
MIPS: A Microprocessor Architecture

John Hennessy, Norman Jouppi, Steven Przybylski, Christopher Rowen,
Thomas Gross, Forest Baskett, and John Gill

Departments of Electrical Engineering and Computer Science
Stanford University

Abstract

MIPS is a new single chip VLSI microprocessor. It aftempts to

achieve high performance with the use of a simplified instruction

set, similar to those found in microengines. The processor is a fast

pipelined engine without pipeline interlocks. Software solutions

to several traditional hardware problems, such as providing
pipeline interlocks, are used.

Introduction

MIPS (Microprocessor without Interlocked Pipe Stages) is a new

general purpose microprocessor architecture designed to be
implemented on a single VLSI chip. The main goal of the design

is high performance in the execution of comPiled code. The

architecture is experimental since it is a radical break with the

trend of modern computer architectures. The basic philosophy of

MIPS is to present an instruction set that is a co~!apiler-driven
encoding of the microengine. Thus, little or no decoding is

needed and the instructions correspond closely to microeode

instructions. The processor is pipelined but provides no pipeline

interlock hardware; this function must be provided by software.

The MIPS architecture presents the user with a fast machine with
a simple instruction set. This approach has been used by the IBM

8071_ project I and is currently being explored by the RISC project

at Berkeley2; it is directly 'opposed to the approach taken by

architectures such as the VAX. However, there are significant

differences between the RISC approach and the approach used in

MIPS:

1. The RISC architecture is simple both in the instruction set

and the hardware needed to implement that instruction set.

Although the MIPS instruction set has a simple hardware

implementation (i.e. it requires a minimal amount of

hardware control), the user level instruction set is not as

straightforward, and the simplicity of the user level

instruction set is secondary to the performance goals.

2. The thrust of the R I S C design is towards cfficient

implementation of a straightforward instruction set. In the

M1PS design, high performance from the hardware engine

is a primary goal, and the microengine is presented to the

end user with a minimal amount of interpretation. This

makes most of the microcngine's parallelism available at the

instruction set level.

3. The RISC project relies on a straightforward instruction set

and straightforward compiler technology. MIPS will require

more sophisticated compiler technology and will gain

significant performance benefits from that technology. The

compiler technology allows a microcode-level instruction

set to appear like a normal instruction set to both code

generators and assembly language programmers.

The MIPS architecture is closer to the 801 architecture in many

aspects. In both machines the macroinstruction set maps very

directly to the microoperations of the processor. Both processors
may be thought of as architectures with micro-level user

instruction sets. Microcode is created by compilers and code

generators as it is needed to implement complex operations. The

primary differences lie in various architectural choices about

pipeline design, registers, opeodes and in the attempt in the MIPS

instruction set to make all the microengine parallelism available at

the user instruction set level. These attempts are most visible

within MIPS in the following ways: the two-part memory/ALU
and ALU/ALU instructions, the explicit pipeline interlocks, and

the conditional jump instructions.

MIPS is designed for high performance. To allow the user to get

maximum perf~)rmance, the complexity of individual instructions

is minimized. This allows the execution of these instructions at
significantly higher speeds. To take advantage of simpler

hardware and an instruction set that easily maps to the
mieroinstruction set, additional compiler-type translation is

needed. This compiler technology makes a compact and time-
efficient mapping between higher level constructs and the

simplified instruction set. The shifting of the complexity from the

hardware to the software has several major advantages:

• The complexity is paid for only once during compilation.
When a user runs his program on a complex architecture,

he pays the cost of the architectural overhead cach time he
runs his progrmn.

• It allows the concentration of energies on the software,

rather than constructing a complex hardware engine, which

is hard to design, debug, and efficiently utilize. Software is

not necessarily easier to construct, but the WLSI envi-

ronment makes hardware simplicity important.

The design of a high performance VLSI processor is drarnatically

affected by the technology. Among the most important design
considerations are: the effect of pin limitations, available silicon

0194-1895 /82 /0000 /0017500 .75 © 1982 I E E E 17

area, and size/speed tradeoffs. Pin limitations force the careful

design of a scheme for multiplexing the available pins, especially

when data and instruction fetches are overlapped. Area

limitations and the speed of off-chip intercommunication require

choices between on- and off-chip functions as well as limiting the

complete on-chip design. With current state-of-the-art iechnology

either some vital component of the processor (such as memory

management) must be off-chip, or the size of the chip will make

both its performance and yields unacceptably low. Choosing what

functions are migrated off-chip must be done carefully so that the

performance effects of the partitioning are minimized. In some

cases, through careful design, the effects may be eliminated at

some extra cost for high speed off-chip functions.

Speed/complexity/area tradeoffs are perhaps the most important

and difficult phenomena to deal with. Additional on-chip
functionality requires more area, which also slows down the

performance of every other function. "Ibis occurs for two equally

important reasons: additional control and decoding logic in-

creases the length of the critical path (by increasing the number of

active elements in the path) and each additional function

increases the length of internal wire delays. In the processor's data

path these wire delays can be substantial, since thy accumulate

both from bus delays, which occur when the data path is

lengthed, and control delays, which occur when the decoding and

control is expanded or when the data path is widened. In the
MIPS architecture we have attempted to control these delays;

however, they remain a dominant factor in detexTnining the speed

of the processor.

T h e m i c r o a r c h i t e c t u r e

D e s i g n p h i l o s o p h y

The fastest execution of a task on a microengine would be one in

which all resources of the microengine were used at a 100% duty
cycle performing a nonrcdundant and algorithmically efficient

encoding of the task. The MIPS microengine attempts to achieve

this goal. The user instruction set is an encoding of the
microengine that makes a maximum amount of the microengine

available. This goal motivated many of the design decisions

found in the architecture.

MIPS is a load/store architecture, i.e. data may be operated on

only when it is in a register and only load/store instructions access

memory. If data operands are used repeatedly in a basic block of

code, having them in registers will prevent redundant load/stores

and redundant addressing calculations; this allows higher

throughput since more operations directly related to the
computation can be performed. The only addressing modes

supported are immediate, based with offset, indexed, or base

shifted. ~ibese addressing modes may require fields from the

instruction itself, general registers, and one ALU or shifter

~peration. Another ALU operation available in the fourth stage

of every instruction can be used for a (possibly unrelated)

computation. Another major benefit derived from the load/store

architecture is simplicity of the pipeline structure. The simplified

structure has a fixed number of pipestages, each of the same

length. Because, the stages .can be used in varying (but related)

ways, pipline utilization improves. Also, the absence of

synchronization between stages of the pipe, increases the

performance of the pipeline and simplifies the hardware. The

simplified pipeline eases the handling of both interrupts and page
faults.

Although MIPS is a pipelined processor it does not have

hardware pipeline interlocks. This approach is often seen in low

and medium performance microengines. MIPS five stage pipeline

contains three active instructions at any time; either the odd or

even pipestages are active. The major pipestages and their tasks
are shown in Table 1.

Table 1" Major pipestages and their functions

Staqe Hnemonic Task
Ins t ruc t ion Fetch IF Send out the PC,

increment i t

Instruction Decode ID Decode instruction

Operand Decode OD Compute effectivo
address and send tO
memory i f load or
store, use ALU

Operand Store/ OS/ Store: w r i t e operand/
Execution EX "Execution: use ALU

Operand Fetch OF Load: read operand

Interlocks that are required because of dependencies brought out

by pipelining are not provided by the hardware. Instead, these

interlocks must be statically provided where they areneeded by a

pipeline reorganizer. This has two benefits:

1. A more regular and faster harclware implementation is

possible since it does not have the usual complexity

associated with a pipelined machine. Hardware interlocks
cause small delays for ,all instructions, regardless of their
relationship on other instructions. Also, interlock hardware

tends to be very complex and nonregular 3,4. qhe lack of

such hardware is especially important for VLSI implemen-
tations, ~vhere regularity and simplicity is important.

2. Rearranging operations at compile time is better than

delaying them at mn time. With a good pipeline

reorganizer, most cases where interlocks are avoidable

should be found and taken advantage of. This results in

performance better than a comparable machine with

hardware interlocks, since usage of resources will not be

delayed. In cases where this is not detected or is not

possible, no-ops must be inserted into the code. This does

not slow down execution compared to a similar machine

with- hardware interlocks, but does increase code size. The

shifting of work to a reorganizer would be a disadvantage if

it took excessive amounts of computation. It appears this is

not a problem for our first reorganizer.

In the MIPS pipeline resource usage is permanently allocated to

18

various pipe stages. Rather than having pipeline stages compete

for the ase of resources through queues or priority schemes, the

machine's resources are dedicated to specific stages so that they

are 100% utilized. In Figure I, the allocation of resources to

individual pipe stages is shown. When concurrendy executing

pipe stages are overlayed, all available resources can be used.

Figure I: Resource Allocation by Pipestage

Time,->
1 2

IF ID

Resource Allocation by Pipestage
Figure 1

3 4 fi 6 7 8 9 10

IF OF

oo
F IO

ALU

Of) EX

Instruction .Dora
Memor., , icmor '

OF

~:)en OS I IF ID

ores ALU reserved for use by OOand EX

To achieve 100% utilization primitive operations in the micro-

engine (e.g., load/store, AI.U operations) must be completely

packed into maeroinstructions. This is not possible for three
reasolls:

1. Dependencies can prevent full usage of the microengine,

for example when a sequence of register loads must be done

before an ALU operation or when no-ops must be inserted.

Z An encoding that preserved all the parallelism (i.e., the

microcontrol word itsel0 would be too large. This is not

serious problem since many of the possible micro-

instructions are not useful.

3. The encoding of the microcngine presented in the instruc-

tion set ~acrifiees some functional specification for immed-

iate data. In the worst case, space in the instrxlcti.on word

used for loading large immediate values takes up the space

norumlly used for a b;Lse register, displacement, and ALU

operation specification. In this case the memory interface

and AI,U can nut be used during the pipe stage for which

they are dedicated.

Nevertheless, first results on micrucngine utilization am

e,~eouraging. Many instructions fully utilize the major resources

ofthe machine. Other instructions, s~Jch ~ Io;id immediate which

use few of the resources of the m:lchine, would mandate greatly

increased control complexity if ovett~tp with surrounding instruc-

lions wasattempted in an irregular fashion.

MIPS has one instruction size, and all instructions execute in the

.,ame amount of time (one data memory cycle). This choice

simplifies the construction of code generators for the architecture

(by eliminating many nonobvious code sequences for different

functions) and makes the construction of a synchronous regular

pipeline much easier. Additionally, the fact'that each maerom-

struction is a single microinstruction of fixed length and execution

time means that a minimum amount of internal state is needed in

the processor. The absence of this internal state leads to a faster

processor and minimizes the difficulty of supporting interrupts

and page faults.

R e s o u r c e s of t h e m i c r o e n g i n e

The major functional components of the microengine include:

• ALU resources: A high speed, 32-bit carry lookahead ALU

with hardware support for multiply and divide; and a barrel

shitter with byte insert and extract capabilities. Only one of

the ALU resources is usable at a time. Thus within the class

of ALU resources, functional units can not be fully used

even when the class itself is used 100%.

• Internal bus resources: Two 32-bit bidirectional busses,

each connecting almost all functional components.

• On chip storage: Sixteen 32-bit general,purpose registers.

• Memory resources: Two memory interfaces, one for

instructions and one for data. reach of the parts of the

memory resource can be 100% utilized (subject to packing

and instruction space usage) because either one store or

load form data memol3, and one instruction fetch can occur
simultaneously.

• A multistage PC unit: An incrementable current PC with

Storage of ono branch target as well as four previous PC

values. These are required by the pipelining of'instructions

and interupt and exception handling.

The instruction set

All MIPS instructions are 32-bits. The user instruction set is a

compiler-based encoding of the micromachine. Static and

dyn,'unie instruction set efficiency, as detcn:ained by a code

generator, is used to decide what micromachine features to

encode into macroinstructim~s in the architecture. Multiple

simple (and possibly unrelated)instruction pieces are packed

togetlter into an instruction word. ' lhe basic instruction pieces

are-"

l. ALU pieces - these instructions are all register/register (2

and 3 operand form:=ts). 'lllcy all use less that1 1/2 of an

instruction word. Included in this category are byte

insert/extract, two b!t l~oolhs multiply step, and one bit

nonrcstoring divide step, ,as well as ,,,taudard AI,U and

logical oper, ttions.

2. Load/store picce,~ - these iustrucli,ns load and store

19

memory operands. They use between 16 and 32 bits of an

instruction word. When a load instruction is less than 32

bits, it may be packaged with an ALU instruction, which is

executed during the Execution stage of the pipeline.

3. Control flow pieces - these include direct jumps and

compare instructions with relative jumps. MIPS does not

have condition codes, but includes a rich collection of set
conditionally and comp,'ire and jump instructions. The set

conditional instructions provide a powerful implementation

for conditional expressions. They set a register to all l 's or
O's based on one of 16 possible comparisons done during

the operand decode stage. During the Execution stage an

ALU operation is available for logical operations with other

booleans. The compare and jump instructions are direct

encodings of the micromacfiine: the operand decode stage

computes the address of the branch target and the

Execution cycle does the comparison. All branch instruc-

tions have a delay in their effect of one instruction; i.e., the

next sequential instruction is always executed.

4. Other instructions - inc!ude procedure and interrupt

linkage. The procedure linkage instructions also fit easily

into the micromachine format of effective address calcu-

lation and register-register computation instructions.

MIPS is a word-addressed machine. This provides several major

performance advantages over a byte addressed architecture. First,

the use of word addressing simplifies the memory interface since

extraction and insertion hardware is not needed. This is

particularly important, since instruction and data fetch/store are

in a critical path. Second, when byte data (characters) can be

handled in word blocksl the computation is much more efficient.

Last, the effectiveness of short offsets from base register is
multiplied by a factor of four.

MIPS does not directly support floating point arithmetic. For

applications where such computations are infrequent, floating
point operations implemented with integer opcrations and field
insertion/extraction sequences should be sufficient. For more

intensive applications a numeric co-processor similar to the Intel
8087 would be appropriate.

Systems issues

The key systems issues are the memory system, and internal traps
and external interrupt support.

The memory system

The use of memory mapping hardware (off chip in the current

design) is needed to support virtual memory. Modern micro-

processors (Motorola 68000) are already faced with the problem

that thesum of the memory access time and the memory mapping

time is too long to allow the processor to run at full speed. This

problem is compounded in MIPS; the effect of pipelining is that a

single instruction/data memor3/ must provide acce~ at

approximately twice the normal rate (for 64k RAMS).

The solution we have chosen to this pl:oblem is to separate the

data and instruction memory systems. Separation of program and

data is a regular practice on many machines; in file MIPS system

it allows us to significantly increase performance. Another benefit

of the separation is that it allows the use of a cache only for

instructions. Because the instruction memory can be treated as

read-only memory (except when a program is being loaded), the

cache control is simple. The use of an instruction cache allows

increased performance by providing more time during the critical

instruction decode pipe stage.

Faults and interrupts

The MIPS architecture will support page faults, externally

generated interrupts, and internally generated traps (arithmetic

overflow). The necessary hardware to handle such things in a
pipelined architecture usually large and complex 3,4. Further-

more, this is an area where the lack of sufficient hardware support

makes the construction of systems software impossible. However,

because the MIPS instruction set is not interpreted by a
microengine (with its own state), hardware support for page faults

and interrupts is significantly simplified.

To handle interrupts and page faults correctly, two important

properties are required. First, the architecture must ensure correct

shutdown of the pipe, without executing any faulted instructions

(such as the instruction which page faulted). Most present
microprocessors can not perform this function correctly (e.g.

Motorola 68000, Zilog ZS000, and the Intel 8086). Second, the

processor must be able to correctly restore the pipe ,and continue

execution as if the interrupt or fault had not occurred.

These problems are significantly eased in MIPS because of the

location of writes within the pipe stages. In MIPS all instructions

which can page fault do not write to any storage, either registers

or memory, before the fault is detected. The occurrence of a page

fault need only turn off writes generated by this and any
instructions following it which are already in the pipe. These

following instructions also have not written to any storage before

the fault occurs. The instruction preceding the faulting

instruction is guaranteed to be executable or to fault in a
restartable manner even after the instruction following it faults.

The pipeline is drained and control is transferred to a general

purpose exception handler. To correctly restart execution three

instructions need to be reexecuted. A multistage PC tracks these

instructions and aids in correctly executing them.

Software issues

The two major components of the MIPS software system are

compilers ,and pipeline reorganizers. The input to a pipeline

reorganizer is a sequence of simple MIPS instructions or

instruction pieces generated without taking the pipeline interlocks

and instruction packing features into account. This relieves the

compiler from the task of dealing with the restrictions that are

imposed by the pipeline constraints on lega! co.';e ~;equences. The

20

reorganizer reorders the instructions to make maximum use of the

pipeline while enforcing the pipeline interlocks in the code. It also

packs the instruction pieces to maximize use of each instruction

word. Lastly. the pipeline reorganizer handle, s the effect of
branch delays. This software is an important part of the MIPS
architecture. It is responsible for making the low-level
microarchitecture into a usable and comprehensible instruction
seL Since the exact details of pipeline interlocks and branch

delays may change between implementations, the architecture is
actually defined by the input to the pipeline reorganizer.

Since all instructions execute in the same time, and most
instructions generated by a code generator will not be full MIPS
instruction set, the instruction packing can be very effective in
reducing execution time. In fully packed instructions, e.g. a load

combined with an ALU instruction, all the major processor
resources (both memory interfaces, the alu, busses and control
logic) are used 100% of the time.

The basic optimization techniques aoplied to the code sequences
are

i reorder instruction sequences to remove pipeline interlocks,

2. pack together instruction pieces into a single MIPS
instructior,

3. remove the cffccts of delayed branches
In some cases it may be ncccssary to insert no-ops to prevefit
illegal pipeline interactions or to accomodate delayed branches.
Also, pieces of instructions may be left blank whenever no i)ietm
is available to pack with the instruction.

The reorganization problem is discussed in detail in another
paperS; the problem is shown to be NP-complete and a set of

heuristic solutions is proposed. The reorganization algorithm is
essentially an instruction scheduling algorithm. The basic algo-
rithm is

1. Read in the program in assembly language and create a dag
indicating precedence scheduling relationships among the
instructions.

2. Determine which groups of instructions can be schcduled
for exec.ution next and eliminate the others,

3. Heuristically choose an instruction to shcdule from the
,executable instructions. Attempt to choose an instruction

that can be packed with the last instruction executed and
that will allow the rest of the code to be scheduled with a
minimum number of no-ops.

The reorganization problem is made difficult but the potential
• presence of overlal~ping resource utilitation in parallel code
streams. This overlap nmst be detected before scheduling of
either stream occurs; once it is detected, a deadlock state where

neither stream can be scheduled for execution is avoidable. "lhese
reorganization techniques (without the instruction packing) can

obtain performance improvements of 5-.10% over code that must
~'ait for c o!nplction of a previously dependent instructiolt. The
use of in.qtructiot~ packi,~g increases the relative effcctivenc~ of
this reorganization.

"l'l~e optimization of delayed branches ks the control-now
conterpart of code reorganization. Our algorithm for branch

delay optimization examines the targets of the branch in an
attempt to obtain useful instructions to execute during the delay
time. "l'he branch delay algorithm 6 can obtain space and time
improvements in the range of 10-20% for the MIPS branch
instructions.

Present status and conclusions

The entire MIPS processor has oeen raid out and partitioned into
a set of six test chips that cover all the data path and control
functions on the chip. Four test chips have been sent out for

fabrication as of August 1982; we expect send the remainder to
fabrication during August 1982.

In the software area. code generators have been written for boll:
C and PascaL These code generators produce simple instructions,
relying on a pipeline reorganizer. A complete version of the
pipeline reorganizer is running. An instruction level simulator is
being used to obtain performance estimates.

Figure 2 shows the floorplan of the chip. The dimensions of the
chip are approximately 6.9 by 7.2 mm with a minimum feature
size of 4 p. (i.e. }~ = 2 p,). The chip area is heavily dedicated to the

data path as opposed to control structure, but not as radically as
in RISC implementation. -Early estimates of performance seem to

indicate that we should ac;hieve approximately 2 MIPS (using the
Puzzle program 7 as a benchmark) compared to other architect~tres
executing compiler generated code. We expect to have more
accurate and complete benchmarks available in the near future.

Figure 2: MIPS Floorplan

i

E

o ! I-7

o . o .

I r . ~ °

4

C
o

II I I

"II~e following chart compares the MIPS proccs,qor to the
Motovt~la 6~00() rtltmin~ Ihe I'u~'zle benclituatk v~ritlett ht C ~ith
no optin~iz,ltinn or regi,~ter atka"ttioP,. ' lhe Portable C Co~,q~iler

(with difl~:rent target machine do~riptions) geuer, lled or:tie tbr

21

both processors. The M]PS numbers are a close approximation of

our expected perfomaance.
Motorola 68000 MIPS

T r a n s i s t o r Count 65,000 25,00~
Clock speed 8 MHz 8 MHz =
Data path w id th 16 b i t s 32 b i t s 2
S t a t i c I n s t r u c t i o n Count 1300 647
S t a t i c I n s t r u c t i o n Bytes 5360 2588
Execution Time (sec) 26.5 0.6

Acknowledgments

The MIPS project has been supported by the Defense Advanced
Research Projects Agency under contract # MDA903-79-C-0680.
Thomas Gross is supported by an IBM Graduate Fellowship.

Many other people have contributed to the success of the MIPS
project; these include Judson Leonard, Alex Strong,
K. Gopinath, and John Burnett.

An earlier version of this report appears in th,.~ Proceedings of the
CMU Conference on VLSI Systems and Computations, 1981.

References

Radin, G., "The 801 Minicomputer," Proc
SIGARCIt/SIGPLAN Symposium on Architectural.
Support for Programming Languages and Operating
Systems,, ACM, Palo Alto, March 1982, pp. 39 - 47.

Patterson, D.A. and Sequin C.H., "RISC-I: A Reduced
Instruction Set VLSI Computer," Proc. of the I~Tghth
.4nnual Symposium on Computer Architecture
Minneapolis, Minn., May 1981,.

I.arnpson, B.W., McDaniel, G.A. and S.M. Ornstein, "An
Instruction Fetch Unit for a High Performance Personal
C~,mputer," Tech. report CSL-81-1, Xerox PARC, January
i98.t.

4.

5.

6.

Widdoes, LC., "The S-1 Project: Developing high
performance digital computers," Proc. Compcon, IEEE,
San Francisco, February 1980,.

Hennessy, J.L. and Gross, T.R., "Code Generation and
Reorganization in the Presence of Pipeline Constraints,"
Proa Ninth POPL Conference, ACM, January 1982,.

Gross, T.R. and Hennessy, J.L, "Optmizing Delayed
Branches," Proceedings of Micro-15, IEEE, October 1982,.

7. Baskett, F., "Puzzle: an informal coalpute bound bench-
mark", Widely circulated and nln.

LI'he 68(X)0 IC-techr.ology is much better, and the 68000 perfolms across a wide
range of environmental situations. We do not expect to achieve this clock speed across
the same range of environmental factors.

2This advantage is not used in the benchrnat'.',:~ i.e. the 68iX.~) version deals with 16 l:i~
objects while MIPS uses 32 bit objects

22

