Erlang - A survey of the language and its industrial applications

Joe Armstrong
Computer Science Laboratory
Ericsson Telecommunications Systems Laboratory

Box 1505

S - 125 25 Alvsjd

Sweden

joe@erix.ericsson.se

September 18, 1996

Abstract

This paper describes the Erlang programming lan-
guage and some of the applications which have been
programmed in Erlang.

Erlang has many language features more commonly
associated with an operating system than a language.
Concurrent processes, scheduling, garbage collection,
etc., are all performed by the Erlang run-time system
and not by the underlying operating system.

The paper starts with a description of some of the
requirements that we wanted to satisfy when design-
ing the language. This is followed by a brief introduc-
tion to the language. Finally, we discuss some of the
applications which have been programmed in Erlang.
We have chosen to concentrate on three applications
which are commercial products.

1 Introduction

FErlang [ARMO95a] is a parallel functional program-
ming language designed for programming real-time
control systems (examples of such systems are tele-
phone exchanges, Automated Teller Machines etc.).
We wanted to make a language which addressed many
of the problems which are handled in an operating sys-
tem while maintaining the advantages of a declarative
programming language. Our problem domain requires
that we address the following problems:

¢ Real-time - Real-time response times in the or-
der of milliseconds are required. Erlang is de-
signed for programming “soft” real-time systems
where we do not have to meet all timing dead-
lines.

e Very large programs - Control systems can
have millions of lines of code, and are pro-
grammed by large teams of programmers.

e Non-stop systems - Control systems cannot
be stopped for software maintenance. The Er-

lang abstract machine allows program code to be
changed in a running system. Old code can be
phased out and replaced by new code. During
the transition, both old code and new code can
be run at the same time. This enables faults to be
corrected and software to be upgraded in systems
without disturbing their operation.

Portability - Erlang compiles to abstract ma-
chine code which can be run on any of a large
number of different operating systems. This ap-
proach makes the system source and object code
compatible.

The cost of emulation is not a limiting factor in
our systems, experiments [HAU94] show that Er-
lang can often be executed as efficiently as un-
optimised C despite one level of machine emula-
tion being involved. The advantages of having
portable object code and of having to support
only one version of the compiler outweighs the
advantages of native code compilation.

Concurrency - Our applications are best mod-
eled by a very large number of concurrent pro-
cesses. At any instant in time most of these pro-
cesses are idle. The number of processes and
their memory requirements vary with time and
are extremely difficult to predict in advance. Er-
lang has lightweight processes whose memory re-
quirements vary dynamically. No requirements
for concurrency are placed on the host operating
system.

Inter Process Communication - The Erlang
abstract machine supports communication be-
tween light-weight processes. Communication is
performed by asynchronous message passing.

Distribution - Erlang is designed to be run in a
distributed multi-node environment. Every com-

putation in Erlang is performed within a process.
Processes have no shared memory and communi-
cate by asynchronous message passing. An FEr-
lang system running on one processor can cre-
ate a parallel process running on another system
(which need not even be the same processor or op-
erating system) and thereafter communicate with
this process.

¢ Garbage collection - Erlang is used to program
real-time systems. Long garbage collection de-
lays in such systems are unacceptable. FErlang
implementations are written using bounded-time
garbage techniques, some of these techniques are

described in [ARM95b, VIR95].

¢ Incremental code loading - Users can control
in detail how code is loaded. In embedded sys-
tems, all code 1s usually loaded at boot time. In
development systems, code is loaded when 1t is
needed. If testing uncovers bugs, only the faulty
code need be replaced.

e Robustness - The Erlang abstract machine
has three independent error detection primitives
which can be used to structure fault-tolerant sys-
tems. One of these mechanisms allows processes
to monitor the activities of other processes, even if
these processes are executing on other processors.
We can group processes together in distributed
systems and use these as building blocks in de-
signing distributed transaction oriented systems.

e Timing - Erlang has mechanisms for allowing
processes to timeout while waiting for events and
to read a real-time clock.

e External Interfaces - Erlang has a "port”
mechanism which allows processes to communi-
cate with the outside world in a manner which is
semantically equivalent to internal message pass-
ing between Erlang processes. This mechanism is
used for communication with the host operating
system and for interaction with other processes
(perhaps written in other languages), which run
on the host operating system. If required for rea-
sons of efficiency, a special version of the “port”
concept allows other software to be directly linked
into the abstract machine. Examples of the use
of the port mechanism are interacting with the
host file system, interfacing to a graphical inter-
face and a low level socket interface.

The execution mechanisms listed above are pro-
vided by the Erlang abstract machine. Programs
which use these mechanisms are completely portable
between implementations of Erlang running on differ-
ent operating systems and processors.

FErlang started [ARM92a] as a Prolog meta-
interpretor which added a notion of concurrency to
Prolog. Having started as a set of extensions to Pro-
log, Erlang slowly drifted from the logic to functional
school of programming. Erlang has many of the fea-
tures found in a modern functional language (higher
order functions, list comprehensions etc.). Tt differs
from most modern functional languages by having a
dynamic type system (inherited from Prolog) and an
eager evaluator.

2 Sequential Erlang programs

Erlang programs are composed of modules in which
functions are defined. Functions are written as sets of
recursion equations. The familiar factorial function is
written:

-module(math) .
-export([fac/0]).

fac(l) when N > 0 -> N * fac(li-1);
fac(0) -> 1.

This can be evaluated in the Erlang shell as follows:

> math:fac(25).
15511210043330985984000000

The “>” symbol is the Erlang shell prompt, the
line following the prompt is the value returned by the
Erlang evaluator.

The annotation -module(Name) denotes the mod-
ule name and -export (Funs) is a list of the functions
which this module exports. Functions which are not
declared in the export list cannot be called from out-
side the module.

In what follows we will often omit the module dec-
larations where they are implied by the text.

A more complex example might be a function to
search for a value in a binary tree:

lookup(Key, {Key, Val, _, _}) —>
{ok, Vall};
lookup(Key,{Key1,Val,S,B}) when Key<Keyi ->
lookup(Key, S);
lookup(Key, {Keyi,Val,S,B}) ->
lookup(Key, B);
lookup(Key, nil) ->
not_found.

Nodes in the tree are are either tuples of the form
{Key,Value,S,B} or the atom nil. S are trees with
keys smaller than Key and B are trees with keys bigger
or equal to Key.

Lists are written as in Prolog - as examples the
familiar append and member functions are written:

append([HIT], L) -> [H|append(T,L)];
append([1, L) - L.

member (H, [H|_]) -> true;
member (H, [_|T]) -> member(H, T);
member(_, [1) -> false.

The Erlang primitive data types are:

e atoms - true, foo, bar ’Hello Joe’

o Integers - 1231461426412645317156, 42
e Floats - 3.1415926535

e Pids - process identifiers

e Refs - guaranteed unique identifiers

e Funs - functional objects

Complex data objects are represented as:

e tuples - for storing a fixed number of objects,
thus: {a, 1234}

o lists - for storing a variable number of objects,
thus: [a, 23, hil

Functional objects are introduced with the syntax:
fun(Argl,..,Argl) -> ... end.

So, for example, the following sequence of expres-
sions:

K =2,
F = fun(X) -> X * K end,

creates a functional object X * K which is bound to
the variable F. In this expression X is a free variable
and K is bound to the integer 2.

We can evaluate F with the syntax F(Args).

Functions (funs) are first class objects - they can
be passed as arguments to other functions or can be
returned by functions.

To illustrate this suppose we define the higher order
function adder(C) as follows:

adder(C) -> fun(X) -> X + C end.

Evaluating, for example, adder (10) returns a func-
tion which adds 10 to its argument:

> Add10 = adder(10).
#Fun

> Add10(5).

15

Suppose, also, that we have the function map de-
fined as follows:

map(F, [HIT]) -> [F(H) Imap(T)];
map(F, [1) -> []

We can use this as follows:

> map(Addi0, [1,2,3,4,5]).
[11,12,13,14,15]

Here we used the Add10 function as an argument to
map.

List comprehensions are introduced by the syntax
[Term| |P1,P2,..,Pn] where each of the Pi’s is either
a generator of the form Pattern <- Expressionor a
predicate.

Using list comprehensions we can write the familiar
quick-sort routine as follows:

sort([X[|Xs]) —>
sort([Y||Y <- Xs, Y < X]) ++
[X] ++
sort([Y||Y <- Xs, Y >= X1);
sort([1) -> [1.

Where ++ is the infix append operator.

3 Concurrent Erlang Programs

Erlang is a concurrent programming language —
parallel activities can be programmed in Erlang itself
and do not make use of any concurrency mechanisms
in the host operating system.

Erlang has a process model of concurrency. New
process are created by evaluating the Erlang primitive
spawn; send (written with the infix operator !) sends
a message to a process and receive can be used to
receive a message.

The primitive spawn(¥, F, [A1, A2,..,An]) cre-
ates a new parallel process. This process evaluates the
function M:F(A1,A2,..,An). When the function eval-
uation has completed the process dies.

We can write an echo process thus:

-module(echo) .
-export([start/0, loop/0]).

start() —>
spawn(echo, loop, [1).

loop() —>
receive
{From, Message} —>
From ! Message,

loop()
end.

spawn(echo, loop, [1) causes the function rep-
resented by echo:loop() to be evaluated in parallel
with the calling function. Thus evaluating:

Pid = echo:start(),
Pid ! {self(), hello}

causes a parallel process to be started and the message
{self(), hello}to besent tothe process —self() is
a built-in function which returns the process identifier
of the current process.

Note that receive is a pattern matching operation;
the syntax:

receive
Messagel —>
5

Message2 —>
end

means try to receive a message described by one
of the patterns Messagel,Message2, ... The process
evaluating this primitive is suspended until a message
which matches one of the patterns is received. If a
match occurs the code after the ‘=>’ is evaluated.

Any unbound variables occurring in the message
reception patterns become bound if a message is re-
ceived.

Message sending is non-blocking with “send and
pray” semantics, that is, the sending process does not
wait when sending a message and there is no guarantee
of delivery of the message (you send the message and
pray that it gets there!). Note that if a sequence of
messages 1s sent between two different processes and
if the messages arrive, then the order of delivery is the
same as the order in which the messages were sent.
Any explicit synchronisation between processes must
be explicitly programmed by the user.

Note that in order to send a message to a process
we need to know the name of the process. Recall that
the syntax Pid ! Msg sends the message Msg to the
process Pid (this is short for process identifier). Tni-
tially, the Pid of a process is known only to the process
which creates the new process. A consequence of this
is that this Pid then has to be communicated to all
other processes in the system which may wish to send
messages to the process

The Erlang primitive register(Atom, Pid) pro-
vides a global process name registry. After evaluating
register, the value of Atom may be used as an alias
for Pid when sending a message.

We can demonstrate the concurrency primitives by
implementing a simple client-server model of a bank
transaction system. Firstly we write a server process
which represents the “bank”.

-module(bank_server).

-export([start/0, server/1]).

start() ->
register(bank_server,
spawn(bank_server,server, [[1]1)).

server(Data) ->
receive

{From, {ask, Whol}} ->
reply(From, lookup(Who, Data)),
server(Data);

{From, {deposit, Who, Amountl}} ->
reply(From, ok),
server(deposit(Who, Amount, Data));

{From, {withdraw, Who, Amount}} —->
case lookup(Who, Data) of

undefined —>
reply(From, no),
server(Data);

Balance when Balance > Amount ->
reply(From, ok),
server (deposit(Who,-Amount,Data));
->
reply(From, no),
server(Data)

end
end.

reply(To, X) -> To ! {bank_server, X}.

lookup(Who, [{Who, Value}|_]1) —>
Value;

lookup(Who, [_IT]) ->
lookup(Who, T);

lookup(_, _) —>
undefined.

deposit(Who,X, [{Who,Balance}|T])->
[{Who, Balance+X}|T];
deposit(Who,X,[HIT]) —>
[H|deposit(Who,X,T)];
deposit(Who,X, [1) —>
[{Who,X}].

Evaluating bank_server:start() creates a global
process named bank_server. The local variable Data
contains a data base of {Name, Balance} tuples which
store the name and balance of the customer’s account.

The bank server is accessed by sending it
{From, Request} messages. From is the Pid of the re-
questing process, this is included so that the bank pro-
cess can send a reply to the requesting process (other-
wise there would be no way of knowing who had sent
the message).

The module bank_client is used to access the
server:

-module(bank_client).
-export([ask/1, deposit/2, withdraw/2]).

ask(Who) —>
rpc({ask, Who}).

deposit(Who, Amount) ->
rpc({deposit, Who, Amount}).

withdraw(Who, Amount) ->
rpc({withdraw, Who, Amount}).

rpc(Msg) ->
bank_server ! {self(), Msg},
receive
{bank_server, Reply} ->
Reply
end.

Note that remote procedure calls are not primitives
but are programmed in Erlang itself.

4 Distributed Erlang Programs

Erlang applications are often designed to run on
distributed networks of processors. We use the term
node to mean a complete self-contained Erlang system.
In a distributed network one or more Erlang nodes
may run on a single computer.

In designing the language we were careful to avoid
any primitives which would not map naturally onto a
distributed model of computation. The only way of
exchanging data between process is by message pass-
ing. All the primitives involving processes work trans-
parently on a network of Erlang nodes.

Inter-processor communication makes use of a so-
phisticated caching technique [WIK94] which makes
data transfer highly efficient. Indeed a cross-processor
remote procedure call in Erlang is often more efficient
than in a language such as C.

Recall that the primitive spawn creates a new
parallel process. The new process is always
created on the current node. To create a
parallel process on a different node the primi-
tive Pid = spawn(N, Mod, Func, ArgList) is used.
This creates a new parallel process on the Erlang node
N. This allows an Erlang process running on one Er-
lang node to create a parallel process on another node
in the system. All operations on the new process be-
have in exactly the same way as if the process had
been created on the local node.

Recall that that register primitive created a
global alias for a process identifier, the scope of this
alias 1s the node on which the process was registered,
so this name is not visible outside the node.

To send a message to a registered process on a dif-
ferent node the syntax {Atom, Node} ! Msg is used.
This sends Msg to the process named Atom on Node.

To turn the bank client-server model from a sin-
gle processor solution to a fully distributed program
we make a single line change to the code in the
bank_client module, changing the line:

bank_server ! {self(), Msg},

to:

{bank_server, ’Host@omain’} ! {self(), Msg}

where Host@Domain is the name of the node where the
bank server is running.

Note that no data transfer languages are needed to
describe the structure of the messages which are sent
between the different systems. The set of messages to
be sent does not need to be known in advance but is
encoded at run-time. Problems of confusion between
different byte orderings on different machines and dif-
ferent representations of data structures in memory
are eliminated.

5 Error Handling in Erlang
Erlang has three different mechanism for trapping
run-time errors, these can be used to:

e Monitor the evaluation of an expression.
e Monitor the behaviour of a process.

e Raise an exception when an undefined function is

called.

Suppose we evaluate N/M where M is equal to zero,
this will cause a run-time error and the process in
which this evaluation is performed will die.

We can detect this error in one of two ways. The
first method makes use of the primitives catch and
throw which are used for monitoring the evaluation of
an expression.

The expression X = catch N/M evaluates to the tu-
ple {’EXIT’, What} where What is an error descriptor,
in this case the term:

{badarith,{erl_eval,eval_op,[’/’,1,0]1}}}

catch can be though of as a meta-function which
changes the normal evaluation model by converting
errors into terms which can be manipulated by the
program.

If no error occurs then the result of evaluating
catch Expr is the same as that of evaluating Expr.

The primitive throw(Expr) evaluates Expr which
then becomes the return value of any enclosing catch.
Using catch and throw programs can be written to
monitor and correct local errors within a process.

The second error handling mechanism determines
what happens when a process dies. Suppose some code
evaluating in a process generates an error and that

this error is not handled using the catch mechanism
described above.

If the process Pidl evaluates the expression
1ink(Pid2) then a link is established between these
two processes.

When any process dies it broadcasts a message con-
taining information about why it died to all processes
in the system to which it is linked. Thus if Pid1 dies,
a message containing the reason for death is sent to
the process Pid2. link is symmetric, so if Pid2 dies
an error message will be sent to Pid1.

As an example, the function monitor(M,F,Args)
creates two parallel processes. One of these processes
evaluates the expression M:F(Args) the other moni-
tors the process performing the evaluation. If the pro-
cess performing the evaluation dies, a new process is
created by the monitoring process.

-module (monitor) .
-export([monitor/3, start_monitor/3]).

monitor(M, F, A) ->
spawn(monitor, start_monitor, [M, F, Al).

start_monitor(Mod, Func, Args) ->
process_flag(trap_exit, true),
restart(Mod, Func, Args).

restart(Mod, Func, Args) ->

Pid = spawn_link(Mod, Func, Args),

receive
{Pid, ’EXIT’, Why} —>
%% the monitored process died
%% start a new process ...
restart(Mod, Func, Args)

end.

The primitive process_flag(trap_exit, true)
allows the evaluating process to trap exit messages.
spawn_link creates a new parallel process and links
to it in an atomic action.

The third error handling mechanism is used to trap
errors occurring when undefined functions are called.
If an attempt is made to evaluate M:F(Args) and no
code for the module M has been loaded into the system
then the function undefined_function(M,F,Args) in
the module error_handler is called.

error_handleris a normal Erlang function. A typ-
ical definition might be:

-module(error_handler).
—-export ([undefined_function/3]).

undefined_function(Mod, Func, Args) ->
case code:is_loaded(Mod) of
{file,File} —>
% the module is loaded

exit ({undef_fun,{Mod,Func,Args}});
false —>
case code:load_file(Mod) of
{module, _} ->
apply(Mod, Func, Args);
{error, _} —>
exit({undef_mod, Mod})
end
end.

The point to note here is not this particular code,
but rather the fact that the user can program exactly
what happens when a program tries to execute code
that has not been loaded into the system.

Different types of system, for example, embedded
systems, or, development systems need different types
of code loading strategy. The above mechanism allows
code loading strategies to be programmed by the user
in Erlang itself.

6 The Industrial Use of Erlang

Erlang was developed at the Ericsson Computer
Science Laboratory and started to spread outside the
lab. for internal use in Ericsson in 1987. The first
projects were simple prototypes written using a very
slow version of Erlang which was implemented in Pro-
log.

Work with the interpretor led to the development
of a much faster Erlang machine [ARM92b] which was
loosely based on the WAM with extensions to handle
process creation and message passing.

The availability of a faster Erlang implementation
encouraged the spread of the language within Ericsson
and a number of experimental projects were started.
At the time of writing some of these have developed
into full-scale Ericsson products.

In 1994 the first International Erlang Conference
was held in Stockholm. This conference, which pub-
lishes no proceedings has been held every year since
1994. The 1995 conference attracted 160 delegates
from 10 different countries. The Erlang conference is
the principle forum within Ericsson for reporting work
done with Erlang.

By 1995 three projects had matured into stable
commercial products, these were:

¢ NETSim - Network Element Test Simulator.

¢ Mobility Server - The Mobility Server is a fully
featured PBX.

e Distributed Resource Controller - the dis-
tributed resource controller (DRC) is a scalable,
robust resource controller written in distributed
Erlang and running on Windows-NT.

6.1 NetSim

The first commercial product developed using Er-
lang was a network simulator which simulates the
maintenance and operations behaviour of an Ericsson
AXE exchange. NetSim was released in 1994. At the
time of writing this product is in use at about twenty
sites in several countries.
6.2 Mobility Server

In February 1995, Ericsson Business Networks
launched the Consono ®)Personal Mobility product
range.! The principle component in the Consono sys-
tem is a device called the Mobility Server, most of the
code in the Mobility Server is written in Erlang.

The Ericsson press release [ERI96] at CeBIT-96
summarised some of the features of the Mobility
Server:

Ericsson’s solution is a new system concept
called a Mobility Server, which acts as an in-
telligent call control system when linked to
a company PBX. The Mobility Server is pri-
marily designed as an add-on to the Ericsson
Consono MD110 PBX, although it can also
be used with PBX systems from other sup-
pliers.

One of the principal attractions of the Mo-
bility Server is the introduction of Personal
Number services for all mobile users. Each
employee is able to publish a single number,
to which all phone calls and faxes can be sent.
The person can then control when and where
and from whom they want to receive phone
and fax calls.

The Mobility Server automatically routes the
calls appropriately, to an extension within
the company PBX, or to an external fixed
or mobile phone in the public network. The
routing can be selective, so that only certain
calls are directed to the person’s extension,
with all other calls going to a secretary or
voice-mail system.

The mobility server can be utilized by organ-
isations with as few as 60 extensions but is
expected to be particularly attractive to or-
ganisations with 400 or more extensions, and
highly mobile workforces for whom the qual-
ity and flexibility of communications is im-
portant. Examples include sales and service
organisations, and businesses with employees
who telework, spending some or all of their
time working from home.

The services offered can be used with wired
or cordless PBX extensions, and externally

1 Consono is a trademark owned by Telefonaktiebolaget L. M
FEricsson for marketing and sales of business communications
systems by Ericsson.

with cellular and PSTN phones, wide-area or
local paging systems, and fax/fax mailboxes.

Interestingly, nowhere in the FEricsson press re-
leases was there any mention that the system was pro-
grammed in Erlang!

The Mobility Server is the largest system pro-
grammed in Erlang yet written and contains over
230,000 lines of production quality Erlang code. At
the time of writing we believe this to be the largest
functional program ever written, it also demolishes the
argument that ”functional programming languages
cannot be used for large-scale projects”.

The Mobility Server is a good example of a non-
numerical, non-scientific system problem which can be
programmed in Erlang.

6.2.1 Technical Details

The Mobility Server (MS) is an interesting example of
a large function program. Here are some details of the
program:

e The MS code was organised into 486 Erlang mod-
ules, containing 230,000 lines of commented FEr-
lang code integrated with 20,000 lines of C.

e The Erlang source code was 6.6 Mbytes of text,
when compiled and loaded into the system it oc-
cupied 1.2 Mbytes of code space.

e The system runs on a 40MHz Force 5TE 40Mhz
with 32 Mbytes of memory and the VxWorks op-
erating system.

e The MS was written by a team of 35 Program-
mers. These programmers had no previous ex-
perience. They were helped by four consultants

from “Erlang Systems”.?

e The project started in a small way in 1987 as
an experiment in prototyping using a very slow
Erlang interpretor written in Prolog.

6.3 Distributed Resource Controller

The DRC is written in distributed Erlang and runs
on a network of Windows-NT machines. The DRC
has a robust scalable architecture and runs on low-
cost hardware. The resource which are controlled are
a collection of various audio devices, human operators
together with various database systems.

The allocation of resources is achieved using a dedi-
cated scripting language - the meta-interpreter for the
scripting language is written in Erlang.

?Erlang Systems is a company owned by Ericsson which was
set up to market Erlang and to provide consulting and training
in Erlang.

The first functioning system is currently in use on
two sites in Denmark where it 1s used by 638 operators
and controls 400 audio ports.

This project was delivered to the end-user and had
completed its acceptance tests in less than a year after
the requirements had been agreed upon.

Programming took 9,000 man hours and testing
2,000 man hours with seven programmers and two
testers. The resulting program has 40 Erlang mod-
ules, two external C programs and 12,800 lines of Er-
lang code.

7 Comments
7.1 Time to market

Although the actual programming phase of the soft-
ware development process 1s only a very small part of
the total design work the choice of programming lan-
guage and tools has a profound effect on the total life
cycle costs. Use of Erlang in a number of different
projects has dramatically shortened time to market
and greatly improved the quality of delivered software.
7.2 Performance

Erlang is sufficiently fast for delivering real telecom-
munication products.

Interestingly Erlang rarely does well in small bench-
mark comparisons with C. C programs are usually
faster than the equivalent Erlang programs.

However, when talking about large systems the op-
posite seems to be true — usually the Erlang programs
are faster than the C. The reasons for this are not well
understood.

7.3 Real-time garbage collection

It seems to be a widely accepted myth that garbage
collected languages are unsuitable for programming
real-time control systems.

In our experience the opposite appears to be true.
In implementing large control systems in conventional
languages problems of memory leakage and fragmen-
tation are extremely difficult to eliminate. The cost
of ad hoc solutions seems to outweigh that of using a
purpose-built garbage collector.

One thing that is clear is that the run-time dy-
namic memory requirements of a real-time system pro-
grammed in Erlang are surprisingly small.

8 TFuture directions

It is clear that Erlang is suitable for programming
a wide range of soft real-time control applications.
What is less clear is if Erlang is suitable for program-
ming applications with very demanding real-time re-
quirements.

Research efforts in the Ericsson Computer Science
Laboratory are concerned with a number of interesting
problems:

e Efficient implementation of Erlang. Here we are
investigating several techniques - these include

native code compilation of Erlang and porting Fr-
lang to run on multi-processor architectures.

e Efficient implementation of protocol software in

Erlang. We are investigating how to implement
TCP/IP directly in Erlang.

e Typed Erlang. A prototype type checker for Er-
lang has been written by Simon Marlow and Phil

Wadler of the University of Glasgow [MAR96].

A free version of Erlang [ERL96] can be downloaded
from the WWW.

Acknowledgments
I would like to thank Mike Williams and Peter
Hogfeldt for their help in preparing this paper.

References

[ARM92a] Armstrong, J.L., Virding, S.R. and
Williams, M.C. Use of Prolog for developing a new
programming language The Practical Application of
Prolog - 1 — 3 April 1992. Institute of Electrical En-
gineers, London.

[ARM92b]Armstrong, J.L., Décker, B.O., Virding,
S. R., and M. C. Williams, M. C. Implementing a
functional language for highly parallel real-time appli-
cations Software Engineering for Telecommunication
Switching Systems. March 30 — April 1, 1992 Flo-
rence.

[ARMO95a] Concurrent Programming in Erlang, Joe
Armstrong, Mike Williams, Robert Virding and Claes
Wikstrom. Prentice Hall, 1995.

[ARMO95b] Armstrong, J.L., Virding, S.R., One
pass real-time generational mark-sweep garbage col-
lection. International Workshop on Memory Man-
agement, (TWMM’95) September 27-29, 1995 Kinross,
Scotland

[ERT96] http://www.ericsson.se/Eripress/
CeBIT-96/19.html

[ERL96] http://www.ericsson.se/erlang/
bulletin/pres_free.html

[HAU94] Hausman, B. Turbo Erlang: Approaching
the speed of C. In Implementations of Logic Program-
ming Systems. Evan Tick, editor. Kluwer Academic
Publishers, 1994.

[MARY6] http://wuw.dcs.gla.ac.uk/
“simonm/erltc_toc.html

[VIR95] Virding, S. R. Garbage Collector for the
concurrent real-time language Erlang. International
Workshop on Memory Management (TWMM’95)
September 27-29, 1995 Kinross, Scotland

[WIK94] Wikstrom, C. Distributed Programming
in Erlang. First International Symposium on Parallel
Symbolic Computation (PASCO’94) September 26-28,
1994 Linz.

