Processor: Superscalars — Case Studies:
Intel P6, Pentium 4, Itanium, and IBM PowerPC 620

UCONN
Z. Jerry Shi

Assistant Professor of Computer Science and Engineering
University of Connecticut

* Slides adapted from Blumrich&Gschwind/ELE475'03, Peh/ELE475™

Intel P6 Microarchitecture In a Nutshell

» 1995 product = Pentium Pro, Pentium 11, Pentium 111, ideas
reused in Pentium 4.

» Application of concepts we learnt in class:
— 3-way superscalar
— 000, speculative

Micro-ops

Branch prediction with BTB

Reservation stations

Renaming through Reorder Buffer

Dynamic Scheduling in P6 (Pentium Pro, 11, I11)

* Q: How pipeline 1 to 17 byte 80x86 instructions?
» A: P6 doesn’t pipeline 80x86 instructions
» P6 decode unit translates the Intel instructions into 72-bit micro-

operations (~ MIPS)

» Sends micro-operations to reorder buffer & reservation stations
* Many instructions translate to 1 to 4 micro-operations

» Complex 80x86 instructions are executed by a conventional
microprogram (8K x 72 bits) that issues long sequences of micro-

operations

» 14 clocks in total pipeline (~ 3 state machines)

Dynamic Scheduling in P6

Parameter
Max. instructions issued/clock
Max. instr. complete exec./clock
Max. instr. committed/clock
Window (Instrs in reorder buffer)
Number of reservations stations
Number of rename registers

Number of integer functional units (FUS)
Number of floating point FUs

Number of SIMD floating point FUs
Number of memory FUs

80x86 microops
3 6
5
3
40
20
40

2
1
1
1 load + 1 store

P6 Pipeline

8 stages are used for in-order instruction fetch, decode, and

Issue
— Takes 1 clock cycle to determine length of 80x86 instructions + 2 more
to create the micro-operations (uops)
» 3 stages are used for out-of-order execution in one of 5
separate functional units
— Integer, FP, branch, memory address, memory access

» 3 stages are used for instruction commit

Reserv. Reorder
Station Buffer
Instr| 16B | Instr |6 uops — (20) E:?CU_ (40) Grﬁdu—
Fetch Decode Renaming lon ation
i’«é; —|lF 3tstr | Pl 3uops™ [—]| units |—| | || 3 uops
s Jelk /clk ®) /clk
Instruction Fetch
e fomt2 ks
cache 10 EBL
\I\;i‘ﬂ‘ A l)ul:Ln;lccl In::;;::-n
In\mm_mn
srcaming f—
baff,

Physical address]
vies consumed

Instruction

"l e

Lincar address

Branch target buffer

Branch Prediction

Branch decision

MNew history

Pattern table

ooE_ 1Y 0
(LN
0100
oo [C1 3
010
o
New history 1000
1001
1010
111
1on
no
i
nmn

Two processes occur in parallel:

1. The new history is used to access the pattern table to get the new prediction bit. This prediction
bit is written into the BTB in the next phase.

ss the pattern table 1o get the state that has 1o be updated.
hen written back to the pattern table.

Branch Target Buffer

BTB Pattern =
. cache tables =
£ 5 H o F
HE § g 5
£ =
£ Offscr =" Tag ‘=" Oifser >=" 2:1 Spec. Spec
H 7 P L mux update
a control
" logic
H
Prediction = Courtrol signals T
— control
logic
& =
3 3
= 2
B z
E 41 Target
E mux
Branch info
- BIT 2:1 Retum

X

Instruction Decode

Macro-instruction hytes from IFU

l

|

Front-cnd
control

_.{

Instruction buffer

Instruction buffering

16 bytes

Branch

and steering logic

UROM entry point
wvector io MS

I T

logic

Branch info to BAC

Decoder Decoder Decoder
0 I 2
Uops from M35 I | |
Decode block
4 pops I pop 1 pop
Queue A -
coatrol — Six-cntry pop quese
Output quene l l l
Up 1o 3 gops issued 10 RAT/ALL

Virtual IPs from BAC
f——M—

Register Renaming: Register Alias Table

0

|

2

EAX 25 24

EBX 1 25

ECx| 26 fp—"2%

27

EDX | 32 28

30

FP registers, 31

peode tmps 32
RAT 1

39

Reorder buffer

Integer array

e

Floating-point
Ay

“On-the-ly”

overrides

Physical ROB
pointers from
allocator

wops 1o
OO core

Instruction Dispatch & Execute: Reservation Stations

Bypass Nore: Only one source shown per RS port.

BS mctwork W The other source is identical to what is shown,
. Writehack bus 0

T
Por 0 _JLElLE'[

Writchack bus |

Ly 4 I
xal _..ll Lz JEU

Ld data from memory

| LD Adde [LDA
Port 2 AGUY] A -
1 | STA

MO DCu
"
| ST Addd .
For 3 AGUI 4 STD
—

{ Store data

—=

Port 4

=TT

L4 daa from memaory

Writchack bus 0
Writehack bus | ROB
New pops

RAT

P6 Pipeline (Look at ROB stages)

drla_w_/’

In-oeder

pipeline

Single-cycle pop 20 Exin 10 quese

pipeline 20 RAT, RS Parc write
//P:‘wmﬂing _________________ "
b delay E

Pipelined 81: Mem/FP writchack m 4

malticyche pop B2 Imeger writehack

83 Writchack data

AGU

=

B

pCache2 [= [5]
sl

B

riber boundary

Nosblocking memory
pipeline

Mob blk

Blocking memory access a2l
pipeline

e
i

Pentium 111 Overview

Pentiumi(r) lll Processor Architectural Block Diagram

32entry TLB

Instruction Cache 16 Kbyte, 4-way | Dynamic Branch

[Predictor: 512 entries)

ags

Cantrol

Static Branch
Fath/iefods H x parallel Instruction Decode ~uilegted]

Integer’FP Register
Rename & Allecator

Architectural
Register File

Memaory Order Buffer
12 entry store. 16 entry load

gt
> 4
- .

Reorder Buffer
{40 entries)

Sistem Bus {Externaly

¥

L2 Cache

=m.ss P06 Block Diagram

Bus Intedace Unit

r T l Mext 1P
‘ Instruction Fetch Uit i Instruchon Cache (L1} l‘—b Unit ki
Memory
i Branch Reorder
Instruction Decoder 7 Target Buffar
Bufter ’
Simple Simple Complex i
Instuchon Instuction Instuchon T
Decoder Decoder Decoder Micracode From
| L Instructon Integer
| 1 1 17T :
‘ ¢ L ¢ ‘ ‘ Sequencer LUnit
‘ Regster Alias Table l
- Retremant
Ratiremant Unit Register File Data Cache
{Intel Arch Umt (L1}
* eorder Buffer {Instruction Poal} Registers)
Reservation Station
Execution Unit
SIMD FR Flaating Integer Integer Meamory
Uit Pomt Umt Urﬁ1 Ulﬁ1 Interface | [
FPU) [FPU] Lnit
! v

Internal Data-Results Busas

Pentium 111 Die Photo

e EBL/BBL - Bus logic, Front, Back
* MOB - Memory Order Buffer

« Packed FPU - MMX FI. Pt. (SSE)

e |EU - Integer Execution Unit

* FAU - Fl. Pt. Arithmetic Unit

e MIU - Memory Interface Unit

* DCU - Data Cache Unit

e PMH - Page Miss Handler

* DTLB-Data TLB

* BAC - Branch Address Calculator
* RAT - Register Alias Table

* SIMD - Packed FI. Pt.

* RS - Reservation Station

« BTB - Branch Target Buffer

» IFU - Instruction Fetch Unit (+1$)

* ID - Instruction Decode

* ROB - Reorder Buffer

i <1 E 1 Comed | © MS - Micro-instruction Sequencer

1st Pentium Ill, Katmai: 9.5 M transistors, 12.3 x 10.4
mm, 250 nm CMOS with 5 layers of Al

P6 Performance: Stalls at decode stage
I-cache misses or lack of RS/Reorder buf. entry

go R .
@ Instruction stream B Resource capacity stalls

m88ksim

gce
compress
li

ijpeg

perl
vortex
tomcatvy
swim
su2cor
hydro2d
mgrid
applu
turb3d
apsi
fpppp

waves

0 0.5 1 15 2 25 3
0.5 to 2.5 Stall cycles per instruction: 0.98 avg. (0.36 integer)

P6 Performance: uops/x86 instr

go
m88ksim
gcc
compress
li

lpeg

perl
vortex
tomcatv
swim
su2cor
hydro2d
mgrid
applu
turb3d
apsi
fpppp
wave5

1 1.1 1.2 1.3 1.4 15 1.6 1.7
1.2to 1.6 uops per IA-32 instruction: 1.36 avg. (1.37 integer)

P6 Performance: Speculation rate
(% instructions issued that do not commit)

go
m88ksim
gce
compress
li

ijpeg

perl
vortex
tomcatv
swim
su2cor
hydro2d
mgrid
applu
turb3d
apsi
fpppp

wave5

0% 10% 20% 30% 40% 50% 60%
1%to 60%instructions do not commit: 20% avg (30% integer)

P6 Performance: uops commit/clock

go

m88ksim

gce

compress

ijpeg

perl

vortex

tomcatv

swim

su2cor

hydro2d

mgrid

applu

turb3d

apsi

fpppp

waveb

0% 20% 40% 60% 80% 100%

@ 0 uops commit
M 1 uop commits
@ 2 uops commit

M 3 uops commit

Average Integer
0: 55% 0:40%
1. 13% 1. 21%
2: 8% 2:12%
3:23% 3:27%

P6 Dynamic Benefit?
Sum of parts CPI vs. Actual CPI

go
m88ksim

@ uops
M Instruction cache stalls

E Resource capacity stalls
O Branch mispredict penalty
M Data Cache Stalls

gce
compress

ipeg |

Ratio of
sum of

perl

vortex
tomcatv |
swim 1
su2cor]
hydro2d]
mgrid]
applu]
turb3d 1
apsi]
foppp
waves 1

parts vs.
actual CPI:
1.38X avg.

(1.29X

integer)

0 05 1 15 2 25 3 35 4 45 5 55 6
0.8to 3.8 Clock cycles per instruction: 1.68 avg (1.16 integer)

Pentium 4

« Still translate from 80x86 to micro-ops
* P4 has better branch predictor, more functional units
* Instruction Cache holds micro-operations vs. 80x86 instructions
— no decode stages of 80x86 on cache hit (“Trace Cache”)
» Faster memory bus: 400 MHz v. 133 MHz
» Caches
— Pentium I11: L1-1 16KB, L1-D 16KB, L2 256 KB
— Pentium 4: L1-1 12K uops, L1-D 8 KB, L2 256 KB
— Block size: P11 32B v. P4 128B; 128 v. 256 bits/clock
» Clock rates:
— Pentium I11 1 GHz v. Pentium IV 1.5 GHz
— 14 stage pipeline vs. 24 stage pipeline

Trace Cache

IA-32 instructions are difficult to decode

Conventional Instruction Cache

— Provides instructions up to and including taken branch

Trace cache, records uOps instead of x86 Ops

Builds them into groups of six sequentially ordered uOps per line
— Allows more ops per line

— Avoids clock cycle to get to target of branch

11

Pentium 4 features

» Multimedia instructions 128 bits wide vs. 64 bits wide => 144 new
instructions

— When used by programs??
— Faster Floating Point: execute 2 64-bit FI. Pt. Per clock
— Memory FU: 1 128-bit load, 1 128-store /clock to MMX regs
» Using RAMBUS DRAM
— Bandwidth faster, latency same as SDRAM
— Cost 2X-3X vs. SDRAM
» ALUs operate at 2X clock rate for many ops
» Pipeline doesn’t stall at this clock rate: uops replay
» Rename registers: 40 vs. 128; Window: 40 v. 126
e BTB: 512 vs. 4096 entries (Intel: 1/3 improvement)

Pentium, Pentium Pro, P4 Pipeline

Prefetch | Decode | Decode | Execute |Write-back

P5 Microarchitecture

‘ Fetch ‘ Fetch ‘ Decode | Decode | Decode | Rename | ROB Rd ‘Rdy/Sch Dispatch | Execute
P6 Microarchitecture
‘ TC Nxt IP ‘ TC Fetch ‘ Drive Alloc Rename Queue |Schedule
| | | |

Schedule | Schedule | Dispatch | Dispatch | Reg File | Reg File | Execute | Flags [Branch Ck| Drive

NetBurst Microarchitecture

e P.N. Glaskowsky, “Pentium 4 (partially) previwed,” MPR, August 2000.
e Pentium (P5) = 5 stages

Pentium Pro, 11, I11 (P6) = 10 stages (1 cycle ex)

Pentium 4 (NetBurst) = 20 stages (ho decode)

12

Block Diagram of Pentium 4 Microarchitecture

BTE and |-TLB

|
%86 Instruction Decoder

Micracode___ i =
ROM Ex ecun:;nl Tlmce Cache BTE
= Rename and Allocate
Il L2
Micro-op Queues Cache
I
Schedulers
Il e
FF Reg File Integer Reg File
1 1 1 1 =1
Fidul | FP Mowe Load || Store | ALUJALL
FAdd | FP Store
MANX
S3E l

L1 D-Cache and D-TLB

e BTB = Branch Target Buffer (branch predictor)

e |-TLB = Instruction TLB, Trace Cache = Instruction cache

* RF = Register File; AGU = Address Generation Unit

¢ "Double pumped ALU" means ALU clock rate 2X =>2X ALU F.U.s

Pentium 4 Block Diagram

Front-End BTB Instruction T
{4K Entries) TLB/Prefetcher
¥
| Instruction Decoder | Microcode
'] ROM
Trace Caclle BTB Trace Cache
. — Quad
(512 Entries) (12K pops) b Q'""“ Pumped
Nk}cator TRegjister Renamer 3.2GBIs
Bus
Interface

Unit

Memory T Queue L I lntcgnr.rFloaﬂn; Point uo: Queue ! :

Integer Register FIIE I Bypass Network FP Register / B a55
i 1 l
AGU AGU 2x ALY ||| 2x aLu | | | stow aLu FP L2 Cache
MMX FP (256K Byte
Load Store simple simple Complex SSE Move 8-way)
Address | | Address Instr, Instr. Instr. SSE2
4 ! H—\| 4scBis
| L1 Data Cache (BKbyte 4-way) 256 bits)
1 r

13

Pentium 4 Die Photo

f : o T e e * 42M xistors
| - il 1 B — PIlI: 26M
TG | 1« 217 mm
=33 : — PlII: 106 mm?
‘ DAL : 1« L1 Execution Cache
B s sl l =y — Buffer 12,000
i - Tt i i i3 e Micro-Ops
5 i ; Al - 8KB data cache
| , =l e . 256KB L2§
itk {17 wa— % :
e : ;:'l 2
_ *iim idioy 1
| *I'.'. ..
I""-"_-_' LT

Pentium 111 vs. Pentium 4:

Performance
900
A
800 | A
700 f - R ——
2 ¢ A A
§ 600 1 -—------c--% a A
a < A A
> A
X 500 oo . A AT
£ 400 —i—.l—' ————————————————————————————————————
< —@— Coppermine (P3,0.18um)
i -
n —o— Tualatin (P3, 0.13um)
200 o s oo e —— Williamette (P4, 0.18um)
100 -~~~ - """~~~ ~" -~ -- - —— Northwood (P4, 0.13um) -
[0 R e e e e L s e e e . e e e s e e e s s s s s
O O O O O O O O O O O O O O O
S° O L O O O OO0 OSSO
L R RN IC LIC Lt L

MHz

14

Pentium 111 vs. Pentium 4:
Performance / mm?

—&—Coppermine (P3, 0.18um)

.8 o ¢ o Tualatin (P3, 0.13um)

g_ 7 -~ B i —A— Williamette (P4, 0.18um)
2 s A Northwood (P4, 0.13um)
©

N S B
~ 4 r-r—-—p¥%--------" """ """ "="-"—"—"—"—"—"—"—"—"—-—"—-"—-
o mE

E 3 b A A A --------
O

w

o

]

MHz
Williamette: 217mm2, Northwood: 146mm?, Tualatin: 81mm?2, Coppermine: 106mm?

Intel/HP 1A-64:
Explicitly Parallel Instruction Computer (EPIC)

* |A-64: instruction set architecture; EPIC is type
— EPIC = 2nd generation VLIW?
Itanium™ is name of first implementation (June 2001)
— Highly parallel and deeply pipelined hardware at 800Mhz
— 6-wide, 10-stage pipeline at 800Mhz on 0.18 i process
 Itanium2 — Sept 2002 (1GHz), Sept 2003 (1.5GHz)
» 128 64-bit integer registers + 128 82-bit floating point registers
» Hardware checks some dependencies
(interlocks => binary compatibility over time)
» Predicated execution (select 1 out of 64 1-bit flags)

IA-64 Registers

» The integer registers designed to assist procedure calls using a
register stack
— Similar to SPARC’s register windows.
— Registers 0-31 are always accessible and addressed as 0-31

— Registers 32-128 are used as a register stack and each procedure is
allocated a set of registers (from 0 to 96)

— The new register stack frame is created for a called procedure by
renaming the registers in hardware;

— aspecial register called the current frame pointer (CFM) points to
the set of registers to be used by a given procedure

8 64-bit Branch registers used to hold branch destination
addresses for indirect branches

» 64 1-bit predicate registers

Register Stack Frame Mapping

» Example (from Settle, et al., CGO’03)

L Local ‘ Output ‘

Inputs Local Variables Outputs

Foo()

Bar()

Physical Register File

16

IA-64 Registers

» Both the integer and floating point registers support register
rotation for registers 32-128.

» Register rotation eases the task of allocating registers in software
pipelined loops

» Avoid the need for unrolling and for prologue and epilogue code
for a software pipelined loop

— Makes the SW-pipelining usable for loops with smaller numbers of
iterations

Explicitly Parallel Instruction Computer (EPIC)

» Instruction group: a sequence of consecutive instructions with no register data
dependences
— All the instructions in a group could be executed in parallel (if no
structural hazards and if any dependences through memory were
preserved)
— Instruction group can be arbitrarily long
— Compiler must explicitly indicate the boundary between one instruction
group and another by placing a stop between two instructions that belong
to different groups
» |A-64 instructions are encoded in bundles, which are 128 bits wide.
— Each bundle consists of a 5-bit template field and 3 instructions, each 41
bits in length
» 3 lInstructions in 128 bit “groups”; field determines if instructions dependent
or independent

17

Five Types of Execution in Bundle

Execution| Instruction | Instruction Example
Unit Slot | type Description Instructions
I-unit A Integer ALU add, subtract, and, or, cmp
I Non-ALU Int | shifts, bit tests, moves
M-unit A Integer ALU add, subtract, and, or, cmp
M Mem access Loads, stores for int/FP regs
F-unit F Floating point | Floating point instructions
B-unit B Branches Conditional branches, calls
L+X L+X Extended Extended immediates, stops

Template Examples

Template Slot 0 Slot 1 Slot 2
0 M ' ' Stop bits
1 M | | I
2 M | |
3 M | | I
28 M F B
29 M F B I

18

Predication Support

» Nearly all instructions are predicated
— Conditional branches are predicated jumps!

» Compare/Test instructions set predicates
— Ten different comparison tests + 2 predicate destinations
— Written with result of comparison + complement

Speculation Support

» AIIINT registers have a 1-bit NaT (Not A Thing)
— This is a poison bit (as discussed earlier)
— Speculative loads generate these
— All other instructions propagate them

» Deferred exceptions

— Nonspeculative exceptions receive a NAT as a source operand there

is an unrecoverable exception
— Chk.s instructions can detect and branch to recovery code

19

Memory Reference Support

» Advanced Loads allow speculative memory references
— Move loads ahead of potentially dependent stores
— ALAT table is allocated with register destination + memory address
— Stores associatively lookup the table when they execute
* Invalidate ALAT entries with same memory address
» Before using the value of the advanced load
— Explicit check is needed to see if ALAT entry is valid
— If it fails, can re-load the value or perform cleanup operation

Itanium™ Machine Characteristics

Frequency 800 MHZ

Transistor count 25.4M CPU; 295M L3

Process 0.18u CMOS, 6 metal layers

Package Organic Land Grid Array

Machine width 6 instructions/clock (4 ALU/MM, 2 Ld/St, 2 FP, 3 Br)
Registers 14 ported 128 GR & 128 FR; 64 Predicates
Speculation 32 entry ALAT, Exception Deferral

Branch prediction Multilevel 4-stage Prediction Hierarchy

FP compute bandwidth 3.2 GFlops (DP/EP); 6.4 GFlops (SP)

Memory - FP bandwidth 4 DP (8 SP) operands/clock

Virtual memory support 64 entry ITLB, 32/96 2-level DTLB, VHPT

L2/L1 cache Dual ported 96K unified & 16KD; 16KI

L2/L1 latency 6/ 2 clocks

L3 cache 4MB, 4-way s.a., BW of 12.8 GB/sec;

System bus 2.1 GBY/sec; 4-way glueless MP; scalable to large (512+ proc) systems

20

L1 instructon cache
and ITLE
fetchipratatch engine
Eka.nc?h .
prediction Decoupling - u:tgga
and
contral
[elefle] [afwlli]] [E]F]
*¥ YV EGE
| Register stack enginalremagping | i
BE-Khyte *
L2 o Branch and 128 integer 128 floating-point
cacha ‘E. ‘ predicate || redistens | | registers |
4 : : :
¥ ¥
G Integer Dual]
2 Bl?"“é“ and port
.ﬁ MM L1
E uriits :!:,tfe ALAT le!inr:g-
g units
8
L
2
wy
Bl EiMD [
FMAC
L T |
Busg controllar

A-Moyta
L3
cache

10 Stage In-Order Core Pipeline

ouplino ouifer

EXPAND

RENAME

WORD-LINE

DECODE REGISTER R

IPG / FET

INST POINTER FETCH
GENERATION

WL.D

REG

EXE/DET/WRB
C

TE EXCEPTION WRITE-BACK

21

Itanium processor 10-stage pipeline

» Front-end (stages IPG, Fetch, and Rotate): prefetches up to 32
bytes per clock (2 bundles) into a prefetch buffer, which can hold
up to 8 bundles (24 instructions)

— Branch prediction is done using a multilevel adaptive predictor like
P6 microarchitecture

* Instruction delivery (stages EXP and REN): distributes up to 6

instructions to the 9 functional units

— Implements registers renaming for both rotation and register
stacking.

Itanium processor 10-stage pipeline

» Operand delivery (WLD and REG):
— Accesses register file
— Performs register bypassing
— Accesses and updates a register scoreboard

 Scoreboard used to detect when individual instructions can proceed, so
that a stall of 1 instruction in a bundle need not cause the entire bundle
to stall

— Checks predicate dependences.

22

Itanium processor 10-stage pipeline

» Execution (EXE, DET, and WRB)
— Executes instructions through ALUs and load/store units
— Detects exceptions and posts NaTs
— Retires instructions and performs write-back
— Deferred exception handling via poison bits (NaTs)
* Predicate Delivery

— Predicates generated in EXE delivered in DET and feed into
retirement, branch execution, dependency detect

— All instructions read operands and execute
— Canceled at retirement

Peformance of 1A-64 Itanium?

2500

@ SPECint2K

2000 B SPECfp2K

1500

1000 A

500 -+

Itanium Itanium-2 Itanium-2 Pentium4 Pentium 4 IBM AMD
800M Hz 1GHz 1.5GHz 3.4GHZ 3.4GHZ POWER4 Opteron
(96KB) (3MB) (6MB) (.5MB) (2.5MB) 1.7GHz 2.2GHz

1.5MB 1MB
Onchip L2/L3 ¢))

23

IBM PowerPC 620

» Core design reused for POWER3, POWER4, POWERS5: IBM servers
» Core used in game machines: PS2, XBOX

» 4-way superscalar

+ OOO-BTB (BTAC), BHT.

+ Distributed rsvn stations

» Register renaming with separate rename buffers

PowerPC 620 pipeline

Feteh stage Ij:[:lj

Instructionbuffer(8) [_T_T T T T T T 1]

Dispatch stage D:D:I

BRU
LsU

Xsuo \Sl ! MC-FXU FPU
Reservation stations (6) E EI E E
Execute siageis) I:l D I:I E E

Completion butfer(16) [T T T T T T T 17T
Compltesioge [|]
Writehack stage |

LT

I

24

PowerPC 620 architecture

PowerPC 620 -> POWER3 -> POWER4 -> POWER5

» More aggressive branch prediction algo

» More functional units (still 4-way, but more units and rsvn
tables)

« More rename registers
« More processor cores

25

