
1

Processor: Superscalars – Case Studies:
Intel P6, Pentium 4, Itanium, and IBM PowerPC 620

Z. Jerry Shi
Assistant Professor of Computer Science and Engineering

University of Connecticut

* Slides adapted from Blumrich&Gschwind/ELE475’03, Peh/ELE475’*

Intel P6 Microarchitecture In a Nutshell

• 1995 product Pentium Pro, Pentium II, Pentium III, ideas
reused in Pentium 4.

• Application of concepts we learnt in class:
– 3-way superscalar
– OOO, speculative
– Micro-ops
– Branch prediction with BTB
– Reservation stations
– Renaming through Reorder Buffer

2

Dynamic Scheduling in P6 (Pentium Pro, II, III)

• Q: How pipeline 1 to 17 byte 80x86 instructions?
• A: P6 doesn’t pipeline 80x86 instructions
• P6 decode unit translates the Intel instructions into 72-bit micro-

operations (~ MIPS)
• Sends micro-operations to reorder buffer & reservation stations
• Many instructions translate to 1 to 4 micro-operations
• Complex 80x86 instructions are executed by a conventional

microprogram (8K x 72 bits) that issues long sequences of micro-
operations

• 14 clocks in total pipeline (~ 3 state machines)

Dynamic Scheduling in P6

Parameter 80x86 microops
Max. instructions issued/clock 3 6
Max. instr. complete exec./clock 5
Max. instr. committed/clock 3
Window (Instrs in reorder buffer) 40
Number of reservations stations 20
Number of rename registers 40
Number of integer functional units (FUs) 2
Number of floating point FUs 1
Number of SIMD floating point FUs 1
Number of memory FUs 1 load + 1 store

3

P6 Pipeline

• 8 stages are used for in-order instruction fetch, decode, and
issue
– Takes 1 clock cycle to determine length of 80x86 instructions + 2 more

to create the micro-operations (uops)

• 3 stages are used for out-of-order execution in one of 5
separate functional units
– Integer, FP, branch, memory address, memory access

• 3 stages are used for instruction commit

Instr
Fetch
16B
/clk

Instr
Decode
3 Instr

/clk

Renaming
3 uops
/clk

Execu-
tion
units
(5)

Gradu-
ation

3 uops
/clk

16B 6 uops

Reserv.
Station

(20)

Reorder
Buffer

(40)

Instruction Fetch

4

Branch Prediction

Branch Target Buffer

5

Instruction Decode

Register Renaming: Register Alias Table

6

Instruction Dispatch & Execute: Reservation Stations

P6 Pipeline (Look at ROB stages)

7

Pentium III Overview

P6 Block Diagram

8

Pentium III Die Photo

• EBL/BBL - Bus logic, Front, Back
• MOB - Memory Order Buffer
• Packed FPU - MMX Fl. Pt. (SSE)
• IEU - Integer Execution Unit
• FAU - Fl. Pt. Arithmetic Unit
• MIU - Memory Interface Unit
• DCU - Data Cache Unit
• PMH - Page Miss Handler
• DTLB - Data TLB
• BAC - Branch Address Calculator
• RAT - Register Alias Table
• SIMD - Packed Fl. Pt.
• RS - Reservation Station
• BTB - Branch Target Buffer
• IFU - Instruction Fetch Unit (+I$)
• ID - Instruction Decode
• ROB - Reorder Buffer
• MS - Micro-instruction Sequencer

1st Pentium III, Katmai: 9.5 M transistors, 12.3 x 10.4
mm, 250 nm CMOS with 5 layers of Al

P6 Performance: Stalls at decode stage
I-cache misses or lack of RS/Reorder buf. entry

0 0.5 1 1.5 2 2.5 3

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0.5 to 2.5 Stall cycles per instruction: 0.98 avg. (0.36 integer)

Instruction stream Resource capacity stalls

9

P6 Performance: uops/x86 instr

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

1.2 to 1.6 uops per IA-32 instruction: 1.36 avg. (1.37 integer)

P6 Performance: Speculation rate
(% instructions issued that do not commit)

0% 10% 20% 30% 40% 50% 60%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

1% to 60% instructions do not commit: 20% avg (30% integer)

10

P6 Performance: uops commit/clock

Average
0: 55%
1: 13%
2: 8%
3: 23%

Integer
0: 40%
1: 21%
2: 12%
3: 27%

0% 20% 40% 60% 80% 100%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0 uops commit
1 uop commits
2 uops commit
3 uops commit

P6 Dynamic Benefit?
Sum of parts CPI vs. Actual CPI

Ratio of
sum of

parts vs.
actual CPI:
1.38X avg.

(1.29X
integer)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0.8 to 3.8 Clock cycles per instruction: 1.68 avg (1.16 integer)

uops
Instruction cache stalls
Resource capacity stalls
Branch mispredict penalty
Data Cache Stalls

Actual CPI

11

Pentium 4

• Still translate from 80x86 to micro-ops
• P4 has better branch predictor, more functional units
• Instruction Cache holds micro-operations vs. 80x86 instructions

– no decode stages of 80x86 on cache hit (“Trace Cache”)
• Faster memory bus: 400 MHz v. 133 MHz
• Caches

– Pentium III: L1-I 16KB, L1-D 16KB, L2 256 KB
– Pentium 4: L1-I 12K uops, L1-D 8 KB, L2 256 KB
– Block size: PIII 32B v. P4 128B; 128 v. 256 bits/clock

• Clock rates:
– Pentium III 1 GHz v. Pentium IV 1.5 GHz
– 14 stage pipeline vs. 24 stage pipeline

Trace Cache

• IA-32 instructions are difficult to decode
• Conventional Instruction Cache

– Provides instructions up to and including taken branch
• Trace cache, records uOps instead of x86 Ops
• Builds them into groups of six sequentially ordered uOps per line

– Allows more ops per line
– Avoids clock cycle to get to target of branch

12

Pentium 4 features

• Multimedia instructions 128 bits wide vs. 64 bits wide => 144 new
instructions
– When used by programs??
– Faster Floating Point: execute 2 64-bit Fl. Pt. Per clock
– Memory FU: 1 128-bit load, 1 128-store /clock to MMX regs

• Using RAMBUS DRAM
– Bandwidth faster, latency same as SDRAM
– Cost 2X-3X vs. SDRAM

• ALUs operate at 2X clock rate for many ops
• Pipeline doesn’t stall at this clock rate: uops replay
• Rename registers: 40 vs. 128; Window: 40 v. 126
• BTB: 512 vs. 4096 entries (Intel: 1/3 improvement)

Pentium, Pentium Pro, P4 Pipeline

• P.N. Glaskowsky, “Pentium 4 (partially) previwed,” MPR, August 2000.
• Pentium (P5) = 5 stages

Pentium Pro, II, III (P6) = 10 stages (1 cycle ex)
Pentium 4 (NetBurst) = 20 stages (no decode)

13

Block Diagram of Pentium 4 Microarchitecture

• BTB = Branch Target Buffer (branch predictor)
• I-TLB = Instruction TLB, Trace Cache = Instruction cache
• RF = Register File; AGU = Address Generation Unit
• "Double pumped ALU" means ALU clock rate 2X => 2X ALU F.U.s

Pentium 4 Block Diagram

14

Pentium 4 Die Photo

• 42M xistors
– PIII: 26M

• 217 mm2

– PIII: 106 mm2

• L1 Execution Cache
– Buffer 12,000

Micro-Ops
• 8KB data cache
• 256KB L2$

Pentium III vs. Pentium 4:
Performance

0

100

200

300

400

500

600

700

800

900

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

MHz

SP
EC

in
t2

K
 (P

ea
k)

Coppermine (P3, 0.18um)

Tualatin (P3, 0.13um)

Williamette (P4, 0.18um)

Northwood (P4, 0.13um)

15

Pentium III vs. Pentium 4:
Performance / mm2

0

1

2

3

4

5

6

7

8

9

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

MHz

SP
EC

in
t2

K
 (P

ea
k)

/s
qm

m

Coppermine (P3, 0.18um)

Tualatin (P3, 0.13um)

Williamette (P4, 0.18um)

Northwood (P4, 0.13um)

Williamette: 217mm2, Northwood: 146mm2, Tualatin: 81mm2, Coppermine: 106mm2

Intel/HP IA-64:
Explicitly Parallel Instruction Computer (EPIC)

• IA-64: instruction set architecture; EPIC is type
– EPIC = 2nd generation VLIW?

• Itanium™ is name of first implementation (June 2001)
– Highly parallel and deeply pipelined hardware at 800Mhz
– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• Itanium2 – Sept 2002 (1GHz), Sept 2003 (1.5GHz)
• 128 64-bit integer registers + 128 82-bit floating point registers
• Hardware checks some dependencies

(interlocks => binary compatibility over time)
• Predicated execution (select 1 out of 64 1-bit flags)

16

IA-64 Registers

• The integer registers designed to assist procedure calls using a
register stack
– Similar to SPARC’s register windows.
– Registers 0-31 are always accessible and addressed as 0-31
– Registers 32-128 are used as a register stack and each procedure is

allocated a set of registers (from 0 to 96)
– The new register stack frame is created for a called procedure by

renaming the registers in hardware;
– a special register called the current frame pointer (CFM) points to

the set of registers to be used by a given procedure
• 8 64-bit Branch registers used to hold branch destination

addresses for indirect branches
• 64 1-bit predicate registers

Register Stack Frame Mapping

• Example (from Settle, et al., CGO’03)

Physical Register File

r32 r33 r34 r35 r36 r37 r38 r40 r41 r42 r43

r32 r33 r34 r35 r36 r39 r40

r39

r33 r34 r36 r37r35

Inputs

Local Output

Foo()

Bar()

r37 r38

r32 r38 r39

r44 r45

Local Variables Outputs

17

IA-64 Registers

• Both the integer and floating point registers support register
rotation for registers 32-128.

• Register rotation eases the task of allocating registers in software
pipelined loops

• Avoid the need for unrolling and for prologue and epilogue code
for a software pipelined loop
– Makes the SW-pipelining usable for loops with smaller numbers of

iterations

Explicitly Parallel Instruction Computer (EPIC)

• Instruction group: a sequence of consecutive instructions with no register data
dependences
– All the instructions in a group could be executed in parallel (if no

structural hazards and if any dependences through memory were
preserved)

– Instruction group can be arbitrarily long
– Compiler must explicitly indicate the boundary between one instruction

group and another by placing a stop between two instructions that belong
to different groups

• IA-64 instructions are encoded in bundles, which are 128 bits wide.
– Each bundle consists of a 5-bit template field and 3 instructions, each 41

bits in length
• 3 Instructions in 128 bit “groups”; field determines if instructions dependent

or independent

18

Five Types of Execution in Bundle

Execution Instruction Instruction Example
Unit Slot type Description Instructions
I-unit A Integer ALU add, subtract, and, or, cmp

I Non-ALU Int shifts, bit tests, moves
M-unit A Integer ALU add, subtract, and, or, cmp

M Mem access Loads, stores for int/FP regs
F-unit F Floating point Floating point instructions
B-unit B Branches Conditional branches, calls
L+X L+X Extended Extended immediates, stops

Template Examples

M

M

…

M

M

M

M

Slot 0

BF29

BF28

………

II3

II2

II1

II0

Slot 2Slot 1Template

Stop bits

19

Predication Support

• Nearly all instructions are predicated
– Conditional branches are predicated jumps!

• Compare/Test instructions set predicates
– Ten different comparison tests + 2 predicate destinations
– Written with result of comparison + complement

Speculation Support

• All INT registers have a 1-bit NaT (Not A Thing)
– This is a poison bit (as discussed earlier)
– Speculative loads generate these
– All other instructions propagate them

• Deferred exceptions
– Nonspeculative exceptions receive a NAT as a source operand there

is an unrecoverable exception
– Chk.s instructions can detect and branch to recovery code

20

Memory Reference Support

• Advanced Loads allow speculative memory references
– Move loads ahead of potentially dependent stores
– ALAT table is allocated with register destination + memory address
– Stores associatively lookup the table when they execute

• Invalidate ALAT entries with same memory address

• Before using the value of the advanced load
– Explicit check is needed to see if ALAT entry is valid
– If it fails, can re-load the value or perform cleanup operation

Itanium™ Machine Characteristics

2.1 GB/sec; 4-way glueless MP; scalable to large (512+ proc) systemsSystem bus
4MB, 4-way s.a., BW of 12.8 GB/sec; L3 cache
6 / 2 clocksL2/L1 latency
Dual ported 96K unified & 16KD; 16KIL2/L1 cache
64 entry ITLB, 32/96 2-level DTLB, VHPTVirtual memory support
4 DP (8 SP) operands/clockMemory FP bandwidth
3.2 GFlops (DP/EP); 6.4 GFlops (SP)FP compute bandwidth
Multilevel 4-stage Prediction HierarchyBranch prediction
32 entry ALAT, Exception DeferralSpeculation
14 ported 128 GR & 128 FR; 64 PredicatesRegisters
6 instructions/clock (4 ALU/MM, 2 Ld/St, 2 FP, 3 Br)Machine width
Organic Land Grid ArrayPackage
0.18u CMOS, 6 metal layersProcess
25.4M CPU; 295M L3Transistor count
800 MHZFrequency

21

10 Stage In-Order Core Pipeline

Front EndFront End
•• PrePre--fetch/Fetch of up fetch/Fetch of up
to 6 instructions/cycleto 6 instructions/cycle

•• Hierarchy of branch Hierarchy of branch
predictorspredictors

•• Decoupling bufferDecoupling buffer

Instruction DeliveryInstruction Delivery
•• Dispersal of up to 6 Dispersal of up to 6
instructions on 9 portsinstructions on 9 ports

•• Reg. remappingReg. remapping
•• Reg. stack engineReg. stack engine

Operand DeliveryOperand Delivery
•• RegReg read + Bypasses read + Bypasses
•• Register scoreboardRegister scoreboard
•• Predicated Predicated

dependencies dependencies

ExecutionExecution
•• 4 single cycle 4 single cycle ALUsALUs, 2 ld/, 2 ld/strstr
•• Advanced load control Advanced load control
•• Predicate delivery & branchPredicate delivery & branch
•• Nat/Exception/Nat/Exception///RetirementRetirement

IPG FET ROT EXP REN REG EXE DET WRBWL.D

REGISTER READ
WORD-LINE
DECODERENAMEEXPAND

INST POINTER
GENERATION

FETCH ROTATE EXCEPTION
DETECT

EXECUTE WRITE-BACK

22

Itanium processor 10-stage pipeline

• Front-end (stages IPG, Fetch, and Rotate): prefetches up to 32
bytes per clock (2 bundles) into a prefetch buffer, which can hold
up to 8 bundles (24 instructions)
– Branch prediction is done using a multilevel adaptive predictor like

P6 microarchitecture
• Instruction delivery (stages EXP and REN): distributes up to 6

instructions to the 9 functional units
– Implements registers renaming for both rotation and register

stacking.

Itanium processor 10-stage pipeline

• Operand delivery (WLD and REG):
– Accesses register file
– Performs register bypassing
– Accesses and updates a register scoreboard

• Scoreboard used to detect when individual instructions can proceed, so
that a stall of 1 instruction in a bundle need not cause the entire bundle
to stall

– Checks predicate dependences.

23

Itanium processor 10-stage pipeline

• Execution (EXE, DET, and WRB)
– Executes instructions through ALUs and load/store units
– Detects exceptions and posts NaTs
– Retires instructions and performs write-back
– Deferred exception handling via poison bits (NaTs)

• Predicate Delivery
– Predicates generated in EXE delivered in DET and feed into

retirement, branch execution, dependency detect
– All instructions read operands and execute
– Canceled at retirement

Peformance of IA-64 Itanium?

0

500

1000

1500

2000

2500

Itanium
800MHz
(96KB)

Itanium-2
1GHz
(3MB)

Itanium-2
1.5GHz
(6MB)

Pentium 4
3.4GHZ
(.5MB)

Pentium 4
3.4GHZ
(2.5MB)

IBM
POWER4

1.7GHz
(1.5MB)

AMD
Opteron
2.2GHz
(1MB)

SPECint2K
SPECfp2K

`

Onchip L2/L3

24

IBM PowerPC 620

• Core design reused for POWER3, POWER4, POWER5: IBM servers
• Core used in game machines: PS2, XBOX

• 4-way superscalar
• OOO – BTB (BTAC), BHT.
• Distributed rsvn stations
• Register renaming with separate rename buffers

PowerPC 620 pipeline

25

PowerPC 620 architecture

PowerPC 620 -> POWER3 -> POWER4 -> POWER5

• More aggressive branch prediction algo
• More functional units (still 4-way, but more units and rsvn

tables)
• More rename registers
• More processor cores

