// addrspace.cc // Routines to manage address spaces (executing user programs). // // In order to run a user program, you must: // // 1. link with the -N -T 0 option // 2. run coff2noff to convert the object file to Nachos format // (Nachos object code format is essentially just a simpler // version of the UNIX executable object code format) // 3. load the NOFF file into the Nachos file system // (if you haven't implemented the file system yet, you // don't need to do this last step) // // Copyright (c) 1992-1993 The Regents of the University of California. // All rights reserved. See copyright.h for copyright notice and limitation // of liability and disclaimer of warranty provisions. #include "copyright.h" #include "system.h" #include "addrspace.h" #include "noff.h" //---------------------------------------------------------------------- // SwapHeader // Do little endian to big endian conversion on the bytes in the // object file header, in case the file was generated on a little // endian machine, and we're now running on a big endian machine. //---------------------------------------------------------------------- static void SwapHeader (NoffHeader *noffH) { noffH->noffMagic = WordToHost(noffH->noffMagic); noffH->code.size = WordToHost(noffH->code.size); noffH->code.virtualAddr = WordToHost(noffH->code.virtualAddr); noffH->code.inFileAddr = WordToHost(noffH->code.inFileAddr); noffH->initData.size = WordToHost(noffH->initData.size); noffH->initData.virtualAddr = WordToHost(noffH->initData.virtualAddr); noffH->initData.inFileAddr = WordToHost(noffH->initData.inFileAddr); noffH->uninitData.size = WordToHost(noffH->uninitData.size); noffH->uninitData.virtualAddr = WordToHost(noffH->uninitData.virtualAddr); noffH->uninitData.inFileAddr = WordToHost(noffH->uninitData.inFileAddr); } //---------------------------------------------------------------------- // AddrSpace::AddrSpace // Create an address space to run a user program. // Load the program from a file "executable", and set everything // up so that we can start executing user instructions. // // Assumes that the object code file is in NOFF format. // // First, set up the translation from program memory to physical // memory. For now, this is really simple (1:1), since we are // only uniprogramming, and we have a single unsegmented page table // // "executable" is the file containing the object code to load into memory //---------------------------------------------------------------------- AddrSpace::AddrSpace(OpenFile *executable) { NoffHeader noffH; unsigned int i, size; executable->ReadAt((char *)&noffH, sizeof(noffH), 0); if ((noffH.noffMagic != NOFFMAGIC) && (WordToHost(noffH.noffMagic) == NOFFMAGIC)) SwapHeader(&noffH); ASSERT(noffH.noffMagic == NOFFMAGIC); // how big is address space? size = noffH.code.size + noffH.initData.size + noffH.uninitData.size + UserStackSize; // we need to increase the size // to leave room for the stack numPages = divRoundUp(size, PageSize); size = numPages * PageSize; ASSERT(numPages <= NumPhysPages); // check we're not trying // to run anything too big -- // at least until we have // virtual memory DEBUG('a', "Initializing address space, num pages %d, size %d\n", numPages, size); // first, set up the translation pageTable = new TranslationEntry[numPages]; for (i = 0; i < numPages; i++) { pageTable[i].virtualPage = i; // for now, virtual page # = phys page # pageTable[i].physicalPage = i; pageTable[i].valid = TRUE; pageTable[i].use = FALSE; pageTable[i].dirty = FALSE; pageTable[i].readOnly = FALSE; // if the code segment was entirely on // a separate page, we could set its // pages to be read-only } // zero out the entire address space, to zero the unitialized data segment // and the stack segment bzero(machine->mainMemory, size); // then, copy in the code and data segments into memory if (noffH.code.size > 0) { DEBUG('a', "Initializing code segment, at 0x%x, size %d\n", noffH.code.virtualAddr, noffH.code.size); executable->ReadAt(&(machine->mainMemory[noffH.code.virtualAddr]), noffH.code.size, noffH.code.inFileAddr); } if (noffH.initData.size > 0) { DEBUG('a', "Initializing data segment, at 0x%x, size %d\n", noffH.initData.virtualAddr, noffH.initData.size); executable->ReadAt(&(machine->mainMemory[noffH.initData.virtualAddr]), noffH.initData.size, noffH.initData.inFileAddr); } } //---------------------------------------------------------------------- // AddrSpace::~AddrSpace // Dealloate an address space. Nothing for now! //---------------------------------------------------------------------- AddrSpace::~AddrSpace() { delete pageTable; } //---------------------------------------------------------------------- // AddrSpace::InitRegisters // Set the initial values for the user-level register set. // // We write these directly into the "machine" registers, so // that we can immediately jump to user code. Note that these // will be saved/restored into the currentThread->userRegisters // when this thread is context switched out. //---------------------------------------------------------------------- void AddrSpace::InitRegisters() { int i; for (i = 0; i < NumTotalRegs; i++) machine->WriteRegister(i, 0); // Initial program counter -- must be location of "Start" machine->WriteRegister(PCReg, 0); // Need to also tell MIPS where next instruction is, because // of branch delay possibility machine->WriteRegister(NextPCReg, 4); // Set the stack register to the end of the address space, where we // allocated the stack; but subtract off a bit, to make sure we don't // accidentally reference off the end! machine->WriteRegister(StackReg, numPages * PageSize - 16); DEBUG('a', "Initializing stack register to %d\n", numPages * PageSize - 16); } //---------------------------------------------------------------------- // AddrSpace::SaveState // On a context switch, save any machine state, specific // to this address space, that needs saving. // // For now, nothing! //---------------------------------------------------------------------- void AddrSpace::SaveState() {} //---------------------------------------------------------------------- // AddrSpace::RestoreState // On a context switch, restore the machine state so that // this address space can run. // // For now, tell the machine where to find the page table. //---------------------------------------------------------------------- void AddrSpace::RestoreState() { machine->pageTable = pageTable; machine->pageTableSize = numPages; }