (ADD, SUB)
w logical instructions (AND, OR)
w shift and rotate (ROR, SAR)
w bit and byte instructions (BTS, SETE)
w control transfer instructions ( JMP, CALL, RET)
w string instructions (MOVS, SCAS)
w flag control instructions (STD, STC)
w segment register instructions (LDS)
w miscellaneous instructions (LEA, NOP, CPUID)
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Data transfer instructions

n Move data memory–register or register–register
w MOV – unconditional move

n Conditional move MOVcc, move if a condition cc is true
w CMOVE – conditional move if equal
w CMOVLE – conditional move if less or equal

n Exchange
w XCHG – exchange register and memory (or register – register)

(atomic instruction, used to implement semaphors)
n Stack operations
w PUSH, POP
w PUSHA, POPA – push/pop all general purpose registers

n Conversion
w CBW – convert byte to word (by sign extension)
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Binary arithmetic

n Addition, subtraction
w ADD, SUB
w also add with carry (ADC) and subtract with borrow (SBB)

n Multiplication, division
w MUL
ü EDX:EAX ¨  EAX * operand

w DIV
ü EDX:EAX ¨ EDX:EAX / operand   (EAX quotient, EDX remainder)

w IMUL, IDIV
ü signed multiply and divide

n Compare
w CMP – set status flags for use in conditional jump
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Logical, shift and rotate instructions

n Bitwise logical AND, OR, XOR
n Negation NOT
n Shift arithmetic right and left SAR, SAL
w shifts the destination the specified number of bits left/right
w bits are first shifted into the carry flag

and then discarded
w count is an immediate value or the CL register, masked to 5 bits

n Rotate right and left, ROL, ROR
w similar as shift, but rotates the bits

throug the carry flag
w no bits are lost

CF0

CF0
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Bit and byte instructions

n Bit test, BT
n Bit Test and Set, BTS
n Bit Scan Forward, BSF
n Bit Scan Reverse, BSR
w scans the operand for a set bit, stores the index in destination

n SETcc – sets a byte to 0 or 1 depending on condition cc
w Set Byte If Equal, SETE
w Set Byte If Greater Or Equal, SETGE

n TEST – Logical compare
w does a logical AND of operands and sets status flags
w does not alter the operands
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Control transfer instructions

n Unconditional control transfer
w JMP, CALL, RET
w CALL saves the current EIP on the stack, popped by RET

n Conditional control transfer
w Jcc – jump if condition cc is true
w JNE – Jump If Not Equal
w JGE – Jump If Greater Or Equal

n Loop instructions
w LOOP – conditional jump using ECX as a count
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String instructions

n Operates on contiguos data structures in memory
w bytes, words or doublewords

n MOVS – Move String
w ESI contains source address
w EDI contains destination address

n CMPS – Compare String
n Can be used repeatedly with a count in ECX register



24

Flag control instructions

n Instructions to modify some of the flags in the EFLAGS
status register
n STC – Set Carry Flag
n CLC – Clear Carry Flag
n STD, CLD – Set Direction Flag, Clear Direction Flag
w controls direction in string operations, etc.
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Miscellaneous instructions

n NOP – No-Operation
n LEA – Load Effective Address
w computes the effective address of

a source operand
w can be used for exaluating

expressions in the form of an
address computation

n CPUID – Processor Identification
w returns information about the type of processor
w can be used to find out the capabilities of the processor

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

1
2
4
8

None
8-bit
16-bit
32-bit

+ * +

Base Index Scale Displ.
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Instruction format

n IA-32 instructions are decoded into opcodes of the following
format

w up to four prefix bytes
ü prefixes for lock/repeat, segment override / branch hint, operand size

override, address size override
w 1–2 opcode bytes
w 1 byte ModR/M and SIB (optional)
ü describes the addressing mode and register number

w 1, 2 or 4 bytes displacement
w 1, 2 or 4 bytes immediate

Prefixes Opcode ModR/M SIB Displacement Immediate
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x87 Floating-Point Unit

n Conforms to the IEEE 754 standard
n The floating-point unit is independent of the basic execution

environment and of the SSE (and SSE2) execution
environment
w shares state with the MMX execution environment
w MMX registers are aliased to the floating-point registers

n 8 floating-point data registers, 80-bit
w 1 sign bit
w 15 bits exponent
w 63 bits significand

n Floating-point values are stored in
double extended precision (80 bits)
w automatically converted to double extended when loaded into a

register

R7
R6
R5
R4
R3
R2
R1
R0

079
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FPU special-purpose registers

n The FPU has three 16-bit special purpouse registers
w control register
w status register
w tag register

n Control register contains
w precision control field
ü single, double or double extended precision
ü default is 64 bits precision for mantissa

w exception mask bits
ü when set, the FPU does not generate exceptions on underflow,

overflow, denormal value, divide by zero, ...
w rounding control field
ü selects one of the four rounding modes

Control

Status

Tag

015
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FPU special-purpose registers (cont.)

n Status register contains
w condition code flags, indicating the result of FP compare and

arithmetic operations
w exception flags, indicating an exeption
w top-of-stack pointer (3 bits)

n Tag register contains two bits for each register, describing
the contents of each register
w valid number
w zero
w special (NaN, infinity, denormal)
w empty

n Two 48-bit pointers
w last instruction pointer and last data pointer

n Opcode of last FP instruction
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Floating-point data registers

n The eight FPU data registers are treated as a stack
w references to FP registers are relative to the top of the stack

n The register number of the current top-of-stack is stored in
the TOP field in the status word register (3 bits)
w load operations decrement TOP with 1, modulo 8
w store operations increment TOP with 1, modulo 8

n Register references are relative to the top-of-stack
w ST(0) is the top-of-stack
w ST(1) is top-of-stack + 1

n Most FP instructions implicitely operate
on the top-of-stack
w two-operand instructions use ST(0) and ST(1)
w one-operand instructions use ST(0)

Top

7

ST(2) 6

ST(1) 5

ST(0) 4
3

2
1
0
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Example: Inner product
/* Compute inner product */
double a, b, c, d, result;
result = a*b + c*d;

fld  a         /* Push a */
fmul b         /* a*b */
fld  c         /* Push c */
fmul d         /* c*d */
fadd st(1)     /* a*b + c*d */
fstp result    /* Pop result */

Top

0

7
6
5
4
3
2
1

Initially, TOP is 4

ST(0)

Load a

a

0

7
6
5
4
3
2
1

Multiply ST(0)
with b

a*bST(0)

0

7
6
5
4
3
2
1

Load c

a*b
cST(0)

ST(1)

0

7
6
5
4
3
2
1

Multiply ST(0)
with d

a*b
c*dST(0)

ST(1)

0

7
6
5
4
3
2
1

Add ST(0)
and ST(1)

a*b
a*b+c*dST(0)

ST(1)

0

7
6
5
4
3
2
1
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Floating-point instructions

n Floating-point instructions can be divided into the following
groups
w data transfer instructions
w load constant instructions
w basic arithmetic instructions
w comparison instructions
w transcedental instructions
w FPU control instructions

n Most FP instructions have two operands
w FP register or memory
w ST(0) is often an implied operand
w no immediate operands

n Operands can be floating-point, integer or packed BCD
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Data transfer instructions

n Load operands from memory into ST(0)
w FLD – Load Floating Point
w FILD – Load Integer

n Store the value in ST(0) into memory
w FST – Store Floating Point
w FIST – Store Integer
w FSTP – Store Floating Point and Pop

n Move values between FP register
w FXCH – Exchange Register Contents
w FCMOVcc – Conditional Move
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Load constant instructions

n Instructions that push commonly used constant onto the top-
of-stack
w FLDZ – Load +0.0
w FLDPI – Load p
w FLDL2T – Load log2 10
w FLDL2E – Load log2 e
w FLDLG2 – Load log10 2
w FLDLN2 – Load loge 2
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Basic arithmetic instructions

n FADD / FADDP – Add Floating-Point (and Pop)
n FIADD – Add Integer to Floating point
n FSUB / FSUBP – Subtract Floating-Point (and Pop)
w ST(0) ¨ ST(0)-ST(i)

n FSUBR – Reverse Subtract Floating Point
w ST(0) ¨ ST(i)-ST(0)

n FMUL / FMULP – Multiply Floating-Point (and Pop)
n FDIV / FDIVP – Divide Floating-Point (and Pop)
n FCHS – Change Sign
n FABS – Absolute Value
n FSQRT – Square Root
n FRNDINT – Round To Integral Value
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Comparing floating-point values

n Two mechanisms for comparing floating-point values and
setting the status bits in EFLAGS register
w used by conditional branch and conditional move instructions

n The old mechanism
w floating-point compare instructions set the condition flags in the FP

status register
w the condition flags has to be copied into the status flags of the

EFLAGS register
w need three instructions for a comparison

n The new mechanism
w introduced in the P6 microarchitecture (Pentium Pro and newer)
w floating-point compare instructions directly set the condition flags in

the EFLAGS register
w need only one instruction for a comparison
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Comparison instructions

n Old mechanism
w FCOM / FCOMP / FCOMPP – compare ST(0) with source operand

and set condition flags in FP status word (and Pop / Pop twice)
w FTST – compare ST(0) with 0.0 and set condition flags in FP status

word

x87 FPU Status Word
C
0

C
1

C
2

C
3

C
0

C
1

C
2

C
3

AX register
fcomp  ST(0),ST(1) /* Compare values */
fstsw  AX          /* Copy flags to AX */
test   0x45,AH     /* Mask out flags   */
jne    L1          /* Branch if not equal */

EFLAGS register
C
F1P

F
Z
F

071531

double a, b;
  . . .
if (a > b) {
  . . .
}
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Comparison instructions (cont.)

n New mechanism
w FCOMI, FCOMIP – compare floating-point values and set EFLAGS

(and Pop)

n gcc uses the old mecanism for comparing floating-point
values

fcomi  ST(0),ST(1) /* Compare values */
jne    L1          /* Branch if not equal */

double a, b;
  . . .
if (a > b) {
  . . .
}
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Transcedental instructions

n FSIN, FCOS – Sine, Cosine
n FPTAN, FPATAN – Tangent, Arctangent
n FYL2X – Logarithm
w computes ST(1) ¨ ST(1) * log2 (ST(0)) and pops the register stack

n F2XM1 – Exponential
w computes ST(0) ¨ 2ST(0)-1

n FSCALE – Scale ST(0) by ST(1)
w computes ST(0) ¨ ST(0)*2ST(1)
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Control instructions

n FLDCW, FSTCW – Load / Store FPU Control Word
n FSAVE / FRSTOR – Save / Restore FPU State
n FINCSTP / FDECSTP – Increment / Decrement FPU

Register Stack Pointer
n FFREE – Free FPU Register
n FNOP – FPU No Operation
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MMX, SSE and SSE2
n Extensions to the instruction set for parallel SIMD operations

on packed data
w SIMD – Single Instruction Stream Multiple Data stream

n MMX – Multimedia Extensions
w introduced in the Pentium processor

n SSE – Streaming SIMD Extension
w introduced in Pentium III

n SSE2 – Streaming SIMD Extension 2
w introduced in Pentium 4

n Designed to speed up multimedia and communication
applications
w graphics and image processing
w video and audio processing
w speech compression and recognition
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MMX data types

n MMX instructions operate on 8, 16, 32 or 64-bit integer
values, packed into a 64-bit field
n 4 MMX data types
w packed byte

8 bytes packed into a 64-bit quantity
w packed word

4 16-bit words packed into a
64-bit quantity
w packed doubleword

2 32-bit doublewords packed into a
64-bit quantity
w quadword

one 64-bit quantity
n Operates on integer values only

b0b1b2b3b4b5b6b7
063

w0w1w2w3
063

dw0dw1

063

qw
063
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MMX registers

n 8 64-bit MMX registers
w aliased to the x87 floating-point

registers
w no stack-organization

n The 32-bit general-purouse
registers (EAX, EBX, ...) can also
be used for operands and adresses
w MMX registers can not hold memory addresses

n MMX registers have two access modes
w 64-bit access mode
ü 64-bit memory access, transfer between MMX registers, most MMX

operations
w 32-bit access mode
ü 32-bit memory access, transfer between MMX and general-purpose

registers, some unpack operations

063

MM0
MM1
MM2
MM3
MM4
MM5
MM6
MM7

Floating-point registers



44

MMX operation

n SIMD execution
w performs the same operation in parallel on 2, 4 or 8 values
w arithmetic and logical operations executed in parallel on the bytes,

words or doublewords packed in a 64-bit MMX register

n Most MMX instructions have
 two operands
w op dest source
w destination is a MMX register
w source is a MMX register or

a memory location

X0X1X2X3Source 1

Y0Y1Y2Y3Source 2

X0 op Y0X1 op Y1X2 op Y2X3 op Y3Destination

opop op op
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Saturation and wraparound arithmetic

n Operations may produce results that are out of range
w the result can not be represented in the format of the destination

n Example:
w add two packed unsigned byte integers 154+205=359
w the result can not be represented in 8 bits

nWraparound arithmetic
w the result is truncated to the N least significant bits
w carry or overflow bits are ignored
w example: 154+205=103

n Saturation arithmetic
w out of range results are limited to the smallest/largest value that can

be represented
w can have both signed and unsigned saturation
w example: 154+205=255

 10011010
+11001101
---------
101100111
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Data ranges for saturation

n Results smaller than the lower limit is saturated to the lower
limit
n Results larger than the upper limit is saturated to the upper

limit
n Natural way of

handling under/over-
flow in many
applications
w Example: color calculations, if a pixel becomes black, it remains

black

n MMX instructions do not generate over/underflow exceptions
or set over/underflow bits in the EFLAGS status register

Data type   Bits Lower limit Upper limit
Signed byte     8     -128      127
Unsigned byte     8          0      255
Signed word   16 -32768  32767
Unsigned word   16          0  65535
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MMX instructions

n MMX instructions have names composed of four fields
w a prefix P – stands for packed
w the operation, for example ADD, SUB or MUL
w 1-2 characters specifying unsigned or signed saturated arithmetic
ü US – Unsigned Saturation
ü S – Signed Saturation

w a suffix describing the data type
ü B – Packed Byte, 8 bytes
ü W – Packed Word, four 16-bit words
ü D – Packed Doubleword, two 32-bit double words
ü Q – Quadword, one single 64-bit quadword

n Example:
w PADDB – Add Packed Byte
w PADDSB – Add Packed Signed Byte Integers with Signed

Saturation
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MMX instructions

n MMX instructions can be grouped into the following
categories:
w data transfer
w arithmetic
w comparison
w conversion
w unpacking
w logical
w shift
w empty MMX state instruction (EMMS)
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Data transfer instructions

n MOVD – Move Doubleword
w copies 32 bits of packed data
ü from memory to a MMX register (and vice versa), or
ü from a general-purpose register to a MMX register (and vice versa)

w operates on the lower doubleword of a MMX register (bits 0-31)

n MOVQ – Move Quadword
w copies 64 bits of packed data
ü from meory to a MMX register (and vice versa), or
ü between two MMX registers

n MOVD/MOVQ implements
w register-to-register transfer
w load from memory
w store to memory
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Arithmetic instructions

n Addition
w PADDB, PADDW, PADDD – Add Packed Integers with Wraparound

Arithmetic
w PADDSB, PADDSW – Add Packed Signed Integers with Signed

Saturation
w PADDUSB, PADDUSW – Add Packed Unsigned Integers with

Unsigned Saturation
n Subtraction
w PSUBB, PSUBW, PSUBD – Wraparound arithmetic
w PSUBSB, PSUBSW – Signed saturation
w PSUBUSB, PSUBUSW – Unsigned saturation

n Multiplication
w PMULHW – Multiply Packed Signed Integers and Store High Result
w PMULLW – Multiply Packed Signed Integers and Store Low Result
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Arithmetic instructions (cont.)

n Multiply and add
w PMADDWD – Multiply And Add Packed Integers
w multiplies the signed word operands (16 bits)
w produces 4 intermediate 32-bit products
w the intermediate products are summed pairwise and produce two

32-bit doubleword results

X0X1X2X3

Y0Y1Y2Y3

X0*Y0X1*Y1X2*Y2X3*Y3

X1*Y1 + X0*Y0X3*Y3 + X2*Y2
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Comparison instructions

n Compare Packed Data for Equal
w PCMPEQB, PCMPEQW, PCMPEQD

n Compare Packed Signed Integers for Greater Than
w PCMPGTPB, PCMPGTPW, PCMPGTPD

n Compare the corresponding packed values
w sets corresponding destination element to a mask of all ones (if

comparison matches) or zeroes (if comparison does not match)
w the masks can be used to implement conditional assignment

n Does not affect EFLAGS register
X0X1X2X3Source 1

Y0Y1Y2Y3Source 2

00000000111111111111111100000000Destination

> > > >
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Conversion instruction

n PACKSSWB, PACKSSDW – Pack with Signed Saturation
n PACKUSWB – Pack with Unsigned Saturation
w converts words (16 bits) to bytes (8 bits) with saturation
w converts doublewords (32 bits) to words (16 bits) with saturation

A’B’C’D’

ABCD

Destination Source

Destination
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Unpacking instructions

n PUNPCKHBW, PUNPCKHWD, PUNPCKHDQ – Unpack and
Interleave High Order Data
n PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ – Unpack and

Interleave Low Order Data

X0X1X2X3X4X5X6X7Y0Y1Y2Y3Y4Y5Y6Y7

Source Destination

X0Y0X1Y1X2Y2X3Y3

Destination
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Logical instructions

n PAND – Bitwise AND
n PANDN – AND NOT
n POR – OR
n PXOR – Exclusive OR

n Operate on a 64-bit quadwords
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Shift instructions

n PSLLW, PSLLD, PSLLQ - Shift Packed Data Left Logical
n PSRLW, PSRLD, PSRLQ – Shift Packed Data Right Logical
n PSRAW, PSRAD – Shift Packed Data Right Arithmetic
w shifts the destination elements the number of bits specified in the

count operand
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EMMS instruction

n Empty MMX State
w sets all tags in the x87 FPU tag word to indicate empty registers

n Must be executed at the end of a MMX computation before
floating-point operations
n Not needed when mixing MMX and SSE/SSE2 instructions
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SSE

n Streaming SIMD Extension
w introduced with the Pentium III processor
w designed to speed up performance of advanced 2D and 3D

graphics, motion video, videoconferencing, image processing,
speech recognition, ...

n Parallel operations on packed single precision floating-point
values
w 128-bit packed single precision floating point data type
w four IEEE 32-bit floating point values packed into a 128-bit field

n Introduces also some extensions to MMX
n Operand of SSE instructions must be aligned in memory on

16-byte boundaries
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SSE instructions

n Adds 70 new instructions to the instruction set
w 50 for SIMD floating-point operations
w 12 for SIMD integer operations
w 8 for cache control

n Operates on packed and scalar single precision floating-point
instructions
w operations on packed 32-bit

floating-point values
w operations on a scalar 32-bit

floating-point value (the 32 LSB)

n 64-bit SIMD integer instructions
w extension to MMX
w operations on packed integer values stored in MMX registers

s0s1s2s3
0127

s0s1s2s3
0127



60

Packed and scalar operations

n SSE supports both packed and scalar operations on 32-bit
floating-point values

n Packed operations applies the
operation in parallel on all four
values in a 128-bit data item
w similar to MMX operation

n Scalar operations operates
only on the least significant
32 bits

Destination

X0X1X2X3Source 1

Y0Y1Y2Y3Source 2

X0 op Y0X1 op Y1X2 op Y2X3 op Y3

opop op op

X0X1X2X3Source 1

Y0Y1Y2Y3Source 2

X0 op Y0X1X2X3Destination

op
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XMM registers

n The MMX technology introduces 8 new 128-bit registers
XMM0 – XMM7
w independent of the general purpose and

FPU/MMX registers
w can mix MMX and SSE instructions

n XMM registers can be accessed in 32-bit,
64-bit or 128-bit mode
w only for operations on data, not addresses

n MXCSR control and status register, 32 bit
w flag and mask bits for floating-point exceptions
w rounding control bits
w flush-to-zero bit
w denormals-are-zero bit

0127

XMM0
XMM1
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7
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SSE instructions

n SSE instructions are divided into four types
n Packed and scalar single-precision floating point operations
w operates on 128-bit data entities

n 64-bit integer operations
w MMX operations

n State manegement intructions
w load and save state of the MXCSR control register

n Cache control, prefetch and memory ordering instructions
w instructions to control stores to / loads from memory
w support for streaming data to/from memory without storing it in cache
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Temporal and non temporal data

n Temporal data
w data that will be used more than once in the program execution
w should be accessed through the cache to make use of the temporal

locality
n Non-temporal data
w data that will not be reused in the program execution
w if non-temporal data is accessed through the cache it will replace

temporal data – called cache pollution
w can be accessed from memory without going through the cache

using non-temporal prefetching and write-combining

n Media processing applications often have large amounts of
non-temporal data
w streaming data
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Cacheability control and prefetching

n Data can be read into the cache in advance using a prefetch
operation
n Three levels of prefetch for temporal data
w PREFETCH0 – fetch data into all cache levels
w PREFETCH1 – fetch data into L2 cache (and higher)
w PREFETCH2 – fetch data into L3 cache

n Prefetching of non-temporal data with PREFETCHNTA
w fetch data into an internal buffer
w data is not stored in cache

n Non-temporal data can be written without going through the
cache
w uses write-combining: data is combined into larger blocks before

written to main memory
w gives less control of the order of writes to memory
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SSE2

n Streaming SIMD Extension 2
w introduced in the Pentium 4 processor
w designed to speed up performance of advanced 3D graphics, video

encoding/decodeing, speech recognition, E-commerce and Internet,
scientific and engineering applications

n Extends MMX and SSE with support for
w 128-bit packed double precision floating point-values
w 128-bit packed integer values

n Adds over 70 new instructions to the instruction set
n Operates on 128-bit entities
w data must be aligned on 16-bit boundaries when stored in memory
w special instruction to access unaligned data



66

Compatibility with SSE and MMX operation

n The SSE2 extension is an enhancement of the SSE
extension
w no new registers or processor state
w new instructions which operate on a wider variety of packed

floating-point and integer data

n Same registers for SIMD operations as in SSE
w eight 128-bit registers, XMM0 – XMM7

n SSE2 instructions can be intermixed with SSE and
MMX/FPU instructions
w same registers for SSE and SSE2 execution
w separate set of registers for FPU/MMX instructions
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SSE2 data types

n Packed double precision
floating point
w 2 IEEE double precision floating-point values

n Packed byte integer
w 16 byte integers (8 bits)

n Packed word integer
w 8 word integers (16 bits)

n Packed doubleword integer
w 4 doubleword integers (32 bits)

n Packed quadword integer
w 2 quadword integers (64 bits)

0127

FP value 1

0127

FP value 0

0127

0127

0127
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SSE2 instructions

n Operations on packed double-precision data has the suffix PD
w examples: MOVAPD, ADDPD, MULPD, MAXPD, ANDPD

n Operations on scalar double-precision data has the suffix SD
w examples: MOVSD, ADDSD, MULSD, MINSD

n Conversion instructions
w between double precision and single precision floating-point
w between double precision floating-point and doubleword integer
w between single precision floating-point and doubleword integer

n Integer SIMD operations
w both 64-bit and 128-bit packed integer data
w 64-bit packed data uses the MMX register
w 128-bit data uses the XMM registers
w instructions to move data between MMX and XMM registers
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Conversion between packed data types



70

Programming with MMX and SSE

n Automatic vectorization
w let the compiler do all the work, just turn on a compiler switch
w easy to program, no changes to the program code
w only loops are vectorize
w does not guarantee any performance improvement
ü has no effect  if the compiler can not analyze the code and find

opportunities for SIMD operation
w requires a vectorizing compiler

n C++ class data types
w C++ classes that define an abstraction for the MMX/SSE datatypes
w easy to program, does not require in-depth konwledge of MMX/SSE
w guarantees a performance improvement
w can not access all possible instructions
w can not do explicit instruction scheduling
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Programming with MMX and SSE (cont.)

n Compiler intrisincs
w functions that perform the same operations as the corresponding

assembly language instructions
w gives access to all MMX and SSE instructions
w can use variable names instead of registers
w requires a detailed knowledge of MMX/SSE operation

n Assembly language
w gives full control over the instruction execution
w very good possibilities to arrange instructions for efficient execution
w difficult to program, requires detailed knowledge of MMX/SSE

operations and assembly language programming
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Example: summing an array of integers

n Simple function that sums all elements in an array of integer
values and returns the sum

n To compile for
automatic vectorization
with the Intel compiler
use the switch -QxW
w the compiler prints a message

about vectorized loops

program.cpp (42) : (col. 2) remark: LOOP WAS VECTORIZED

int SumArray(int *buf, int N)
{
  int i, sum=0;
  for (i=0; i<N; i++)
       sum += buf[i];
  return sum;
}
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C++ class libraries for SIMD operation

n C++ classes defining MMX and SSE data types
w overloads the  operations

+, -, *, /  etc.
n Integer data types
w I8vec8, I8vec16
w I16vec4, I16vec8
w I32vec2, I32vec4
w I64vec1, I64vec2
w I128vec1

n Single precision floating-point data types
w F32vec1, F32vec4

n Double precision floating-point data types
w F64vec2

int SumArray(int *buf, int N)
{
  int i;
  I32vec4 *vec4 = (I32vec4 *)buf;
  I32vec4 sum(0,0,0,0);
  for (i=0; i<N/4; i++)
       sum += vec4[i];
  return sum[0]+sum[1]+sum[2]+sum[3];
}
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C / C++ compiler intrisincs

n Functions or macros containing inline assembly code for
MMX/SSE operations
w allows the programmer to use C / C++ function calls and variables

n Defines a C function for each MMX/SSE instruction
w there are also intrisinc functions composed of several MMX/SSE

instructions

n Defines data types to represent packed integer and floating-
point values
w __m64 represents the contents of a 64-bit MMX register

    (8, 16 or 32 bit packed integers)
w __m128 represents 4 packed single precision floating-point values
w __m128d represents 2 packed double precision floating-point values
w __m128i represents packed integer values (8, 16, 32 or 64-bit)
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C intrisincs

n The code specifies exactly which operations to use
w register allocation and instruction scheduling is left to the compiler

int SumArray(int *buf, int N)
{
  int i;
  __m128i *vec128 = (__m128i *)buf;
  __m128i sum;
  sum = _mm_sub_epi32(sum,sum); // Set to zero
  for (i=0; i<N/4; i++)
       sum = _mm_add_epi32(sum,vec128[i]);

  sum = _mm_add_epi32(sum, _mm_srli_si128(sum,8));
  sum = _mm_add_epi32(sum, _mm_srli_si128(sum,4));
  return _mmcvtsi128_si32(sum);
}
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Assembly language

n Use inline assembly code
w for instance in a C program

n Can arrange instructions
to avoid stalls

int SumArray(int *buf, int N)
{
_asm{
    mov  ecx, 0 ; loop counter
    mov  esi, buf
    pxor xmm0,xmm0 ; zero sum
loop:
    paddd xmm0, [esi+ecx*4]
    add  ecx, 4
    cmp ecx, N ; done ?
    jnz loop
    movdqa xmm1, xmm0
    psrldq xmm1, 8
    padd xmm0,xmm1
    movdqa xmm1,xmm0
    psrldq xmm0,xmm1
    movd eax, xmm0 ; store result
   }
}
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Intel Pentium 4

n Based on the Intel NetBurst microarchitecture
w Pentium II and Pentium III are based on th P6 microarchitecture

n Decoupled CISC/RISC architecture
w IA-32 instruction set, CISC
w translated to RISC micro-operations (mops), which are executed by

the RISC core
n Deep pipeline
w designed to run at very high clock frequencies
ü introduced at 1.5 GHz
ü currently at 3.2 GHz

w different parts of the chip run at different clock frequencies
n Efficient execution of the most common instructions
n SSE2 extension
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NetBurst microarchitecture

n Cache
w execution trace cache, 12K mops
w L1 data cache, 8 KB, 2 cycle latency
w L2 cache on-die, 512 KB

7 cycle latency
n 20-stage pipeline,

supports high clock
frequencies
w ALU runs twice the

processor clock
frequency
w quad-pumped system

bus interface

Retirement

Bus Unit

L2 Cache
On-die, 8-way

Fetch / Decode

L1 Cache
4-way

BTB / Branch Prediction

Execution
out-of-order core

Branch History Update

Front End

System Bus

Execution Trace
Cache

Microcode ROM
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Pipeline organization

n The pipeline consists of three sections
w in-order issue front-end with a execution trace cache
w out-of-order superscalar exection core with a very deep out-of-order

speculative execution engine
w in-order retirement

Retirement

Cache subsystem

In-order back-endOut-of-order execution

Instruction
pool

Execution units

In-order front-end

Instruction prefetchFront-end BTB

Instruction decode

Trace cacheTrace cache BTB

mop queueMicro-code ROM
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Front-end pipeline

n Designed to improve the instruction decoding capabilities
w improves the time to decode fetched instructions
w avoids problems with wasted decode bandwidth caused by

branches and branch targets in the middle of cache lines

n Basic functions of the front-end
w prefetch IA-32 instructions that are likely to be executed
w fetch instructions that have not been prefetched
w decode IA-32 instructions into mops
w generate microcode for complex instructions
w store decoded mops in the execution trace cache
w deliver decoded instructions from the execution trace cache to the

execution core
w predict branches
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Prefetching

n Automatic data prefetch
w hardware that auomatically prefetchs data into L2 cache
w based on previous access patterns
w tries to fetch data 2 cache lines ahead of current access location

(but only within the same 4 KB page)
n Software prefetch
w prefetch instructions, only for data access
w hint to the hardware to bring in a cache line

n Instructions are automatically prefetced from the predicted
execution path into an instruction buffer
w fetched from L2 cache into a buffer in the instruction decoder
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Instruction decoding

n IA-32 machine instructions are of variable length
w large number of options for most instructions

n Decoded to uniform-length micro-operations
w load/store architecture

n IA-32 instructions can be decoded into one or more mops
w if more than 4 mops are needed, the instruction is decoded from the

microcode ROM
n Decoded mops are stored in program order in the execution

trace cache
w do not need to be decoded the next time the same code is

executed
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Execution trace cache

n Instruction cache storing decoded instructions
w 12K mops, 8-way set-associative

n Stores fetched and decoded instructions
w built into sequences of mops called traces, six mops per trace line
w contains mops generated from the predicted execution path
w instructions that are branched over in the execution will not be in

the trace cache

BR BR BR

BR BR BR

Executed instructions

Instructions in trace cache
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Execution trace cache (cont.)

n The trace cache can deliver 3 instructions each clock tick to
the out-of-order execution logic
n Most instructions are fetched and executed from the trace

cache
w only when there is a trace cache miss does the instructions have to

be fetched from L2 cache
w reduces the amount of work for the instruction decoder

n The trace cache has an own branch predictor
w predicts branches within the trace cache
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Branch prediction

n Branch target buffer, 4K entries
w contains both branch history and branch target addresses

n Return address stack, 16-entries
w contains return addresses for procedure calls

n Trace cache and instruction translation have co-operating
branch prediction
w branch targets are predicted based on information in BTB, RAS or

using static prediction
w branch target code is fetched from trace cache if it is there,

otherwise from the memory hierarchy
n “Highly advanced branch prediction algorithm”
w 33% less misprediction compared to the P6 mictoarchitecture
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Branch prediction (cont.)

n Branch hints
w prefix to conditional branch instructions
w used to help the branch prediction and decoder to build traces
w overrides static prediction, but not dynamic

n Branch hints have no effect on decoded instructions that
already are in the trace cache
w only assist the branch prediction and the decodeer to build correct

traces

n Typical delay for a mispredicted branch is the depth of the
pipeline
w 20 clock ticks
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Execution core

n Up to 126 instructions, 48 loads and 24 stores can be in
fligtht at the same time
n Can dispatch up to 6 mops per cycle
w exceeds the capacity of the decoder and retirement unit

n Basic integer (ALU) operations execute in 1/2 clock cycle
n Many floating-point instructions can start every 2 cycles
n Floating-point divide and square root are not pipelined
w Example: FP double precision divide

latency = throughput = 38 clock cycles
n   mops are issued through four ports to 7 functional units
w some ports can issue 2 mops per clock cycle
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Register renaming

n Renames the eight logical IA-32 registers to a 128-entry
physical register file
w uses a Register Alias Table (RAT) to store the renaming

n Similar register renaming for both
integer and  FP/MMX/SSE registers
n RAT points to the entry in the register

file holding the current version of each
register
w the status stores information about the

completion of the mop

n Load and stores are renamed similarly
w uses a load/store buffer instead of a register

EAX
EBX
ECX
EDX
ESI
EDI
ESP
EBP

EAX
EBX
ECX
EDX
ESI
EDI
ESP
EBP

Frontend RAT

Retirement RAT

Register
file Status
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mop scheduling

n The mop shedulers determine when an operation is ready to
be executed
w when all its input operands are ready and a suitable execution unit

is available

n The scedulers are connected to four dispatch ports
w two execution unit ports
w one load port
w one store port

n The scedulers dispatch mops to one of the ports depending
on the type of the operation
w can dispatch up to 6 mops in a clock cycle
w some ports can dispatch two operations in one clock cycle,

operate on double clock cycle
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Dispatch ports and execution units
w Port 0 can issue
ü 1 FP move  or 1 integer ALU mop
ü +1 integer ALU mop

w Port 1 can issue
ü 1 FP mop or 1 integer mop or 1 integer ALU mop
ü +1 integer ALU mop

w Port 2 can issue 1 load mop
w Port 3 can issue 1 store adress mop

ALU 0
Double speed

FP Move

Port 0

Add/Sub
Logic
Store data
Branch

FP/SSE move
FP/SSE store data
FXCH

ALU 1
Double speed

Integer
Operation

Port 1

FP
Execute

Add/Sub Shift / 
Rotate

FP/SSE Add
FP/SSE ulL
FP/SSE Div
FP MISC
MMX 

Memory
Load

Port 2

Load
LEA
SW Prefetch

Memory
Store

Port 3

Store
Address
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Loads and stores

n Out-of-order memory operations
w loads can be executed speculatively
w stores are always executed in program order

n Separate rename registers for memory access
w 48 load buffers and 24 store buffers
w hold the load/store mop and address information
w one load and one store can be issued every clock cycle

n Store forwarding
w a load from a memory location that is waiting to be stored does not

have to wait for the memory operation to complete
w data is forwarded from the store buffer to the load buffer

nWrite combining
w multiple stores to the same cache line are combined into one unit
w 6 write-combine buffers
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Retirement

n Receives result of executed mops and updates the processor
state in program order
w original program order is stored in the reorder buffer
w up to 3 mops may be retired per clock cycle

n Sends updated branch target information to the branch target
buffer
w result of conditional branches are not known before the instruction

is retired
w recovers from branch misprediction
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Cache organization

n Execution trace cache
w 12 K ops, 8-way set associative

n L1 data cache, 8 KB, 4-way set associative, write through
w fast, 2 clock cycle latency
w 64 byte cache line size

n Unified L2 cache, 256 or 512 KB, 8-way set associative, write
back
w cache interface is 32 bytes = 256 bits
w transfers data on each clock cycle
w 128 byte cache line size (two 64 byte sectors)
w latency 7 clock cycles, can start next transfer after 2 clock cycles
w hardware prefetch
ü fetches data 256 bytes ahead of the current data access location

n Also support for L3 cache
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Latency and throughput

n Latency
w the number of clock cycles required for the execution core to

complete the execution of an IA-32 instruction

n Throughput
w the number of clock cycles the execution core has to wait before an

issue port is ready to accept the same instruction again

n If throughput is less than latency than the execution unit is
pipelined
w can accept the following instruction before the previous one has

completed

n Different instructions have different latency and throughtput
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Instruction latency and throughput

n Integer operations
w latency 0.5–4, throuhput 0.5–2
w mul, div has latency 15–70, throughput 5–40

n Floating-point operations
w latency 2–7, throughput 1–2
w division and square root have latency 23–43, throughput 23–43
w sin, cos, tan, arctan have latency 150–250, throughput 130–170

n MMX operations
w latency 2–6, throughput 1

n Integer SSE instructions
w latency 2–8, throughput 1–2

n Single-precision floating-point SSE instructions
w latency 4–10, throughput 2–4
w div, square root has latency 32, throuhput 32
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Instruction latency and throughput (cont.)

n Integer SSE2 instructions
w latency 2–10, throughput 1–2

n Single-precision floating-point SSE2 instructions
w latency 4-10, throughput 2–4
w packed division has latency 39, throughput 18
w packed square root has latency 39, throughput 29

n Double-precision floating-point SSE2 instructions
w latency 4–10, throughput 2–4
w packed division has latency 69, throughput 32
w packed square root has latency 69, throughput 58
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Hyper-threading microarchitecture

n Hyper-threading
w simultaneous multi-threading
w a single processor appears as two logical processors
w both logical processors share the same physical

execution resources
w the architectural state is duplicated

(register, program counter,status flags,  ... )
n Can scedule two simultaneously executing threads on the

processor
w instructions from both threads execute simultaneously
w if one thread has to wait, the other can proceed

n Makes more efficient use of the physical execution resources
w uses task-level parallelism to increase the utilization of the

execution resources

Processor
execution
resources

State State
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Pipeline organization

n Small dia area cost for implementing HT
w about 5% of the total die area
w most resources are shared, only a few are duplicated

nWhen one thread is stalled, the other can continue
executing
w one thread can not reserve all execution resources
w shared resources are either partitioned between the

threads or there is a limit on the amount of resources
one logical process can use

n If only one thread is running it has full access to
all execution resources
w runs with the same speed as on a processor

without HT

Fetch

Q Q

Decode

Q Q

Trace cache

Q Q

Rename/allocate

Q Q

Schedule/execute

Q Q

Retire
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Processor resources

n Replicated resources
w the resources needed to store information about the state of the

two logical processors
ü registers, instruction pointer, control registers, register renaming

tables, interrupt controllers
w some resources are also replicated for efficiency reasons
ü instruction translation lookaside buffer, streaming instruction buffers,

return address stack
n Partitioned resources
w shared, but the use is limited to half of the entries
w the instruction buffers between major pipeline stages:

the queue after the trace cache, queues after register renaming,
reorder buffers, load- and store buffers

n Shared resources
w most resources are shared
w execution units, branch prediction, caches, bus interface, ...
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Instruction fetch

n Two sets of instruction pointers, one for each logical process
w instruction fetch alternates between the logical processors each

clock cycle, one cache line at a time
w if one of the logical processes is stalled, the other gets full

instruction fetch bandwidth

n If the next instruction is not in the trace cache it is fetched
from L2 cache
w the hardware resources for fetching data and instructions from L2

cache are duplicated
w fetched instructions are placed in a streaming buffer, one for each

logical processor
w decoded and placed in the trace cache
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Instruction decode

n Both logical procesors share the same decoding logic
w alternates accesses for instructions to decode between the two

streaming buffers
w decodes several instructions for each logical processor before

switching to the other

n Both logical processors share the microcode ROM
w one pointer into microcode ROM for each logical process
w alternates accesses to the microcode ROM each clock cycle

n If only one logical processor needs the decode logic it gets
the full decode bandwidth
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Trace cache

n The execution trace cache is shared between the two logical
processors
w access alternates every clock cycle
w the trace cache entries also include information about to which

thread it belongs

n One logical processor can have more entries in the trace
cache than the other
w if one thread is stalled for a long time, the other can fill the whole

trace cache
n Decoded instructions are placed in a mop queue
w decouples the front-end from the out-of-order execution engine
w the mop queue is partitioned: each logical processor has half of the

entries
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Branch prediction

n Branch history buffer is partitioned between both logical
processors
w entries are tagged with the logical processor ID

n The global branch pattern history array is shared
n Return stack buffer is duplicated
w 16 enties per logical processor
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Allocation

n The allocation stage takes mops from the queue and
allocates the resources needed to execute the mop
w register reorder buffers
w integer- and floating point physical registers
w load- and store buffers

n Each logical processor can use at most half of the register
reorder buffers, load- and store buffers
n The allocator alternates between mops from the logical

processors every clock cycle
w if one logical processors has used its full limit of some resource, it is

stalled
w if there are only mops from only one logical processor it has to

execute using only half of the available resources
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Register renaming

n Register renaming is done at the same time as the resource
allocation
n One Register Alias Table for each logical processor
w stores the current mapping of the 8 architectural registers to the

128 physical registers
n After resource allocation and register renaming the mops are

placed in one of two queues for sceduling
w memory instruction queue for loads and stores
w general instruction queue for all other operations

n Both queues are partitioned so that each logical processor
can use at most half of the entries
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Instruction scheduling

n The memory instruction queue and the general instruction
queue sends mops to the scedulers
w alternates between mops from the logical processors every clock

cycle
n The schedulers dispatches mops to the different execution

units when the inputs are ready and a suitable unit is free
w selects mops to dispatch from queues of 8–12 mops
w number of entries in each queue for a logical processor is limited
w dispatches ready mops regardless of which logical processor they

belong to
n At most six mops dispatched each clock cycle
w can for instance dispatch two mops from one logical processor and

two mops from the othe logical processor in the same clock cycle
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Execution and retirement

n The execution units do not need to know to which logical
processor a mop belongs
w source and destination registers have already been renamed
w the mops access the physical register file, which is shared
w results are written back to the physical register file

n Executed mops are placed in the re-order buffer
w re-order buffer is partitioned so that each logical processor can use

at most half of the entries
n Executed mops are retired in program order for each logical

processor
w alternates between the two logical processors
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Single-task and multi-task modes

n A processor with hyper-threading can execute in two modes:
w Single-Task mode (ST)
w Multi-Task mode (MT)

n In MT mode there are two active logical processors
w some execution resources are partitioned as decribed

n In ST mode one of the two logical processors are active and
the other one is inactive
w resources that were partitioned in MT mode are recombined

n Transition from MT mode to ST mode by executing a HALT
instruction on one of the logical processors
w an interrupt sent to the halted logical processor resumes its

execution and places the processor in MT mode
w the operating system is responsible for controlling transitions

between ST and MT mode


