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What Will We Learn

m How to do more per unit time
= Parallelism

= Pipelining
m Single Cycle vs Pipelined
m Pipelined MIPS architecture

m Hazards and how to solve them
" Data hazards

= Control hazards

m Performance of the Pipelined architecture



Parallelism

m Two types of parallelism:

m Spatial parallelism

= duplicate hardware performs multiple tasks at once

m Temporal parallelism
= task is broken into multiple stages
= also called pipelining

= for example, an assembly line



Parallelism Definitions

m Some definitions:
= Token: A group of inputs processed to produce a group of outputs

= Latency: Time for one token to pass from start to end

® Throughput: The number of tokens that can be produced per unit
time

m Parallelism increases throughput.



Parallelism Example

m Example:

Ben Bitdiddle is baking cookies to celebrate the installation of his
traffic light controller. It takes 5 minutes to roll the cookies and 15
minutes to bake them. After finishing one batch he immediately
starts the next batch. What is the latency and throughput if Ben
doesn’t use parallelism?

Latency

Throughput



Parallelism Example

m Example:

Ben Bitdiddle is baking cookies to celebrate the installation of his
traffic light controller. It takes 5 minutes to roll the cookies and 15
minutes to bake them. After finishing one batch he immediately
starts the next batch. What is the latency and throughput if Ben
doesn’t use parallelism?

Latency =5+ 15 =20 minutes =1/3 hour

Throughput =1tray/ 1/3 hour = 3 trays/hour



Parallelism Example

m What is the latency and throughput if Ben uses parallelism?

= Spatial parallelism: Ben asks Allysa P. Hacker to help, using her own
oven

" Temporal parallelism: Ben breaks the task into two stages: roll and
baking. He uses two trays. While the first batch is baking he rolls the
second batch, and so on.
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Temporal
Parallelism

Temporal Parallelism
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Temporal
Parallelism

Temporal Parallelism

Latency:
time to
first tray

0 5 10 15 20 25 30 35 40 45

Latency =5+ 15=20 minutes = 1/3 hour
Throughput= 1 trays/ 1/4 hour =4 trays/hour

Using both techniques, the throughput would be 8 trays/hour




Pipelined MIPS Processor

m Temporal parallelism

m Divide single-cycle processor into 5 stages:
= Fetch
= Decode
" Execute
" Memory
= Writeback

m Add pipeline registers between stages



Single-Cycle vs. Pipelined Performance

Single-Cycle
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Pipelined

Instr

1 Fetch Decode | Execute Memory Write
Instruction Read Reg ALU Read/Write Reg
2 Fetch Decode | Execute Memory Write
Instruction Read Reg ALU Read/Write Reg
3 Fetch Decode | Execute Memory Write
Instruction Read Reg ALU Read/Write Reg




Pipelining Abstraction
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ingle-Cycle and Pipelined Datapat
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Corrected Pipelined Datapath
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m WriteReg must arrive at the same time as Result




Pipelined Control
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m Same control unit as single-cycle processor
Control delayed to proper pipeline stage



Pipeline Hazard

m Occurs when an instruction depends on results from
previous instruction that hasn’t completed.

m Types of hazards:
= Data hazard: register value not written back to register file yet

= Control hazard: next instruction not decided yet (caused by
branches)



Data Hazard

m The register file can be read and written in the same cycle:
= write takes place during the 1st half of the cycle
" read takes place during the 2nd half of the cycle => no hazard !!!

= However operations that involve register file have only half a clock
cycle to complete the operation!!

add $s0, $s2,

and $t0, $s0, $s

or $tl, $s4, S$s

sub $t2, $s0, S$s




Data Hazard

m One instruction writes a register ($s0) and next instructions
read this register => read after write (RAW) hazard.
® add writes into $s0 in the first half of cycle 5
= and reads $s0 on cycle 3, obtaining the wrong value
= orreads $s0 on cycle 4, again obtaining the wrong value.
= sub reads SsO in the second half of cycle 5, obtaining the correct value

= subsequent instructions read the correct value of Ss0

add $s0, $s2,

and $t0, $s0, $s

or $tl, $s4, S$s

sub $t2, $s0, S$s




How Can You Handle Data Hazards?

m Insert “NOP”s (No OPeration) in code at compile time
m Rearrange code at compile time
m Forward data at run time

m Stall the processor at run time



Compile-Time Hazard Elimination

add $s0, $s2,

nop

nop

and $t0, $s0,

or $tl, $s4,

sub $t2, $s0,

m Insert enough NOPs for result to be ready

m Or (if you can) move independent useful instructions forward



Data Forwarding

1 2 3 4 5 6 7 8
>
Time (cycles)
dd 252 M $s0

add $s0, $s2, $s3 |IM = RF 35318_ DM_D RF

$s0 ‘
and $t0, $s0, $sl IM a“d]{ RF [ss1 }I’ Drfﬂ SO

or M 254 DM Stl
or $tl1, $s4, $s0 IM {| RF [ss0 RF

b 220 st2

sub $t2, $s0, $s5 M == [{| RF $35]:B ]TDM_r -




Data Forwarding




Stalling

1 2 3 4 5 6 7 8
>
Time (cycles)

1 20 $s0

1w $s0, 40($0) IM L[I-[RF 40 ]:B— DMTD RF
Trouble! ‘
nd 250 $t0
and $t0, $s0, S$sl M 2 ]{RF $sl i|~-|— Drf/\ RF
$s4 St1

or S$tl, S$s4, $s0 IM == ]—[RF $s0 ]—I—D'V' RF

b $s0 st2
sub $t2, $s0, $sb5 M == RF $s5]:B—|]TDM RF

m Forwarding is sufficient to solve RAW data hazards

m but...



Stalling

1w $s0, 40($0)
and $t0, $s0, S$sl
or $tl, $s4, $sO

sub $t2, $s0, $s5
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The 1w instruction does not finish reading data until the end of the
Memory stage, so its result cannot be forwarded to the Execute stage of
the next instruction.



Stalling

1 2 3 4 5 6 7 8
>
Time (cycles)

1 20 $s0

1w $s0, 40($0) IM L[I-[RF 40 ]:B— DMTD RF
Trouble! ‘
nd 250 $t0
and $t0, $s0, S$sl M 2 ]{RF $sl i|~-|— D’V RF
$s4 St1

or S$tl, S$s4, $s0 IM == ]—[RF 550 ]—I—DM RF

b $s0 st2
sub $t2, $s0, $sb5 M == RF $s5]:B—|]TDM RF

The 1w instruction has a two-cycle latency, therefore a dependent
instruction cannot use its result until two cycles later.

The lw instruction receives data from memory at the end of cycle 4. But
the and instruction needs that data as a source operand at the beginning
of cycle 4. There is no way to solve this hazard with forwarding.



Stalling

1 2 3 4 5 6 7 8 9
|
Time (cycles)
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Stalling Hardware

m Stalls are supported by:

= adding enable inputs (EN) to the Fetch and Decode pipeline
registers

= and a synchronous reset/clear (CLR) input to the Execute pipeline
register.

m When a lw stall occurs

= StallD and StallF are asserted to force the Decode and Fetch stage
pipeline registers to hold their old values.

= FlushE is also asserted to clear the contents of the Execute stage
pipeline register, introducing a bubble



Stalling Hardware




Control Hazards

m beq:
"= branch is not determined until the fourth stage of the pipeline
= |nstructions after the branch are fetched before branch occurs
" These instructions must be flushed if the branch happens

m Branch misprediction penalty
" number of instruction flushed when branch is taken

= May be reduced by determining branch earlier



Control Hazards:
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Control Hazards

1 2 3 4 5 6 7 8 9
>
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Control Hazards: Early Branch Resolution
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Introduced another data hazard in Decode stage.. this is another story
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Early Branch Resolution

beg $tl1, $t2, 40

and $t0, $s0, $sl1

or S$tl, $s4, S$s0

sub $t2, $s0, S$sb5

!

slt $t3, $s2, $s3
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Handling Data and Control Hazards

et

Possible solution to data hazard in Decode stage.



Branch Prediction

m Guess whether branch will be taken
= Backward branches are usually taken (loops)

= Perhaps consider history of whether branch was previously taken
to improve the guess

m Good prediction reduces the fraction of branches
requiring a flush



Pipelined Performance Example

m SPECINT2000 benchmark:
= 25% loads
" 10% stores
= 11% branches
= 2% jumps
= 52% R-type

m Suppose:
= 40% of loads used by next instruction

= 25% of branches mispredicted
m All jumps flush next instruction

m What is the average CPI?



Pipelined Performance Example Solution

m Load/Branch CPI = 1 when no stalling, 2 when stalling.
Thus:

= CPl,=1(0.6) +2(0.4)=1.4 Average CPI for load
" CPl,, = 1(0.75) + 2(0.25) = 1.25 Average CPI for branch
m And

" Average CPI =



Pipelined Performance Example Solution

m Load/Branch CPI = 1 when no stalling, 2 when stalling.

Thus:

= CPl,, =1(0.6)+2(0.4)= 1.4
" CPly,, = 1(0.75) +2(0.25) = 1.25

m And
= Average CPI

(0.25)(1.4) +
(0.1)(1) +
(0.11)(1.25) +
(0.02)(2) +
(0.52)(1)

1.15

Average CPI for load
Average CPI for branch

load
store
beq
jump
r-type



Pipelined Performance

m There are 5 stages, and 5 different timing paths:

T, = max {
tpcq ttnem t tsetup fetch
2(tRFread + tmux + teq + tAND + t tsetup ) decode
tpcq t tmux + tmux + tALU + tsetup execute
tpcq + tmemwrite + tsetup memory
2(tpcq ux T tRerite) writeback
}

m The operation speed depends on the slowest operation

m Decode and Writeback use register file and have only half a
clock cycle to complete, that is why there is a 2 in front of them



Pipelined Performance Example

Element Parameter Delay (ps)
Register clock-to-Q toeq pC 30
Register setup teetup 20
Multiplexer tux 25
ALU oy 200
Memory read tem 250
Register file read trrread 150
Register file setup tRrsetup 20
Equality comparator teq 40
AND gate tAnD 15
Memory write T emwrite 220
Register file write terurite 100
Tc = 2(tRFread + tmux + teq + tAND + tmux + tsetup )

=2[150 + 25 + 40 + 15 + 25 + 20] ps
=550 ps



Pipelined Performance Example

m For a program with 100 billion instructions executing on a
pipelined MIPS processor:
= CPI=1.15
= T.=550ps

m Execution Time = (# instructions) x CPI x T,
= (100 x 10°)(1.15)(550 x 101?)
= 63 seconds



Performance Summary for MIPS arch.

Execution Time Speedup
Processor (seconds) (single-cycle is baseline)
Single-cycle 95 1
Multicycle 133 0.71
Pipelined 63 1.51

m Fastest of the three MIPS architectures is Pipelined.

m However, even though we have 5 fold pipelining, it is not
5 times faster than single cycle.



What Did We Learn?

m How to design a pipelined architecture
= Break down long combinational path by registers
= Shortens the clock period

® You can start processing next instruction once the first part is complete

m Problems of the pipelined architecture
= Data you need for the next instruction may not be ready (Data Hazard)

"= You may not yet know the next instruction (Control Hazard)
m Solutions to Hazards

m Performance of pipelined MIPS architecture



