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Intel P6 Microarchitecture In a Nutshell

» 1995 product = Pentium Pro, Pentium 11, Pentium 111, ideas
reused in Pentium 4.

» Application of concepts we learnt in class:
— 3-way superscalar
— 000, speculative

Micro-ops

Branch prediction with BTB

Reservation stations

Renaming through Reorder Buffer




Dynamic Scheduling in P6 (Pentium Pro, 11, I11)

* Q: How pipeline 1 to 17 byte 80x86 instructions?
» A: P6 doesn’t pipeline 80x86 instructions
» P6 decode unit translates the Intel instructions into 72-bit micro-

operations (~ MIPS)

» Sends micro-operations to reorder buffer & reservation stations
* Many instructions translate to 1 to 4 micro-operations

» Complex 80x86 instructions are executed by a conventional
microprogram (8K x 72 bits) that issues long sequences of micro-

operations

» 14 clocks in total pipeline (~ 3 state machines)

Dynamic Scheduling in P6

Parameter
Max. instructions issued/clock
Max. instr. complete exec./clock
Max. instr. committed/clock
Window (Instrs in reorder buffer)
Number of reservations stations
Number of rename registers

Number of integer functional units (FUS)
Number of floating point FUs

Number of SIMD floating point FUs
Number of memory FUs

80x86 microops
3 6
5
3
40
20
40

2
1
1
1 load + 1 store




P6 Pipeline

8 stages are used for in-order instruction fetch, decode, and

Issue
— Takes 1 clock cycle to determine length of 80x86 instructions + 2 more
to create the micro-operations (uops)
» 3 stages are used for out-of-order execution in one of 5
separate functional units
— Integer, FP, branch, memory address, memory access

» 3 stages are used for instruction commit
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Branch Prediction

Branch decision
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Pattern table
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Instruction Decode

Macro-instruction hytes from IFU
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Instruction Dispatch & Execute: Reservation Stations

Bypass Nore: Only one source shown per RS port.
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Pentium 111 Overview

Pentiumi(r) lll Processor Architectural Block Diagram
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Pentium 111 Die Photo

e EBL/BBL - Bus logic, Front, Back
* MOB - Memory Order Buffer

« Packed FPU - MMX FI. Pt. (SSE)

e |EU - Integer Execution Unit

* FAU - Fl. Pt. Arithmetic Unit

e MIU - Memory Interface Unit

* DCU - Data Cache Unit

e PMH - Page Miss Handler

* DTLB-Data TLB

* BAC - Branch Address Calculator
* RAT - Register Alias Table

* SIMD - Packed FI. Pt.

* RS - Reservation Station

« BTB - Branch Target Buffer

» IFU - Instruction Fetch Unit (+1$)

* ID - Instruction Decode

* ROB - Reorder Buffer

i <1 E 1 Comed | © MS - Micro-instruction Sequencer

1st Pentium Ill, Katmai: 9.5 M transistors, 12.3 x 10.4
mm, 250 nm CMOS with 5 layers of Al

P6 Performance: Stalls at decode stage
I-cache misses or lack of RS/Reorder buf. entry
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P6 Performance: uops/x86 instr
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P6 Performance: Speculation rate
(% instructions issued that do not commit)
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P6 Performance: uops commit/clock
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P6 Dynamic Benefit?
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Pentium 4

« Still translate from 80x86 to micro-ops
* P4 has better branch predictor, more functional units
* Instruction Cache holds micro-operations vs. 80x86 instructions
— no decode stages of 80x86 on cache hit (“Trace Cache”)
» Faster memory bus: 400 MHz v. 133 MHz
» Caches
— Pentium I11: L1-1 16KB, L1-D 16KB, L2 256 KB
— Pentium 4: L1-1 12K uops, L1-D 8 KB, L2 256 KB
— Block size: P11 32B v. P4 128B; 128 v. 256 bits/clock
» Clock rates:
— Pentium I11 1 GHz v. Pentium IV 1.5 GHz
— 14 stage pipeline vs. 24 stage pipeline

Trace Cache

IA-32 instructions are difficult to decode

Conventional Instruction Cache

— Provides instructions up to and including taken branch

Trace cache, records uOps instead of x86 Ops

Builds them into groups of six sequentially ordered uOps per line
— Allows more ops per line

— Avoids clock cycle to get to target of branch

11



Pentium 4 features

» Multimedia instructions 128 bits wide vs. 64 bits wide => 144 new
instructions

— When used by programs??
— Faster Floating Point: execute 2 64-bit FI. Pt. Per clock
— Memory FU: 1 128-bit load, 1 128-store /clock to MMX regs
» Using RAMBUS DRAM
— Bandwidth faster, latency same as SDRAM
— Cost 2X-3X vs. SDRAM
» ALUs operate at 2X clock rate for many ops
» Pipeline doesn’t stall at this clock rate: uops replay
» Rename registers: 40 vs. 128; Window: 40 v. 126
e BTB: 512 vs. 4096 entries (Intel: 1/3 improvement)

Pentium, Pentium Pro, P4 Pipeline

Prefetch | Decode | Decode | Execute |Write-back

P5 Microarchitecture

‘ Fetch ‘ Fetch ‘ Decode | Decode | Decode | Rename | ROB Rd ‘Rdy/Sch Dispatch | Execute
P6 Microarchitecture
‘ TC Nxt IP ‘ TC Fetch ‘ Drive Alloc Rename Queue |Schedule
| | | |

Schedule | Schedule | Dispatch | Dispatch | Reg File | Reg File | Execute | Flags [Branch Ck| Drive

NetBurst Microarchitecture

e P.N. Glaskowsky, “Pentium 4 (partially) previwed,” MPR, August 2000.
e Pentium (P5) = 5 stages

Pentium Pro, 11, I11 (P6) = 10 stages (1 cycle ex)

Pentium 4 (NetBurst) = 20 stages (ho decode)
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Block Diagram of Pentium 4 Microarchitecture
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e BTB = Branch Target Buffer (branch predictor)

e |-TLB = Instruction TLB, Trace Cache = Instruction cache

*  RF = Register File; AGU = Address Generation Unit

¢ "Double pumped ALU" means ALU clock rate 2X =>2X ALU F.U.s
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Pentium 4 Die Photo
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Pentium 111 vs. Pentium 4:
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Pentium 111 vs. Pentium 4:
Performance / mm?
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Intel/HP 1A-64:
Explicitly Parallel Instruction Computer (EPIC)

* |A-64: instruction set architecture; EPIC is type
— EPIC = 2nd generation VLIW?
Itanium™ is name of first implementation (June 2001)
— Highly parallel and deeply pipelined hardware at 800Mhz
— 6-wide, 10-stage pipeline at 800Mhz on 0.18 i process
 Itanium2 — Sept 2002 (1GHz), Sept 2003 (1.5GHz)
» 128 64-bit integer registers + 128 82-bit floating point registers
» Hardware checks some dependencies
(interlocks => binary compatibility over time)
» Predicated execution (select 1 out of 64 1-bit flags)




IA-64 Registers

» The integer registers designed to assist procedure calls using a
register stack
— Similar to SPARC’s register windows.
— Registers 0-31 are always accessible and addressed as 0-31

— Registers 32-128 are used as a register stack and each procedure is
allocated a set of registers (from 0 to 96)

— The new register stack frame is created for a called procedure by
renaming the registers in hardware;

— aspecial register called the current frame pointer (CFM) points to
the set of registers to be used by a given procedure

8 64-bit Branch registers used to hold branch destination
addresses for indirect branches

» 64 1-bit predicate registers

Register Stack Frame Mapping

» Example (from Settle, et al., CGO’03)

L Local ‘ Output ‘

Inputs Local Variables Outputs

Foo()

Bar()

Physical Register File

16



IA-64 Registers

» Both the integer and floating point registers support register
rotation for registers 32-128.

» Register rotation eases the task of allocating registers in software
pipelined loops

» Avoid the need for unrolling and for prologue and epilogue code
for a software pipelined loop

— Makes the SW-pipelining usable for loops with smaller numbers of
iterations

Explicitly Parallel Instruction Computer (EPIC)

» Instruction group: a sequence of consecutive instructions with no register data
dependences
— All the instructions in a group could be executed in parallel (if no
structural hazards and if any dependences through memory were
preserved)
— Instruction group can be arbitrarily long
— Compiler must explicitly indicate the boundary between one instruction
group and another by placing a stop between two instructions that belong
to different groups
» |A-64 instructions are encoded in bundles, which are 128 bits wide.
— Each bundle consists of a 5-bit template field and 3 instructions, each 41
bits in length
» 3 lInstructions in 128 bit “groups”; field determines if instructions dependent
or independent

17



Five Types of Execution in Bundle

Execution| Instruction | Instruction Example
Unit Slot | type Description Instructions
I-unit A Integer ALU add, subtract, and, or, cmp
I Non-ALU Int | shifts, bit tests, moves
M-unit A Integer ALU add, subtract, and, or, cmp
M Mem access Loads, stores for int/FP regs
F-unit F Floating point | Floating point instructions
B-unit B Branches Conditional branches, calls
L+X L+X Extended Extended immediates, stops

Template Examples

Template Slot 0 Slot 1 Slot 2
0 M ' ' Stop bits
1 M | | I
2 M | |
3 M | | I
28 M F B
29 M F B I

18



Predication Support

» Nearly all instructions are predicated
— Conditional branches are predicated jumps!

» Compare/Test instructions set predicates
— Ten different comparison tests + 2 predicate destinations
— Written with result of comparison + complement

Speculation Support

» AIIINT registers have a 1-bit NaT (Not A Thing)
— This is a poison bit (as discussed earlier)
— Speculative loads generate these
— All other instructions propagate them

» Deferred exceptions

— Nonspeculative exceptions receive a NAT as a source operand there

is an unrecoverable exception
— Chk.s instructions can detect and branch to recovery code

19



Memory Reference Support

» Advanced Loads allow speculative memory references
— Move loads ahead of potentially dependent stores
— ALAT table is allocated with register destination + memory address
— Stores associatively lookup the table when they execute
* Invalidate ALAT entries with same memory address
» Before using the value of the advanced load
— Explicit check is needed to see if ALAT entry is valid
— If it fails, can re-load the value or perform cleanup operation

Itanium™ Machine Characteristics

Frequency 800 MHZ

Transistor count 25.4M CPU; 295M L3

Process 0.18u CMOS, 6 metal layers

Package Organic Land Grid Array

Machine width 6 instructions/clock (4 ALU/MM, 2 Ld/St, 2 FP, 3 Br)
Registers 14 ported 128 GR & 128 FR; 64 Predicates
Speculation 32 entry ALAT, Exception Deferral

Branch prediction Multilevel 4-stage Prediction Hierarchy

FP compute bandwidth 3.2 GFlops (DP/EP); 6.4 GFlops (SP)

Memory - FP bandwidth 4 DP (8 SP) operands/clock

Virtual memory support 64 entry ITLB, 32/96 2-level DTLB, VHPT

L2/L1 cache Dual ported 96K unified & 16KD; 16KI

L2/L1 latency 6/ 2 clocks

L3 cache 4MB, 4-way s.a., BW of 12.8 GB/sec;

System bus 2.1 GBY/sec; 4-way glueless MP; scalable to large (512+ proc) systems

20
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Itanium processor 10-stage pipeline

» Front-end (stages IPG, Fetch, and Rotate): prefetches up to 32
bytes per clock (2 bundles) into a prefetch buffer, which can hold
up to 8 bundles (24 instructions)

— Branch prediction is done using a multilevel adaptive predictor like
P6 microarchitecture

* Instruction delivery (stages EXP and REN): distributes up to 6

instructions to the 9 functional units

— Implements registers renaming for both rotation and register
stacking.

Itanium processor 10-stage pipeline

» Operand delivery (WLD and REG):
— Accesses register file
— Performs register bypassing
— Accesses and updates a register scoreboard

 Scoreboard used to detect when individual instructions can proceed, so
that a stall of 1 instruction in a bundle need not cause the entire bundle
to stall

— Checks predicate dependences.
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Itanium processor 10-stage pipeline

» Execution (EXE, DET, and WRB)
— Executes instructions through ALUs and load/store units
— Detects exceptions and posts NaTs
— Retires instructions and performs write-back
— Deferred exception handling via poison bits (NaTs)
* Predicate Delivery

— Predicates generated in EXE delivered in DET and feed into
retirement, branch execution, dependency detect

— All instructions read operands and execute
— Canceled at retirement

Peformance of 1A-64 Itanium?

2500

@ SPECint2K

2000 B SPECfp2K

1500

1000 A

500 -+

Itanium Itanium-2 Itanium-2 Pentium4 Pentium 4 IBM AMD
800M Hz 1GHz 1.5GHz 3.4GHZ 3.4GHZ POWER4 Opteron
(96KB) (3MB) (6MB) (.5MB) (2.5MB) 1.7GHz 2.2GHz

1.5MB 1MB
Onchip L2/L3 ¢ ) )
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IBM PowerPC 620

» Core design reused for POWER3, POWER4, POWERS5: IBM servers
» Core used in game machines: PS2, XBOX

» 4-way superscalar

+ OOO-BTB (BTAC), BHT.

+ Distributed rsvn stations

» Register renaming with separate rename buffers

PowerPC 620 pipeline
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Instructionbuffer(8) [_T_T T T T T T 1]
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Completion butfer(16) [T T T T T T T 17T
Compltesioge [ | ]
Writehack stage |

LT

I
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PowerPC 620 architecture

PowerPC 620 -> POWER3 -> POWER4 -> POWER5

» More aggressive branch prediction algo

» More functional units (still 4-way, but more units and rsvn
tables)

« More rename registers
« More processor cores
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